
TYPE Original Research

PUBLISHED 04 August 2022

DOI 10.3389/fcvm.2022.930077

OPEN ACCESS

EDITED BY

Fuquan Zhang,

Nanjing Medical University, China

REVIEWED BY

Hongbao Cao,

George Mason University,

United States

Masahiro Yoshikawa,

Nihon University School of

Medicine, Japan

*CORRESPONDENCE

Xiyan Tao

taoxy@tzzxyy.com

Longwei Xu

dr_xlw@hotmail.com

SPECIALTY SECTION

This article was submitted to

Cardiovascular Epidemiology and

Prevention,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 27 April 2022

ACCEPTED 11 July 2022

PUBLISHED 04 August 2022

CITATION

Zhuo C, Zhao J, Wang Q, Lin Z, Cai H,

Pan H, Chen L, Jin X, Jin H, Xu L and

Tao X (2022) Assessment of causal

associations between handgrip

strength and cardiovascular diseases:

A two sample mendelian

randomization study.

Front. Cardiovasc. Med. 9:930077.

doi: 10.3389/fcvm.2022.930077

COPYRIGHT

© 2022 Zhuo, Zhao, Wang, Lin, Cai,

Pan, Chen, Jin, Jin, Xu and Tao. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Assessment of causal
associations between handgrip
strength and cardiovascular
diseases: A two sample
mendelian randomization study

Chengui Zhuo1, Jianqiang Zhao2, Qiqi Wang3, Zujin Lin1,

Haipeng Cai1, Huili Pan1, Lei Chen1, Xiangyu Jin1, Hong Jin1,

Longwei Xu4* and Xiyan Tao1*

1Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China,
2Department of Cardiology, The Fourth A�liated Hospital of Zhejiang University School of Medicine,

Yiwu, China, 3Department of Cardiology and Atrial Fibrillation Center, The First A�liated Hospital,
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Background: Several observational studies have identified that handgrip

strength was inversely associated with cardiovascular diseases (CVDs).

Nevertheless, causality remains controversial. We conducted Mendelian

randomization (MR) analysis to examine whether handgrip strength and risk

of CVDs are causally associated.

Methods: We identified 160 independent single nucleotide polymorphisms

(SNPs) for right-hand grip strength and 136 independent SNPs for left-hand

grip strength at the genome-wide significant threshold (P < 5 × 10−8) from

UK Biobank participants and evaluated these in relation to risk of CVDs. MR

estimates was calculated using the inverse-variance weighted (IVW) method

and multiple sensitivity analysis was further conducted.

Results: Genetical liability to handgrip strength was significantly associated

with coronary artery disease (CAD) and myocardial infarction (MI), but not

stroke, hypertension, or heart failure. Additionally, there was significant

association between right-hand grip strength and atrial fibrillation (OR, 0.967;

95% CI, 0.950–0.984; p = 0.000222), however, suggestive significance was

found between left-hand grip strength and atrial fibrillation (OR, 0.977; 95%

CI, 0.957–0.998; p = 0.033). Results were similar in several sensitivity analysis.

Conclusion: Our study provides support at the genetic level that handgrip

strength is negatively associated with the risk of CAD, MI, and atrial fibrillation.

Specific handgrip strength interventions on CVDs warrant exploration as

potential CVDs prevention measures.

KEYWORDS

handgrip strength, cardiovascular diseases, coronary artery disease, causal

association, Mendelian randomization
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Introduction

Cardiovascular diseases (CVDs) remain one of the leading

causes of death globally, accounting for over 30% of all deaths,

and place a heavy burden on health systems (1). The global

burden of CVDs underscores the importance of exploring more

effective prevention and treatment strategies. Traditional risk

factors, including smoking (2), type 2 diabetes (3), body mass

index (4), and lipid profile (5), have been found to aid the better

management of CVDs. Besides, epidemiological studies have

further identified the inverse association of handgrip strength

with CVDs (6, 7).

As the most objective and simplest indicator of muscle

strength (8), the relationship between handgrip strength and

CVDs has been under the spotlight in recent years. A meta-

analysis of 42 studies with 3,002,203 patients showed a negative

linear association between handgrip strength and CVDs: The

lower the handgrip strength, the higher the prevalence of

CVDs (7). The hazard ratios and 95% confidence intervals

(HRs and 95% CIs) with the per-5-kg decrease in handgrip

strength was 1.21 (95% CIs, 1.14–1.29) for CVDs (7). However,

most of the evidence for the meta-analysis comes from

observational studies, which are inconclusive in identifying the

causality because of the possibility of residual confounding and

reverse causation.

