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We conducted a comprehensive analysis of a manually curated human signaling network
containing 1634 nodes and 5089 signaling regulatory relations by integrating cancer-associated
genetically and epigenetically altered genes. We find that cancer mutated genes are enriched in
positive signaling regulatory loops, whereas the cancer-associated methylated genes are enriched in
negative signaling regulatory loops. We further characterized an overall picture of the cancer-
signaling architectural and functional organization. From the network, we extracted an oncogene-
signaling map, which contains 326 nodes, 892 links and the interconnections of mutated and
methylated genes. The map can be decomposed into 12 topological regions or oncogene-signaling
blocks, including a few ‘oncogene-signaling-dependent blocks’ in which frequently used oncogene-
signaling events are enriched. One such block, in which the genes are highly mutated and
methylated, appears in most tumors and thus plays a central role in cancer signaling. Functional
collaborations between two oncogene-signaling-dependent blocks occur in most tumors, although
breast and lung tumors exhibit more complex collaborative patterns between multiple blocks than
other cancer types. Benchmarking two data sets derived from systematic screening of mutations in
tumors further reinforced our findings that, although the mutations are tremendously diverse and
complex at the gene level, clear patterns of oncogene-signaling collaborations emerge recurrently at
the network level. Finally, the mutated genes in the network could be used to discover novel cancer-
associated genes and biomarkers.
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Introduction

Cells use sophisticated communication between proteins in
order to initiate and maintain basic cellular functions such as
growth, survival, proliferation and development. Tradition-
ally, cell signaling is described via linear diagrams and
signaling pathways. As many more ‘cross-talks’ between
signaling pathways have been identified (Natarajan et al,
2006), a network view of cell signaling emerged: the signaling
proteins rarely operate in isolation through linear pathways,
but rather through a large and complex network. As cell
signaling is crucial to affect cell responses such as growth and
survival, alterations of cellular signaling events, such as those
that arise by mutations, can result in tumor development.
Indeed, cancer is largely a genetic disease that is caused by
acquiring genomic alterations in somatic cells. Alterations to

the genes that encode key signaling proteins, such as RAS and
PI3K, are commonly observed in many types of cancers.
During tumor progression, it is proposed that a malignant
tumor arises from a single cell, which undergoes a series of
evolutionary processes of genetic or epigenetic changes and
selections so that a cell within the population can acquire
additional selective advantages for cellular growth or survival,
resulting in progressive clonal expansion (Nowell, 1976).

Genetic mutations of the signaling proteins might over-
activate key cell-signaling properties such as cell proliferation
or survival and then give rise to the cell with selective
advantages for uncontrolled cellular growth and promoting
tumor progression. In addition, mutations may also inhibit the
function of tumor-suppressor proteins, resulting in a relief from
normal constraints on growth. Furthermore, epigenetic altera-
tions by promoter methylation, resulting in transcriptional
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repression of genes controlling tumor malignancy, is another
important mechanism for the loss of gene function that can
provide a selective advantage to tumor cells.

Enormous efforts have been made over the past few decades
to identify mutated genes that are causally implicated in
human cancer. Furthermore, a genome-wide or large-scale
sequencing of tumor samples across many kinds of cancers
represents a largely unbiased overview of the spectrum of
mutations in human cancers (Stephens et al, 2005; Sjoblom
et al, 2006; Greenman et al, 2007; Thomas et al, 2007). Most
of these efforts have been made by the Cancer Genome
Project (CGP, http://www.sanger.ac.uk/genetics/CGP/), which
aims to identify cancer-mutated genes using genome-wide
mutation-detection approaches. Similarly, genome-wide
identification of epigenetic changes in cancer cells has been
conducted recently (Ohm et al, 2007; Schlesinger et al, 2007;
Widschwendter et al, 2007). These studies showed that a
substantial fraction of the cancer-associated mutated and
methylated genes is involved in cell signaling, which is in
agreement with the previous finding that the most common
domain encoded by cancer genes is the protein kinase domain
(Futreal et al, 2004). Although there is a wealth of knowledge
regarding molecular signaling in cancer, the complexity of
human cancer prevents us from gaining an overall picture of
the mechanisms by which these genetic and epigenetic events
affect cancer cell signaling and tumor progression. Where are
the oncogenic stimuli embedded in the network architecture?
What are the principles by which genetic and epigenetic
alterations trigger oncogene-signaling events? Given that so
many genes have genetic and epigenetic aberrations in cancer
signaling, what is the architecture of cancer signaling? Do
any tumor-driven signaling events represent ‘oncogenic
dependence’ (the phenomenon by which certain cancer cells
become dependent on certain signaling cascades for growth or
survival)? Who are the central players in oncogene signaling?
Are there any signaling partnerships generally used to generate
tumor phenotypes? To answer these questions, we conducted a
comprehensive analysis of cancer mutated and methylated
genes on a human signaling network, focusing on network
structural aspects and quantitative analysis of gene mutations
on the network.

