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Abstract Maintenance of appropriate iron homeostasis in the brain is important, but
the mechanisms involved in brain iron uptake are incompletely understood. Here, we
have analyzed where messenger RNAs that encode iron transport proteins are
expressed in the brain, using the Allen Brain atlas, and we conclude that several
important iron transporters are highly expressed in the choroid plexus. Based on
recent estimates of the surface area of the choroid plexus and on MRI imaging
studies of manganese uptake in the brain, we propose that the choroid plexus may
have a much greater role than has been previously appreciated in brain iron
transport.

Keywords Choroid plexus . Iron transport . Blood brain barrier . Blood-CSF barrier .

Ferroportin . Ceruloplasmin

It has long been known that iron deficiency has a significant negative impact on
brain development and cognition, and recent studies indicate that both the striatal
dopaminergic-opiate system and the cholinergic systems are adversely affected by
iron deficiency (Youdim 2008). Nutritional iron deficiency has a significant impact
on infant and child health in many developing countries, where it is one of the major
public health problems (Walker et al. 2007). In addition to the importance of iron in
infant brain development, studies in South Africa have demonstrated that correction
of iron deficiency can significantly improve maternal depression (Beard et al. 2005).
Thus, iron uptake is important for growth and function of the brain, and it is
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therefore important to understand how iron moves from the systemic circulation into
the central nervous system.

Although the molecular details of brain iron uptake are incompletely character-
ized, many of the key proteins involved in uptake of dietary iron through the
intestine have been characterized in the last decade. Identification of intestinal iron
transporters represents an important advance, because once the biological problem of
how to transport iron across a polarized epithelium has been solved, the same
solution can be employed to resolve analogous challenges, including how to import
iron into the central nervous system from the systemic circulation. More than 65% of
iron is incorporated into heme in mammals, while numerous other proteins and
enzymes also utilize iron as a cofactor, including tyrosine hydroxylase, which uses
iron to convert tyrosine to dihydroxyphenylalanine in catechol synthesis. In addition,
mitochondria require iron for function of numerous proteins, including aconitase, a
key enzyme of the citric acid cycle, and respiratory chain complexes I–IV, which
facilitate oxidative phosphorylation using several heme and iron-sulfur cluster
cofactors (Rouault and Tong 2008). The central nervous system consumes about
20% of the total body energy (Drubach 1999) and is rich in iron; therefore, the
mechanisms that govern brain iron uptake and homeostasis are of great interest.

The main transporters likely to be involved in brain iron uptake include proteins
that are involved in transport of iron from the diet across the apical membrane of
intestinal mucosal cells, as well as proteins that facilitate iron export from the
basolateral membrane into the blood stream. A major protein involved in intestinal
absorption of iron from the diet is a divalent metal transporter known as DMT1 (also
known as Nramp2 and DCT1) (Mims and Prchal 2005), which imports iron into the
intestinal epithelial cell (enterocyte), with the aid of a membrane-bound reductase
that reduces ferric iron (Fe3+) to the transportable ferrous form (Fe2+) known as
Dcytb (McKie 2008). It is not known how iron traverses the polarized enterocytes,
but an iron exporter known as ferroportin (FPN) mediates iron export from the
enterocytes into the circulation. FPN is the only mammalian iron exporter that has
thus far been identified, and its substrate is ferrous (Fe2+) iron (Anderson and Vulpe
2009). In enterocytes, a membrane bound ferroxidase, hephaestin, oxidizes the iron
transported by FPN, which enhances the rate of iron export and generates the ferric
form of iron, which is sequentially accepted by transferrin (Tf) in the circulation
(Wessling-Resnick 2006). Serum Tf is an abundant circulating protein that binds
ferric iron and delivers iron to cells throughout the systemic circulation by binding to
Tf receptors (TfRs) on cells in tissues such as liver and bone marrow. Upon binding,
the Tf-TfR complex internalizes to a vesicle, iron is released from Tf, reduced to the
transportable ferrous form (Fe2+) by a vesicular reductase, Steap3 (Ohgami et al.
2006) and transported across the endosomal membrane into cytosol by DMT1 found
in the vesicular membrane.

Intestinal iron uptake is highly regulated by a hormone known as hepcidin
(Anderson et al. 2009), which is released mainly from the liver in response to iron
overload or inflammation. Hepcidin can bind to FPN and induce its internalization
and degradation, thereby blocking the iron uptake in response to systemic iron
abundance. Intestinal iron uptake is also regulated by hypoxia inducible factor 2
(HIF2), a transcription factor known mainly for its ability to mediate the response of
cells to hypoxia, through regulating the transcription of DMT1 and Dcytb,
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(Mastrogiannaki et al. 2009; Shah et al. 2009). Iron is stored intracellularly in the
cytosolic protein ferritin, and major repositories of iron in the systemic circulation
include the liver and the reticuloendothelial macrophages. All tissues in the body
share a common system of iron delivery and homeostasis, based on intestinal iron
uptake and circulating Tf, except for two regions that are separated from the
systemic circulation by epithelial or endothelial barriers: the central nervous system,
and testes (Rouault and Cooperman 2006).