With regard to the causal relationship, Mendelian

Randomization (MR) is an increasingly applied approach

that can use genetic variations from recent genome-wide

association studies (GWASs) as instrumental variables (IVs)

to clarify the causality between exposure and outcomes, and

diminish potential confounding factors in observational studies

(9, 10). Recently, a two-sample MR (TSMR) study showed that

increased handgrip strength was causally related to a lower risk

of CAD (11). However, the results of this TSMR study were still

limited as only two single-nucleotide polymorphisms (SNPs)

were selected as IVs and only the relationship between handgrip

strength and CAD was explored. Therefore, in this study, we

conduct the TSMR approach to examine the potential causality

between handgrip strength and the risk of CVDs, including

coronary artery disease (CAD), myocardial infarction (MI),

atrial fibrillation (AF), heart failure (HF), ischemic stroke (IS)

and its subtypes. And multiple complementary analysis also

have been conducted to test the robustness of the results.

Methods

Study design

The TSMR analysis diagram is shown in

Supplementary Figure 1. In short, the genetic variations

used as IVs must follow three key assumptions: First, the genetic

variants are strongly associated with handgrip strength (each

genetic variant for handgrip strength reached genome-wide

significance [P < 5 × 10−8], and the threshold of F statistic);

Second, the genetic variants shouldn’t be associated with any

confounders; Third, the genetic variants effect the outcome

only via the handgrip strength(no horizontal pleiotropy).

All summary statistics presented in this study were derived

from published GWAS on handgrip strength and CVDs

(Supplementary Table 1).

Data sources for handgrip strength and
selection of IVs

The summary statistic for handgrip strength was derived

from a recently released GWAS of the UK Biobank, which

included ∼360,000 participants from Europe (12). Briefly, this

GWAS examined two handgrip strength phenotypes including

right-hand grip strength (n = 359,729) and left-hand grip

strength (n = 359,704). In the UK Biobank, handgrip strength

was measured using a calibrated Jamar J00105 hydraulic hand

dynamometer adjusted for hand size in five half-inch increments

(13).We adopted absolute rather than relative handgrip strength

as a marker, because absolute handgrip strength may be

more correlated with physical capability than relative handgrip

strength (8).

In order to meet the first assumption of MR analysis,

this study selected 160 independent single-nucleotide

polymorphisms (SNPs) associated with “right-hand grip

strength” and 136 independent SNPs associated with “left-

hand grip strength” at a genome-wide significance level

(P < 5×10−8), using the PLINK clumping algorithm (r²

threshold = 0.001 and window size = 10Mb) from the GWAS

mentioned above. While SNPs for the handgrip strength

phenotypes were unavailable in the outcome GWAS, proxy

SNPs (linkage disequilibrium r2 > 0.8) were identified via an

online website, available at https://ldlink.nci.nih.gov/. F statistics

were generated to assess the strength of selected SNPs using the

following formula: F =
R2(N−2)
(1−R2)

.

Where, R2 is the percentage of the variability in handgrip

strength explained by the selected SNPs and N represents the

sample size of the GWAS (14). An F-statistic >10 indicates a

low risk of weak instrument bias in MR analysis (14).

Data sources for CVDs

GWAS summary statistics for CVDs were extracted from:

the CardiogramplusC4D consortium for CAD (60,801 cases and

123,504 controls) and MI (43,676 cases and 128,197 controls)

(15); the HERMES Consortium for HF (47,309 cases and 930,

014 controls) (16); the HUNT, deCODE, the MGI, DiscovEHR,

UK Biobank, and the AFGen Consortium for AF (65,446
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cases and 522,744 controls) (17); Liu et al. for hypertension

(146,562 individuals) (18), and the MEGASTROKE consortium

for ischemic stroke (IS) (34 217 cases and 404 630 controls) (19).

In line with the Trial of Org 10172 in Acute Stroke Treatment

criteria, ischemic stroke was further categorized as large artery

stroke (LAS), small vessel stroke (SVS), and cardioembolic

stroke (CS) cases (20). Details of the datasets included in the

analysis were shown in Supplementary Table 1.