Results and discussion

The architecture and the relationships among the proteins of a
signaling network are important for determining the sites at
which oncogenic stimuli occur and through which oncogenic
stimuli are transduced. Extensive signaling studies during the
past decades have yielded an enormous amount of informa-
tion regarding regulation of signaling proteins for more than
200 signaling pathways, most of which have been assembled
and collected in public databases in diagrams. We manually
curated the data on signaling proteins and their relations
(activation and inhibitory and physical interactions) from the
BioCarta database and the Cancer Cell Map database (see
Materials and methods). We merged the curated data with
another literature-mined signaling network that contains
B500 proteins (Ma’ayan et al, 2005). As a result, we have
built a human signaling network containing 1634 nodes and

5089 links. Integrative network analyses have provided
numerous biological insights (Wuchty et al, 2003; Han et al,
2004; Ihmels et al, 2004; Luscombe et al, 2004; Kharchenko
et al, 2005; Wang and Purisima, 2005; Cui et al, 2006). Thus,
the integration of the data on mutated and methylated cancer-
associated genes onto the network will help us to identify
critical sites involved in tumorigenesis and increase our
understanding of the underlying mechanisms in cancer
signaling.

To integrate mutated and methylated genes onto the
network, we first collected the cancer mutated genes from
the Catalogue Of Somatic Mutations In Cancer (COSMIC)
database, which collects the cancer mutated genes through
literature curation and large-scale sequencing of tumor
samples in the CGP. We then combined these data with the
cancer mutated genes derived from other genome-wide and
high-throughput sequencing of tumor samples (Stephens et al,
2005; Sjoblom et al, 2006; Greenman et al, 2007; Thomas et al,
2007). The merged gene set represents a mixture of the past
directed approach and current systematic screening of cancer
mutations. The cancer-associated methylated genes were
taken from the genome-wide identification of the DNA
methylated genes in cancer stem cells (Ohm et al, 2007;
Schlesinger et al, 2007; Widschwendter et al, 2007). Finally,
227 cancer mutated genes and 93 DNA methylated genes were
mapped onto the network. Among the 227 cancer mutated
genes, 218 (96%) and 55 (24%) genes were derived from large-
scale gene sequencing of tumors and literature curation,
respectively (see Materials and methods, Figure 1A). In
general, cancer genes can be divided into two groups: positive
regulators (oncogenes) that promote cancer cell proliferation
and the negative regulators (tumor suppressors) that restrain
it. By comparing the mutated genes with the known tumor
suppressors, we found that only 6.6% (15 genes) of the
mutated genes are known tumor suppressors and that the
majority of the mutated genes are oncogenes (Supplementary
Figure 1). On the other hand, methylated genes are mainly
found to encode tumor suppressors in cancer cells (Supple-
mentary Figure 1) (Ohm et al, 2007; Widschwendter et al,
2007).