The central nervous system (CNS) is separated from the systemic circulation by
the blood-brain barrier, which is formed by endothelial cells of capillaries, and the
blood-cerebrospinal fluid barrier, generated by epithelial cells found in the choroid
plexus. Capillaries in the CNS are unusual in that they lack the fenestrations that
characterize capillaries of the systemic circulation. Instead, tight junctions connect
the endothelial cells in CNS capillaries, and the membrane composition of the
portion of the cell that contacts blood differs from that of the basolateral surface of
the cell, which is in contact with the brain interstitial fluid. Because there are no
fenestrations, drugs and nutrients cannot pass between these cells, but rather must
be transported across cells. Similarly, the choroid plexus consists of tuft-like
capillaries that are ensheathed by an epithelium in which adjacent cells are joined
by tight junctions that create the blood-cerebrospinal fluid (CSF) barrier. The
choroid plexus protrudes into all four ventricles of the brain, and produces the
CSF that fills the ventricles and bathes the interstitium of the central nervous
system. Although the capillaries of the choroid plexus are fenestrated and allow
substances to pass between cells, the choroid plexus epithelium presents a barrier
through which nutrients and drugs must pass (reviewed in Rouault and
Cooperman 2006).

The brain can be considered to consist of four major fluid compartments, and
understanding the relationships among these compartments is important for
comprehending the mechanisms involved in uptake of nutrients and drugs. One
compartment consists of the intracellular fluid of the major cell types of the brain,
including neurons, astrocytes, oligodendrocytes and microglia; the intracellular fluid
of each cell can be reached only when nutrients or drugs cross the plasma
membranes of each individual cell, either by passive diffusion or active uptake. The
plasma membranes of these cells enable the cells to exclude many substances that
are present in CSF, and to regulate their uptake of other nutrients and molecules as
needed, usually because of the activity of dedicated transport molecules. The blood
that flows through the brain represents a second compartment that is physically
separated from the brain parenchyma by two cellular barriers: the blood brain barrier
and the blood-cerebrospinal fluid (CSF) barrier. Cells of the choroid plexus elaborate
CSF, and substances that cross the choroidal epithelium or blood brain barrier enter
into the ventricles or brain interstitial fluid (Brown et al. 2004). Although the CSF
and interstitial fluid have been characterized as a third and fourth compartment
(Zheng et al. 2003), there is no diffusional barrier that separates brain interstitial
fluid from ventricular CSF, and once a substance has entered the interstitial fluid or
ventricular fluid, it may freely diffuse to the membranes of all cells within the brain
interstitium. There is a net flow of CSF from its point of synthesis in the choroid
plexus, which extends like a net throughout all four ventricles and closely apposes
important brain regions such as the hippocampus, to several locations where CSF is
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thought to drain into the venous circulation (Koh et al. 2007), including the
arachnoid villi, and also the cribriform plate (Johansson et al. 2008).

The choroid plexus has not previously been considered to be very important in
maintenance of brain iron homeostasis, in part because the blood brain barrier has
been calculated to provide much more surface area than the choroid plexus (Moos et
al. 2007). However, the potential role of the choroid plexus may be greatly
underestimated for several reasons. Although the choroid plexus apical surface area
was previously estimated to be less than half that of the blood brain barrier (Keep
and Jones 1990), more recent studies suggest that the total surface area provided by
microvilli on both the apical and basolateral membranes of the choroid plexus cells
is ten-fold greater than was previously estimated (Speake et al. 2004). Moreover, the
blood flow rate to the capillaries of the choroid plexus is about five-fold higher than
to other regions of the brain (Maktabi et al. 1990), and the combination of high
blood supply and high surface area increases the possibility that the choroid plexus
plays an important role in uptake of nutrients such as iron. In uptake studies that
involve brain dissection, the delicate net-like choroid plexus structures are frequently
torn or lost, which may contribute to under-appreciation of the broad physical
contact between the choroid plexus and ventricular system. In contrast, live imaging
studies demonstrate that the choroid plexus structures spread throughout the
ventricles, pervading into the far-reaches of the ventricular system (Naeini et al.
2009).