Statistical analysis

A TSMR method was conducted in this study. After

extraction of data and harmonization of the effect alleles across

GWASs, the MR estimates of the effect of handgrip strength on

CVDs were calculated using the Wald estimates (21). The Delta

method was used to account for possible measurement errors

in the estimation of the causal association between handgrip

strength and CVDs (21, 22). The fixed-effects inverse variance-

weighted (IVW) method was adopted to evaluate the final effect

estimate. Scatter plots of the MR effects estimated by each

method were also provided.

Pleiotropy of SNPs in the IVW analysis may impact causal

estimates and bias the results. In this study, we calculated the

Cochran’s Q to test the heterogeneity caused by different SNPs

in the fixed-effects IVW. Cochran’s Q P-value < 0.05 indicated

the presence of heterogeneity, consequently, of horizontal

pleiotropy (23). In cases with potential horizontal pleiotropy,

the random-effects IVW method would be used. MR-Egger

intercept test was conducted to detect potential directional

pleiotropy, with an intercept P-value < 0.05 indicating

significant pleiotropic bias (24).

Additionally, we also performed several sensitivity analysis

to further ensure the robustness of our results, including the

weighted median method, simple median method, MR-Egger

regressionmethod (24), MR pleiotropy residual sum, and outlier

(MR-PRESSO) method (25), and leave-one-SNP-out method.

In addition, I2GX was calculated to test the potential weak IVs

bias in the MR-Egger regression method. An I2GX >95% means

low risk of bias (26). MR-PRESSO could identify IVs which

are likely to show pleiotropic effects (outlier IVs) and provided

estimates after removing the outlier IVs (25). To rule out the

IVs associated with any confounders that may affect handgrip

strength and CVDs, we also searched each selected SNP and

its proxies in Phenoscanner (27) and the GWAS catalog (28)

for previously identified associations (p-value < 5 × 10−6)

with relevant confounders or CVDs. In this study, smoking,

drinking, body mass index (BMI), hypertension, diabetes, and

lipid profile were regarded as confounders. We repeated the MR

analysis mentioned above after removing the SNPs associated

with relevant confounders or CVDs.

A two-sided p-value< 0.05 was set as suggestive significance,

and due to the multiple comparisons, we further applied

a Bonferroni corrected threshold for statistical significance

(0.05/2∗9 = 0.0028). All MR analysis were conducted using

R software (version 3.5.4; www.r-project.org) with the

R packages “Mendelian Randomization”, “MRPRESSO”

and “TwosampleMR”.

Result

Supplementary Tables 2, 3 shows the characteristics of all

correlated SNPs for handgrip strength. In total, we extracted

160 and 136 independent SNPs that reached genome-wide

significance from right-hand grip strength and left-hand grip

strength, respectively. Most SNPs were available in the GWAS

of CVDs except for HF and atrial fibrillation (rs57884925 was

not available for HF and AF). Thus, we found the proxy-

SNP (rs7034200) to replace it. Among all selected SNPs, the F

statistics were higher than 10 and ranged from 30 to 159. In the

PhenoScanner and GWAS catalog, we identified 33 (rs7034200

was associated with diabetes while rs57884925 was not) and

27 selected SNPs that were considered to be associated with

confounders or CVDs for right-hand grip strength and left-hand

grip strength, respectively (Supplementary Tables 4, 5).

Cochran’s Q test had indicated the presence of significant

heterogeneity in some MR analysis (P-value < 0.05,

Supplementary Table 6), consequently, for these models

random-effects IVW methods were conducted. According

to the IVW analysis, both genetically predicted right- and

left-hand grip strength were significantly negatively associated

with CAD or MI (Tables 1, 2). There was significant association

between right-hand grip strength and AF (OR, 0.967; 95% CI,

0.950–0.984; p = 0.000222), however, suggestive evidence was

found between left-hand grip strength and AF (OR,0.977; 95%

CI,0.957-0.998; p = 0.033). In sensitivity analysis, the causal

association of handgrip strength with CAD, MI, and AF was

confirmed using the weighted median, simple median, MR-

PRESSO, MR-Egger regression (Supplementary Tables 7, 8),

and leave-one-SNP-out method (Supplementary Figures 2–7).

I2GX for right- and left-hand grip strength was higher than

0.95, indicating a low chance of weak IVs bias in MR-Egger

regression (Supplementary Tables 7, 8). Importantly, the

MR-PRESSO method had detected some outliers, but the

results were similar after excluding the outliers (Tables 1, 2;

Supplementary Table 9).

On the flip side, we found that right-hand grip strength and

left-hand grip strength were suggestively inversely associated

with hypertension and large artery stroke, respectively, but these

findings were inconsistent in sensitivity analysis (Tables 1, 2).