Cancer mutated genes are enriched in signaling
hubs but not in neutral hubs

Genes that, when mutated or silenced, result in tumorigenesis
often lead to the aberrant activation of certain downstream
signaling nodes resulting in dysregulated growth, survival
and/or differentiation. The architecture of a signaling network
is important for determining the site at which a genetic defect
is involved in cancer. To discover where the critical tumor
signaling stimuli occur on the network, we explored the
network characteristics of the mutated and methylated genes.
The signaling network is presented as a graph, in which nodes
represent proteins. Directed links are operationally defined to
represent effector actions such as activation or inhibition,
whereas undirected links represent protein physical interac-
tions that are not characterized as either activating or
inhibitory. For example, scaffold proteins do not directly
activate or inhibit other proteins but provide regional
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organization for activation or inhibition between other
proteins through protein interactions. In this case, undirected
links are used to represent the interactions between scaffold
proteins and others. On the other hand, adaptor proteins are
able to activate or inhibit other proteins through direct protein
interactions. In this situation, directed links are used to
represent these relations. There are two kinds of directed links.
An incoming link represents a signal from another node. The
sum of the number of incoming links of a node is called the
indegree of that node. An outgoing link represents a signal to
another node. The sum of the number of outgoing links of a
node is called the outdegree of that node. We call incoming and
outgoing links as signal links, whereas the physical links are
neutral links. We first examined the characteristics of the
nodes that represent mutated genes on the network. We
compared the average indegree of the mutated genes with that
of the nodes in the whole network. We found that the average
indegree of the mutated nodes is significantly higher than that
of the network nodes (Po1.1�10�6, Wilcoxon test, Supple-
mentary Figure 2). A similar result was obtained for the
average outdegree of the mutated nodes (Po6.0�10�14,
Wilcoxon test, Supplementary Figure 2). In contrast, there is
no difference of the average neutral degrees between the
mutated nodes and other nodes in the network. To refine these
results further, we calculated the correlations between the
indegree, outdegree and neutral degree of the network nodes.
We found a significant correlation between the indegree and
the outdegree of the network nodes (R¼0.41, Po2.2�10�16,
Spearman’s correlation), but no correlation between the
indegree and neutral degree of the nodes (R¼�0.02, P¼0.54,
Spearman’s correlation). Taken together, these results suggest
that cancer mutations most likely occur in signaling proteins
that are acting as signaling hubs (i.e., RAS) actively sending or
receiving signals rather than in nodes that are simply involved
in passive physical interactions with other proteins. As these
hubs are focal nodes that are shared by, and/or are central
in, many signaling pathways, alterations of these nodes, or
signaling hubs, are predicted to affect more signaling events,
resulting in cancer or other diseases. In previous studies,
we found that cancer-associated genes are enriched in
hubs (Awan et al, 2007). However, these results indicate that
cancer-associated genes are enriched in signaling hubs but not
neutral hubs.

We also investigated the relations between the node degree
and the methylated genes in the network. Methylated gene
nodes do not appear to differ significantly from the network
nodes with regard to their indegree, outdegree and neutral
degree, respectively (P¼0.32, P¼0.16, P¼0.09, Supplementary
Figure 2). These results suggest that cancer mutated genes and
methylation-silenced genes have different regulatory mechan-
isms in oncogene signaling.

Activating and inhibitory signals enhance and
alleviate oncogene-signaling flows, respectively