Iron uptake into the brain is high in infants when the brain is growing and
developing, but measurable iron uptake is lower in adult, and it was previously
believed that most iron uptake needed for brain development occurred passively in
infants because the blood brain barrier and blood CSF barrier were not yet fully
formed (Berg et al. 2001). However, numerous studies indicate that the blood and
CSF barriers function very early in development (Johansson et al. 2008), and it is not
likely that all of the iron the brain will need during growth and development is taken
up before barriers begin to function. In addition, studies over the last ten years have
revealed that TfRs are present on the luminal membranes of capillary endothelial
cells, and that iron from systemic Tf can cross endothelial cells and enter the
interstitium, even though Tf itself does not cross from the systemic circulation into
the interstitial fluid (Morgan and Moos 2002; Moos et al. 2006). These studies
indicate that iron can enter into the brain interstitium in adult animals. Consistent
with these observations, other proteins identified as important in iron transport in the
duodenum, including the iron exporter, FPN (Wu et al. 2004) and the ferroxidases,
hephaestin and ceruloplasmin, have been identified in brain vasculature, although
not all of the proteins involved in transport, such as DMT1, have been identified in
capillaries (Moos et al. 2007). Detection of some iron transport proteins led to focus
on the blood brain barrier as a major point through which iron passes into the CNS,
particularly because the surface area of the blood brain barrier is extensive (Moos
2002; Moos et al. 2007).

However, it is difficult to directly measure brain iron uptake and ascertain the
relative importance of brain capillaries compared to the choroid plexus, because
there are no real-time imaging techniques that permit non-invasive overall
visualization of iron uptake. Most studies have been performed in animal models
using radioactively labeled iron isotopes, and iron distribution in the CNS has been
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visualized by autoradiograms performed at specific times after injection of radio-
labeled iron in sacrificed animals. In contradistinction to iron, uptake of manganese,
a divalent metal, can be visualized directly in magnetic resonance imaging because
of its particular magnetic properties. After a bolus injection of manganese in the
systemic circulation, studies indicate that early manganese uptake can be visualized
in the choroid plexus within five minutes after injection (Aoki et al. 2004). Within
ten minutes, manganese had diffused into ventricular fluid, and within several hours,
manganese was visible within the peri-ventricular interstitial spaces. After 24 hours,
uptake in neurons and glia was visualized, and the pattern of distribution remained
unchanged for several weeks, after which time manganese slowly exited the CNS,
possibly through either the arachnoid villi or the cribriform plate, another mode of
egress that has been described recently (Johansson et al. 2008).

Since manganese shares some chemical features with iron and may be transported by
some of the same basic transporters, its route of uptake into the CNS may also be used
by iron. To avoid the problems associated with radiotracer studies, which involve timed
sacrifice of animals, and to avoid bias based on expectations, we decided to evaluate the
expression levels of known iron transporters in the CNS using the technique of in situ
hybridization, which identifies sites where genes are highly expressed by quantitatively
labeling messenger RNAs that encode proteins of interest. Over the last several years,
the Allen Brain atlas, an online resource, has systematically compiled the results of in
situ hybridizations for all known mouse genes, and determined their sites of expression.
The results of these experiments are unbiased, as they are part of an encyclopedic
compendium of results (Lein et al. 2007). Thus, elucidation of where brain iron
transporters are expressed revealed by in situ hybridization results has the potential to
reorient expectations about the major sites of iron transport.

We analyzed expression patterns of iron transporters that were identified
originally in the duodenal mucosa, including the apical transporter DMT1, the
ferric reductase, Dcytb, the basolateral exporter ferroportin, and the membrane
bound ferroxidase hephaestin. In addition, a special form of the normally soluble
ferroxidase, ceruloplasmin, is found in the brain; it differs from ceruloplasmin in the
systemic circulation because it contains a glycolipid modification at the C-terminus
known as a glycophosphatidylinositol (GPI) anchor, which anchors the ceruloplas-
min to membranes of astrocytes and possibly other cell types within the CNS (Patel
et al. 2000). Although immunohistochemistry has been most commonly used to
ascertain where specific proteins are expressed in the central nervous system, in situ
hybridization is a complementary technique that also addresses the question of
where genes are highly expressed.

Iron that enters the CNS should be delivered to barrier cells by the circulating
iron-bearing Tf. Under normal physiological conditions there is almost no free iron
in circulation. Upon binding the TfR, the Tf-TfR complex usually internalizes to
endosome, where iron is released from Tf, reduced from the ferric (Fe3+) to the
ferrous (Fe2+) form, exported to cytosol by DMT1, and then exported out of the cell
by FPN, with the aid of ferroxidases such as ceruloplasmin and hephaestin. Upon
reaching the interstitial fluid of the brain, the iron can be bound by Tf that was
synthesized by oligodendrocytes and released directly into the interstitial fluid. ATf-
iron complex can then form and circulate throughout the brain interstitium,
supplying iron to cells within the CNS (reviewed in Zecca et al. 2004).
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A schematic figure of the choroid plexus depicted in Fig. 1 shows the relationship
of the fenestrated vasculature to the epithelial layer of the choroid plexus and to CSF.
As discussed in the legend, iron that enters the CNS would be expected to be
delivered to TfRs on barrier cells by circulating Tf, which carries ferric iron. TfR1
was well represented in choroid plexus on in situ analysis, but its expression was