For other CVDs outcomes (HF, IS, CS, SVS), no significant

association was further identified. Directional pleiotropy was

only found in the association of right-hand grip strength with

SVS (Supplementary Tables 7, 8), which may impact the result.

To get more robust results, we further removed the SNPs
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TABLE 1 Mendelian randomization estimates between right handgrip strength and cardiovascular diseases.

Outcomes SNP

selection

No. of

SNPs

IVW Weighted median Simple median MR-Egger MR-PRESSO†

(outlier-corrected)

OR (95%

CI)

p-value OR (95%

CI)

p-value OR (95%

CI)

p-value OR (95%

CI)

p-value OR (95% CI) p-value

CAD All 160 0.956

(0.938–0.974)

2.16E-06* 0.953

(0.932–0.975)

2.87E-05* 0.957

(0.936–0.979)

1.11E-04* 0.888

(0.816–0.966)

0.006# 0.962

(0.945–0.978)

1.76E-05*

Remove 128 0.957

(0.939–0.976)

8.08E-06* 0.952

(0.929–0.976)

8.66E-05* 0.957

(0.934–0.98)

3.65E-04* 0.901

(0.828–0.981)

0.016# NA NA

MI All 160 0.957

(0.938–0.977)

3.30E-05* 0.959

(0.935–0.983)

7.71E-04* 0.966

(0.943–0.990)

0.006# 0.866

(0.790–0.949)

0.002* 0.957

(0.938–0.976)

1.89E-05*

Remove 128 0.958

(0.938–0.979)

8.41E-05* 0.956

(0.931–0.982)

0.001* 0.966

(0.941–0.992)

0.011# 0.880

(0.802–0.965)

0.007# NA NA

AF All 160 0.967

(0.950–0.984)

2.22E-04* 0.969

(0.953–0.986)

2.61E-04* 0.979

(0.963–0.996)

0.015# 0.913

(0.846–0.986)

0.020# 0.967

(0.952–0.982)

3.60E-05*

Remove 127 0.964

(0.947–0.981)

5.26E-05* 0.972

(0.953–0.990)

0.003# 0.979

(0.961–0.998)

0.030# 0.942

(0.874–1.016)

0.120 0.963

(0.947–0.98)

4.18E-05*

HF All 160 1.003

(0.989–1.018)

0.667 1.006

(0.988–1.024)

0.505 1.002

(0.984–1.020)

0.846 0.992

(0.932–1.056)

0.796 NA NA

Remove 127 1.002

(0.987–1.017)

0.836 1.006

(0.986–1.027)

0.550 1.001

(0.981–1.021)

0.925 0.986

(0.926–1.051)

0.667 NA NA

Hypertension All 160 0.986

(0.957–1.015)

0.333 1.006

(0.967–1.046)

0.757 1.008

(0.970–1.048)

0.678 0.983

(0.857–1.128)

0.806 NA NA

Remove 128 0.979

(0.947–1.011)

0.197 1.007

(0.964–1.053)

0.747 1.006

(0.964–1.050)

0.787 0.964

(0.833–1.115)

0.621 NA NA

IS All 160 0.995

(0.979–1.012)

0.592 1.002

(0.979–1.026)

0.873 1.003

(0.980–1.026)

0.817 0.959

(0.890–1.034)

0.276 NA NA

Remove 128 0.996

(0.977–1.015)

0.664 1.003

(0.977–1.029)

0.831 1.011

(0.987–1.037)

0.370 0.962

(0.888–1.043)

0.350 NA NA

CS All 160 0.999

(0.969–1.030)

0.954 0.993

(0.952–1.036)

0.753 0.985

(0.944–1.028)

0.496 0.990

(0.862–1.137)

0.886 NA NA

Remove 128 0.988

(0.954–1.023)

0.500 0.988

(0.942–1.037)

0.630 0.985

(0.939–1.033)

0.527 0.977

(0.840–1.137)

0.766 NA NA

LAS All 160 0.959

(0.922–0.999)

0.042# 0.957

(0.905–1.013)

0.133 0.966

(0.914–1.021)

0.223 0.859

(0.718–1.028)

0.097 NA NA

(Continued)
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associated with any confounders or CVDs and the causal

estimates were consistent (Tables 1, 2). Scatter plots depicting

the MR effect evaluated by each method were also displayed in

Supplementary Figures 8–11.