Signaling flow branching represents the splitting of one signal
at a source node (Figure 1B), whereas signaling flow
convergence represents the consolidation of the signals at a
target node from two source nodes (Figure 1B). Both types of
the signaling flows are the basic elements of the network
architectural organization. In the network, when the upstream
and downstream nodes of a particular signal transduction
event get altered either genetically or epigenetically, we
considered the transduction event (link) to be most likely
selected and used in cancer signaling and defined it as an
oncogenic signal transduction event (Figure 1B). If a particular
oncogenic signal transduction event is frequently found in
many tumor samples, we infer that the tumor cells are
‘dependent’ on this highly used signaling event and call it
‘oncogene-signaling-dependent event’ (Figure 1B). To investi-
gate how cancer signaling is distributed on these signal
transduction routes, we extracted all the branching and
convergent signaling flow units that contain at least one
oncogenic signal transduction event and conducted a quanti-
tative analysis by overlaying the gene mutation frequency onto
these units. The mutation frequency of a gene was defined as
the number of tumor samples that contain that mutated gene
divided by the total number of the tumor samples that are used
to screen the mutations for that gene. The mutation frequency
of each mutated gene was obtained by using the COSMIC
database, which contains the data on more than 200 000 tumor
samples screened for cancer gene mutations. For the signaling
branching units, we divided the signaling flows into two
groups: activating and inhibitory group (Figure 1B) and
compared the gene mutation frequencies of the upstream
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Figure 1 Illustration of the sources of cancer mutated network genes and oncogenic signal transduction events. (A) Most of the cancer mutated network genes were
discovered by large-scale sequencing of tumor samples, whereas a small fraction of them was found in literature. (B) Oncogenic signal transduction events and
oncogene-signaling-dependent events. (a) Signaling divergent unit. The line in red represents an oncogenic signal transduction event. (b) Signaling convergent unit. The
line in red represents an oncogene-signaling-dependent event. In this case, both genes have high mutation frequency (X0.02), suggesting that the signaling event
between the two genes is frequently used in tumorigenesis. Nodes in red represent mutated genes, whereas numbers represent mutation frequencies. Signs þ and �
represent activating and inhibitory links, respectively.
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nodes with those of the downstream nodes in each group.
Interestingly, in the activating group, the upstream nodes often
have lower mutation frequencies than those of the down-
stream nodes. In contrast, in the inhibitory group, the
upstream nodes often have higher mutation frequencies than
those of the downstream nodes (Table I). Statistical tests
confirmed that these observations are statistically significant
(Table I). Similar results were obtained for the signaling
convergent units as well (Figure 1B, Table I). These results
suggest that the oncogene-signaling event triggered by
mutations is preferentially associated with activating down-
stream signaling paths or conduits. Conversely, oncogene-
signaling event triggered by mutations are less likely to be
associated with downstream inhibitory signaling paths.

In general, there are far more activating signaling flows than
inhibitory ones in the network. Thus, we hypothesized that the
downstream genes of the network, especially the genes of the
output layer of the network, would have a higher mutation
frequency. To test this possibility, we compared the average
gene mutation frequency of the nuclear proteins, which
represent the output layer members of the network, with that
of the other network genes. Indeed, the nuclear genes have
higher mutation frequency than others (P¼0.01, Wilcoxon
test), which complements with our previous finding that
cancer-associated genes are enriched in the nuclear proteins
(Awan et al, 2007). In contrast, the distributions of the
methylated genes have no such preference, suggesting
that DNA methylated genes do not tend to directly affect the
output layer of the network. These results strongly suggest
that the genes in the output layer of the network, which
play direct and important roles in determining phenotypic
outputs, are frequent targets for activating mutations. The
importance of this output layer is reinforced by our previous
observations that the expression of the output layer genes
of the signaling network is heavily regulated by microRNAs
(Cui et al, 2006).

Mutated and methylated genes are enriched in
positive and negative regulatory loops,
respectively

The complex architecture of signaling networks can be
regarded as consisting of interacting network motifs, which
are statistically overrepresented subgraphs that appear recur-
rently in networks. A signaling network motif, also known as
regulatory loops in biology, is a group of interacting proteins
capable of signal processing. They bear specific regulatory
properties and mechanisms (Babu et al, 2004; Wang and
Purisima, 2005). The structure and the intrinsic properties of
the frequently occurring network regulatory motifs give us a
functional view of the organization of signaling networks.
Thus, the study of the distributions of the mutated and
methylated genes in the network motifs will provide insights
into cancer-signaling regulatory mechanisms. We first exam-
ined the mutated genes on the feed-forward loops, in which the
first protein regulates the second protein, and both proteins
regulate the third protein. We classified the feed-forward loops
into four subgroups (labeled 0–3) based on the number of
nodes that are mutated genes. We calculated the ratio (Ra) of
positive (activating) links to the total directed (positive and
negative) links in each subgroup and compared it with the
average Ra in all the feed-forward loops, which is shown as a
horizontal line in Supplementary Figure 3. The Ra (B0.7) in
subgroup 0 is less than the average Ra (B0.74) of all the feed-
forward loops (Po1.9�10�9, Fisher’s test). However, as the
number of mutated nodes rises, the Ra for the corresponding
group increases to a maximum of B0.93 (Supplementary
Figure 3, Supplementary Table 1). We obtained similar results,
when we extended the same analysis to all the 3-node- and
4-node-size network motifs (Figure 2, Supplementary Table 1).
These motifs show a clear positive correlation between
positive link ratio and the number of mutated genes in the
motifs. These results suggest that cancer gene mutations occur
preferentially in positive regulatory motifs. In contrast, all the
3-node and 4-node size motifs show an obviously negative
correlation between positive link ratio and the number of
methylated genes in the motifs (Figure 2, Supplementary Table
2). These results suggest that cancer gene methylation
preferentially occurs in negative regulatory motifs. A similar
trend was found for the 15 known tumor suppressors
(Supplementary Figure 4a–d), which is in agreement with
the notion that cancer-associated methylated genes play roles
as tumor suppressors. Collectively, these facts suggest that
mutated and methylated genes have different regulatory
mechanisms in cancer signaling and support the notion that
gene mutations and methylations are strongly selected in
tumor samples.