Fig. 1 A schematic of the choroid plexus illustrates that the choroidal capillaries are separated from the
CSF by a layer of choroidal epithelial cells. If the choroid plexus acted as a site of brain iron uptake, Tf
released by the blood would bind to TfR on the membrane nearest to the capillary, and iron would cross to
the membrane that faces the CSF, and be exported by FPN, aided by a ferroxidase such as ceruloplasmin
or hephaestin. In this potential scheme, DMT1 would be needed to release iron from endosomes after
internalization of the Tf-TfR complex, and an endosomal reductase would also be needed. This figure was
reproduced from http://www.daviddarling.info/encyclopedia/copyright.html with permission from David
Darling

Fig. 2 The transferrin receptor is expressed throughout the central nervous system, including in the
choroid plexus, as judged by staining in a sagittal section of mouse brain from the Allen Mouse Brain atlas
(arrow)
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also high in many other regions of the brain (Fig. 2). Strikingly, expression of
DMT1, FPN, ceruloplasmin (Cp), and hephaestin were higher in the choroid plexus
on in situ hybridization than virtually all other brain regions (Figs. 3, 4, 5, 6 and 7).
Notably, these transport proteins were not detected in capillaries, even though
expression of the known capillary protein, Epas1, also known as Hif2 alpha, can be
readily detected in the Allen Brain atlas (data not shown). Also, the expression of the
ferric reductase, Dcytb, was substantial in choroid plexus (Fig. 4), and that result
was further supported by immunohistochemical detection of the protein (Fig. 10).

Fig. 3 Expression of the divalent metal transporter, DMT1, is notably high in the choroid plexus, as
indicated by arrows to choroid plexus formations

Fig. 4 Expression of the reductase, Dcytb, is detectable in many regions of the brain, including in the
choroid plexus (arrows)
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Iron strorage protein ferritin can be used as a surrogate iron marker since its expression
is regulated by intracellular iron level. Messenger RNA expression of ferritin H chain
was also high in choroid plexus compared to other areas (Fig. 8) and this was confirmed
by immunofluorescent assay (Fig. 9a). Interestingly, there was massive increase of

Fig. 5 Ferroportin expression is very high in choroid plexus compared to other regions of the CNS (arrows)

Fig. 6 Expression of the membrane-bound ferroxidase, hephaestin, is detectable throughout the brain, but
is very high in the choroid plexus (arrows)
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ferritin expression in the 24 months old Cp null mice (Fig. 9c), which show abnormal
iron accumulation as they age (Jeong and David 2006) (Fig. 10).

Taken together, these results from in situ hybridization point to the possibility that
the choroid plexus may mediate significant iron transport in the mammalian central

Fig. 7 Expression of ceruloplasmin is also very high in the choroid plexus (arrows)

Fig. 8 Expression of iron storage protein, ferritin H chain is highly expressed in the choroids plexus
(arrows)
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Fig. 9 Immunofluorescent staining using anti-ferritin antibody (Dako) shows expression of ferritin in 24-
months old mice choroid plexus (a). This immunoreactivity is highly increased in ceruloplasmin null mice
(c) indicating increased intracellular iron in this area. DAPI staining b, d shows choroid plexus structure
near fourth ventricle. Scale bars; 100 μm, 20 μm (inset)

Fig. 10 Immunohistochemistry
reveals high expression of
Dcytb in the choroid plexus
epithelial cells, indicated by the
green staining. Nuclei of epithe-
lial, capillary and other cells are
detected by staining with DAPI
blue. Immunohistochemistry was
performed on the frozen section
of 10 μm thickness with a rabbit
anti-mouse Dcytb polyclonal
antibody as described previously
(Su et al. 2006; Zhang et al.
2006)
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nervous system. The proposed pathway of uptake through the choroid plexus has
already been demonstrated to function in manganese uptake (Aoki et al. 2004), but
imaging techniques that allow real-time visualization of iron uptake have not been
developed. Brain iron uptake is a critical process that must be highly regulated. If the
choroid plexus is a major site of iron uptake, then diseases that cause choroid plexus
inflammation could have adverse effects on brain iron homeostasis. Recent studies
support an important role for the choroid plexus in iron homeostasis and in response
to systemic inflammation (Marques et al. 2009). We suggest that analysis of in situ
hybridization results that are available from the Allen Brain Institute may facilitate
discovery of previously unappreciated uptake pathways for a variety of brain
nutrients and drugs.
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