Discussion

In this study, we explored the causal associations between

handgrip strength and CVDs by using TSMR analysis. We

confirmed that greater handgrip strength was significantly

causally associated with the lower risk of CAD and MI.

Additionally, there was a significant association between right-

hand grip strength and AF, while suggestive significance was

detected between left-hand grip strength and AF. Besides,

no significant associations of handgrip strength with HF,

hypertension, IS, CS, LAS, and SVS were found.

The observational studies that suggested handgrip strength

may be associated with CAD andMI have inspired researchers to

search for more evidence to demonstrate the causal association

(8, 29). TSMR analysis has been applied in previous studies

to investigate the causal association, but the results were

inconsistent (11, 30). Xu et al. used 2 SNPs as genetic variants

for handgrip strength and reported inverse causal associations of

handgrip strength with the risk of CAD or MI (11). In contrast,

Willems et al. identified 16 SNPs associated with handgrip

strength and did not detect any apparent association between

handgrip strength and cardiovascular events (CAD or MI) (30).

The discrepancy might be attributed to the limited number of

SNPs (2 and 16 SNPs for two studies), pleiotropic bias, different

data sources, and statistical analysis. Recently, Liu et al. also

identified the causal association between handgrip strength and

CAD by using TSMR (31). However, the results of Liu et al.

were still restricted as just 95 and 81 SNPs were identified as IVs

for right- and left- handgrip strength, and only the association

between handgrip strength and CAD was evaluated (31). In this

TSMR study, we extracted a total of 160 and 136 SNPs as genetic

variants for right-hand grip strength and left-hand grip strength,

and indicated a negative association between handgrip strength

and CAD or MI. These results remained robust after removing

potential pleiotropic IVs through several sensitivity analysis.

As handgrip strength was positively correlated with muscle

mass (32), which is the primary site of glucose disposal (33),

a potential mechanism for the association between handgrip

strength and CAD or MI may be related to increased insulin

action and decreased blood glucose in people with higher

handgrip strength.

Our findings were consistent with a previous observational

study showing that handgrip strength was negatively association

with AF (34). The results of this study indicated that the HRs

were 0.73 (95%CI, 0.61–0.86) for AF per one standard deviation

increase in handgrip strength. Additionally, another cohort

study with 1.1 million participants also confirmed that handgrip
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TABLE 2 Mendelian randomization estimates between left handgrip strength and cardiovascular diseases.

Outcomes SNP

selection

No. of

SNPs

IVW Weighted median Simple median MR-Egger MR-PRESSO† (outlier-corrected)

OR (95%

CI)

p-value OR (95%

CI)

p-value OR (95%

CI)

p-value OR (95%

CI)

p-value OR (95% CI) p-value

CAD All 136 0.958

(0.939–0.977)

2.11E-05* 0.960

(0.938–0.983)

6.60E-04* 0.960

(0.938–0.982)

5.27E-04* 0.948

(0.858–1.047)

0.292 0.958

(0.94–0.977)

2.21E-05*

Remove 109 0.962

(0.942–0.983)

5.12E-04* 0.970

(0.945–0.996)

0.022# 0.969

(0.944–0.995)

0.019# 0.957

(0.859–1.067)

0.429 NA NA

MI All 136 0.960

(0.940–0.981)

1.90E-04* 0.964

(0.939–0.989)

0.005# 0.959

(0.935–0.984)

0.002* 0.944

(0.849–1.050)

0.287 0.958

(0.938–0.978)

7.84E-05

Remove 109 0.963

(0.942–0.986)

0.001* 0.969

(0.941–0.997)

0.029# 0.967

(0.940–0.995)

0.022# 0.974

(0.869–1.092)

0.655 NA NA

AF All 136 0.977

(0.957–0.998)

0.033# 0.972

(0.955–0.989)

0.001* 0.973

(0.956–0.99)

0.002* 0.895

(0.808–0.992)

0.034# 0.979

(0.964–0.994)

6.49E-03#

Remove 109 0.978

(0.956–1.000)

0.045# 0.974

(0.955–0.993)

0.008# 0.974

(0.955–0.994)

0.009# 0.932

(0.835–1.040)

0.208 0.980

(0.963–0.997)

0.024#

HF All 136 1.004

(0.990–1.018)

0.571 1.003

(0.984–1.022)

0.754 1.003

(0.984–1.022)

0.757 1.013

(0.946–1.085)

0.708 NA NA

Remove 109 1.003

(0.988–1.019)

0.698 1.001

(0.98–1.023)

0.91 1.001

(0.980–1.023)