Signaling information propagates through a series of built-in
regulatory motifs to contribute to cellular phenotypic func-
tions (Ma’ayan et al, 2005). The transition from a normal
cellular state into a long-term deregulated state such as cancer
is often driven by prolonged activation of downstream
proteins, which are regulated by upstream proteins or
regulatory motifs or circuits. Positive regulatory loops (Ferrell,
2002) could amplify signals, promote the persistence of
signals, serve as information storage and evoke biological
responses to generate phenotypes such as cancer. In cancer

Table I Effects of the positive and negative signals on the oncogene-signaling
flows

Signaling branching
type

Signaling convergence
type

Increasing Decreasing Increasing Decreasing

Activating
group

676 551 1032 418

Inhibitory
group

46 140 93 96

Odds ratio 3.7 2.5

P-value 3.7�10�15 2.5�10�9

For each signaling flow type, we classified the units into two groups: activating
group and inhibitory group. For each group, we compared the mutation
frequencies of an upstream node with that of the downstream node.‘Increasing’
represents that the mutation frequency of a downstream node is higher than that
of an upstream node, whereas ‘decreasing’ represents that the mutation
frequency of a downstream node is lower than that of an upstream node. Odds
ratio was calculated by (increasing, activating group)� (decreasing, inhibitory
group)/(increasing, inhibitory group)/(decreasing, activating group). P-value
was calculated by Fisher’s exact test.
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cells, constitutive activation of the oncogene signaling is
necessary. Neutral mutations do not affect protein function,
whereas missense mutations may have positive or negative
effects on protein activity. The enrichment of gene mutations
in positive regulatory loops suggests that the mutants in the
motifs must have gain of function or increase their biochem-
ical activities compared to the wild-type genes in order to
constitutively activate downstream proteins. Indeed, a recent
survey showed that 14 out of the 15 PI3K mutants in tumors
have gain of function (Gymnopoulos et al, 2007). Gain-of-
function mutants in a positive regulatory loop afford the
amplification of weak input stimuli and serve as information
storage to extend the duration of activation of the affected
downstream proteins. This might allow the downstream
signaling cascades to persistently hold and transfer informa-
tion leading to tumor phenotypes.

Promoter gene methylation is a known mechanism of
inducing loss of function by inhibiting the expression of genes
(Ohm et al, 2007; Widschwendter et al, 2007). Negative
regulatory loops controlled by tumor-suppressor proteins
repress positive signals and play an important role in
maintaining cellular homeostasis and restraining the cellular
state transitions (Ma’ayan et al, 2005). A loss of function of
gene methylation in a negative regulatory loop could break the
negative feedbacks, thereby releasing the restrained activation
signals and promoting oncogenic state transitions. Homeo-
stasis relies on the balance between positive and negative
signals in crucial components of the network. Both the gain-of-
function mutated genes in positive regulatory loops and the
loss-of-function methylated genes in negative regulatory loops
could break this delicate balance, thus promoting state
transitions and generating tumor phenotypes. Therefore, both
mutated and methylated genes and their regulatory loops
(oncogenic regulatory loops) are critical components of the
network where the oncogenic stimuli occur.

An oncogene-signaling map emerges from the
network

In the language of networks, genes whose mutations or
epigenetic silencing are crucial to trigger oncogene signaling
might link together as components in the network. Identifica-
tion of such components will help us to discover the
relationships and structural organizations of the oncogenic
proteins. To uncover the architecture of cancer signaling and to
gain insights into the higher-order regulatory relationships
among signaling proteins that govern oncogenic signal stimuli,
we mapped all genetic mutations and epigenetically silenced
genes onto the network. We found that most of these genes
(67%) are connected together to form a giant, linked network
component. Randomization tests confirmed that such a
component is unlikely to be formed by chance (Po2�10�4).
To build an oncogenic map, we included other mutated and
methylated genes that are not present in the composition of the
component into the giant network component based on node
connectivity (see Materials and methods). The resulting
oncogene-signaling map consists of approximately 20% of
the signaling network nodes (326 nodes, 892 links) and
includes almost 90% of the mutated and methylated genes
(Figure 3). The map showed different network topological
characteristics from the signaling network. For example, the
average length of the map is less than that of the signaling
network (5 versus 6, Po2�10�16, Wilcoxon test). On the
other hand, the average clustering coefficient of the map is
greater than that of the signaling network (0.08 versus 0.04,
P¼0.06, Wilcoxon test). These results suggest that oncogenic
proteins tend to have more interactions and signaling
regulatory relationships. The emerging oncogene-signaling
map represents a ‘hot area’ where extensive oncogene-
signaling events might occur. As a proof of concept, we found
that the MAPK kinase and TGFb pathways, which are well-
known cancer-signaling pathways, are embedded in the map.
For example, 50 out of 87 proteins in the MAPK kinase
pathway (Supplementary Table 3) and 22 out of 52 proteins in
the TGFb pathway (Supplementary Table 4), respectively, are
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Figure 2 Enrichment of mutated and methylated genes in network motifs.
(A) Relations between the fractions of positive links in all 3-node-size network
motifs and the fractions of mutated genes in these motifs. (B) Relations between
the fractions of positive links in all 3-node-size network motifs and the fractions
of methylated genes in these motifs. All network motifs were classified into
subgroups based on the number of nodes that are either mutated genes or
methylated genes, respectively. The ratio of positive links to total positive and
negative links in each subgroup was plotted. The horizontal lines indicate the
ratio of positive links to the total positive and negative links in all network motifs.
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included in the map. More importantly, in addition to known
oncogenic pathways, there are many other novel candidate
cancer-signaling cascades present in the map. For a given gene
mutation in a tumor, one could use this map to generate
testable hypotheses to discover the underlying oncogene-
signaling cascades in that tumor.

As mentioned above, oncogene-signaling-dependent events,
which we define as the interactions between the cancer
mutated or methylated genes, are frequently found in tumor
samples and represent various oncogene-driving events that
could play more critical roles in generating tumor phenotypes.
To systematically identify such events and discover how they
are organized in the map, we charted the gene mutation
frequency onto the map and highlighted the signaling links
between any two genes that have high mutation frequencies.
Most genes have mutation frequencies lower than 2%,
whereas a handful of genes have very high mutation

frequencies, such as p53 (41%), PI3K (10%) and RAS (15%)
(see Materials and methods). Therefore, a gene mutation
frequency equal to or greater than 2% was considered as high.
Interestingly, nearly 10% of the links in the map are oncogene-
signaling-dependent events. Certain signaling events such as
Pten-PI3K and RAS-PI3K in the map are well-known oncogene-
signaling-dependent events/cascades that are frequently used
in various cancers.

As shown in Figure 3, most oncogene-signaling-dependent
events are connected, and three major regions that contain
densely connected oncogene-signaling-dependent events
emerge in the map: the first region (p53 region) contains
mainly tumor suppressors such as p53, Rb, BRCA1, BRCA2 and
p14 (CDKN2A) etc.; the second region (RAS region) contains
mainly well-known oncogenes such as RAS, EGFR and PI3K
etc.; and the third region (TGFb region) contains SMAD3,
SMAD4 and a few other TGFb-signaling proteins. Interestingly,