0.933 1.027

(0.953–1.106)

0.483 NA NA

Hypertension All 136 0.965

(0.935–0.997)

0.032# 0.957

(0.919–0.996)

0.033# 0.967

(0.928–1.007)

0.1 1.043

(0.891–1.221)

0.602 NA NA

Remove 109 0.960

(0.927–0.995)

0.025# 0.964

(0.921–1.010)

0.125 0.978

(0.934–1.024)

0.35 1.046

(0.880–1.242)

0.613 NA NA

IS All 136 0.996

(0.979–1.013)

0.62 0.991

(0.967–1.015)

0.465 0.990

(0.966–1.015)

0.436 1.01

(0.927–1.099)

0.822 NA NA

Remove 109 0.994

(0.976–1.012)

0.506 0.991

(0.965–1.018)

0.522 0.990

(0.963–1.017)

0.473 1.014

(0.924–1.112)

0.77 NA NA

CS All 136 1.015

(0.983–1.047)

0.36 1.011

(0.966–1.058)

0.642 1.010

(0.965–1.057)

0.664 1.102

(0.936–1.298)

0.242 NA NA

Remove 109 1.01

(0.975–1.047)

0.568 1.008

(0.960–1.059)

0.742 1.008

(0.960–1.059)

0.742 1.051

(0.875–1.263)

0.594 NA NA

(Continued)
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strength was significantly related to the risk of arrhythmia.

After a median follow-up of 26.3 years, the HRs were 0.92

(95%CI, 0.61–0.86) for arrhythmia compared with low handgrip

strength. In this TSMR study, we further divided handgrip

strength into right- and left-hand grip strength, and there was

suggestive evidence for the association of left-hand grip strength

with AF while a significant causal association was identified

between right-hand grip strength and AF. One possible reason

for the difference is that approximately 89% of people in the

UK biobank had right-hand preference (35), which may lead to

selection bias and influence the results (36).

The causal association between handgrip strength and

stroke remains inconclusive till now. A prospective study

including 12,237 participants showed that handgrip weakness

had 89.3% higher risk of stroke (37). However, Andersen et al.

revealed that there was no significant association of stroke

risk with higher muscle strength (HRs 1.01; 95%CI 0.94–

1.10) (38). To our knowledge, this may be the first TSMR

study to assess the causal association of handgrip strength with

stroke. We observed that right- and left-hand grip strength

was not causally associated with stroke and its subtypes.

Similarly, the role of handgrip strength in stroke has not been

highlighted in existing guidelines (39). Additionally, we further

revealed that handgrip strength was not associated with the

risk of HF and hypertension which is in line with previous

studies (40, 41).

Our study has several evident strengths. Firstly, this was

the first TSMR study to evaluate the causal associations of

handgrip strength with AF, HF, IS, and its subtypes by using the

recently published GWAS. Secondly, various complementary

analysis were applied to address pleiotropic bias and ensure the

robustness of our results. Thirdly, we repeated the analysis after

excluding the IVs associated with any confounders or CVDs and

the result was consistent.

Besides, several potential limitations were also worth

acknowledging. Firstly, while no apparent pleiotropy was

detected for the IVs used, the possibility of residual pleiotropy

still cannot be completely ruled out. There may be other

undiscovered causal pathways of handgrip strength with

CVDs. Second, SNPs associated with handgrip strength were

selected from the GWAS of UK Biobank, which consists

of participants aged between 40 to 70 years from Europe.

Furthermore, we do not have the demographic information

which restricts the generalizability of our results. Thus,

further studies are warranted to confirm our findings on

other populations. Third, though handgrip strength is an

objective and common marker of muscular strength, it

mainly represents upper body strength. Fourth, as the causal

association was evaluated using MR based on the genetic

information of each trait, the result should be interpreted with

caution (42), with the understanding that the development of

handgrip strength and CVDs were multifactorial and involved

interactions among plenty of psycho-social-environmental
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factors (43). Finally, some samples in the GWAS of AF

and HF have also been included in the UK Biobank,

which may introduce bias. However, this bias would likely

be minimal due to the limited overlap in the samples

between handgrip strength and CVDs (22% for AF and 6%

for HF).

Conclusion

To sum up, our study provides genetic evidence

supporting a causal association between handgrip strength

on CAD, MI, and AF, but not stroke, hypertension,

or heart failure. Given the significance of these

associations, specific handgrip strength interventions

could be further investigated as potential CVDs

prevention measures.
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