Figure 3 Human oncogene-signaling map. The human cancer-signaling map was extracted from the human signaling network, which was mapped with cancer
mutated and methylated genes. The map shows three ‘oncogenic-dependent regions’ (background in light gray), in which genes of the two regions are also heavily
methylated. Nodes represent genes, whereas the links with and without arrows represent signal and physical relations, respectively. Nodes in red, purple, brown, cyan,
blue and green represent the genes that are highly mutated but not methylated, both highly mutated and methylated, poorly mutated but not methylated, both poorly
mutated and methylated, methylated but not mutated, and neither mutated nor methylated, respectively.
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genes in the p53 and TGFb regions are also heavily methylated
in cancer stem cells, suggesting that these regions are involved
in the early stage of oncogenesis. Other methylated genes are
intertwined with the mutated genes in the map, suggesting
that they share some oncogene-signaling cascades and might
be regulated to cooperate in cancer signaling via gene
mutation and/or methylation. Notably, it seems that, in cancer
stem cells, TGFb-signaling pathway is shut down, supporting
its known role as a tumor suppressor in the early stages of
tumorigenesis (Hanahan and Weinberg, 2000; Siegel and
Massague, 2003). These results suggest that the crucial players
of oncogene signaling tend to be closely clustered and
regionalized. This map uncovers the architectural structure
of the basic oncogene signaling and highlights the signaling
events that are highly conserved in generating tumor
phenotypes.

Functional collaboration of genes between
oncogene-signaling blocks

The oncogene-signaling map can be decomposed into several
network communities or network themes (Zhang et al, 2005),
in which each network community contains a set of more
closely linked nodes and ties to particular biological functions.
To discover such network communities, we implemented and
applied an algorithm that detects network communities to the
map. As a result, 12 network communities, ranging in size
from 11–65 nodes (Supplementary Table 5), called ‘oncogene-
signaling blocks’, were found in the map. Structurally, the
nodes within each block have more links and signaling
regulatory relations among themselves than others. The genes
in each block share similar biological functions such as cell
proliferation, development and apoptosis (Supplementary
Table 5). We further performed Gene Ontology (GO) enrich-
ment analysis for each oncogene-signaling block using DAVID
Tools (http://david.abcc.ncifcrf.gov/home.jsp). Most of the
oncogene-signaling blocks are enriched with protein serine/
threonine kinase activity (Supplementary Table 6), which is
well known to take part in tumorigenesis. Notably, Block 1 is
enriched with cell surface receptor-linked signaling, whereas
Block 10 is enriched with intracellular signaling cascades.
Block 11 is enriched with tumor suppressors and biological
processes such as apoptosis and cell cycle. These results
suggest that certain blocks are taking part in different parts/
kinds of signaling, that is, cell surface receptor-related
signaling, intracellular signaling, cascade signaling and
apoptotic signaling. However, three oncogene-signaling blocks
have no GO enrichment detected. One of the reasons is that a
fraction of the genes in these blocks is not well annotated yet.
For example, about one-third of genes in Block 6 have no GO
term associated.

We asked if the genes in each block could operate in a
compensatory or concerted manner to govern a set of similar
functions. Toward this end, we surveyed the gene mutations in
tumor samples where at least two genes are screened for
mutations. As a result, the co-occurrence in tumor samples of
25 mutated gene pairs is found to be statistically significant
(Supplementary Table 7). Significantly, only three collabora-
tive gene pairs came from the same block, whereas other

collaborative gene pairs came from two different blocks, with
predominantly one of them arising from Block 11 (defined as
p53 block), which contains p53, Rb, p14, BRCA1, BRCA2 and
several other genes involved in control of DNA damage repair
and cell division. Collectively, these results suggest that the
signaling genes from different blocks most likely work
together in a complementary way to generate tumor pheno-
types.

We further asked which oncogene-signaling blocks work
together to produce a tumor phenotype. To address this
question, we surveyed the gene mutations in the tumor
samples where at least two gene mutations are found. In total,
592 tumor samples fit this criterion. We used the 592 samples
to build a matrix (M) where samples are rows and the signaling
blocks are columns. If a gene of a particular signaling block (b)
gets mutated in a tumor sample(s), we set Ms,b to 1, otherwise
we set Ms,b to 0. A heatmap was generated using the matrix
(Figure 4A). If a sample contains statistically significant co-
occurring mutated gene pairs (see Supplementary Table 7),
these pairs were highlighted in the heatmap. Samples were
organized based on the cancer types they belong to. Several
cancer types such as breast, central nervous system, blood,
lung, pancreas and skin tumors that have relatively more
samples were also highlighted in the heatmap. As shown in
Figure 4A, two signaling blocks have statistically significant
enrichment of gene mutations (Po2�10�4, randomization
tests), suggesting that genes in these two signaling blocks are
predominantly used to generate tumor phenotypes. One
oncogene-signaling block (Block 1, defined as RAS block)
contains genes like RAS, EGFR and PI3K etc., which share
similar biological functions such as cell proliferation, cell
survival and cell growth, whereas the other is the p53 block,
which share similar biological functions such as cell cycle
checkpoint control, apoptosis and affecting genomic instabil-
ity (Supplementary Table 5). These two blocks also represent
the two oncogene-signaling-dependent regions (p53 and RAS
regions) in Figure 3, respectively. When a tumor sample has a
mutation in a gene from the RAS-signaling block, it is also most
likely to contain a mutation in a gene from the p53 block
(Po2�10�4). To check if this phenomenon is primarily due to
a particular pair of genes, we calculated the likelihood of co-
occurrence for each pair of the genes, of which one gene is
mutated in one block and the other gene is mutated in the other
block. We found that the P-values for gene pairs are always
significantly greater than that for the pair of Blocks RAS and
p53. For example, the P-value of co-occurrence of RAS (in
Block RAS) and p53 (in Block p53) mutations is 0.01, which is
greater than that of the two blocks (Po2�10�4). This
indicates that these two oncogene-signaling blocks collaborate
to generate tumor phenotypes for most tumors. Experimental
examples have shown similar gene collaboration in tumor-
igenesis: activation of RAS (RAS block) and inactivation of p53
(p53 block) induce lung tumors (Meuwissen and Berns, 2005),
whereas activation of RAS (RAS block) and inactivation of p16
(p53 block) induce pancreatic tumors (Obata et al, 1998). In
general, tumor cells exhibit either elevated cell proliferation or
reduced differentiation or apoptosis relative to normal cells.
The oncogenic blocks we have identified, especially the RAS
and p53 blocks, encode functions that are tumor-related,
such as cell cycle control, cell proliferation and apoptosis
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(Supplementary Figure 5). Activation of genes in the RAS
block promotes the cell proliferation, whereas inactivation of
genes in the p53 block prevents apoptosis. Thus, a functional
collaboration between the genes in these two blocks would
promote synergistic cancer signaling and foster tumorigenesis.

Notably, we found that at least one gene mutation in the p53
block had occurred in the tumor samples we examined. In
other words, the p53 block is involved in generating tumors for
most cancers. This result suggests that the p53 block is a
central oncogene-signaling player and essential in tumorigen-
esis. This finding is further supported by the following
observations. (a) To become oncogenic, tumor suppressors
require loss-of-function mutations, which occurs more often
than gain-of-function mutations (Gymnopoulos et al, 2007).
Indeed, the average gene mutation frequency in the p53 block
is higher than that of other signaling blocks including the RAS
block. (b) The methylation of genes in the cancer stem cells
resulting in long-term loss of expression represents the early
stage of the tumorigenesis. In fact, most of the members of the
p53 block are methylated in cancer stem cells. These facts
further support that the p53 block might play an important role
in the earlier stages of oncogenesis. (c) Gene methylation or
inactivating mutations of DNA damage checkpoint genes such
as p53 induce genome instability and thus increase the chance

of other gene mutations, including the genes of other
oncogene-signaling blocks that could functionally collaborate
with the p53 block genes to generate tumor phenotypes.

Using the map as a framework, we benchmarked the mutated
genes in the NCI-60 cell lines, which represent a panel of well
characterized cancer cell lines and various cancer types. A
systematic mutation analysis of 24 known cancer genes showed
that most NCI-60 cell lines have at least two mutations among
the cancer genes examined (Ikediobi et al, 2006). We built a
matrix and constructed a heatmap using these cell lines and
their mutated genes as described above (Figure 4B). Overall, the
pattern obtained from the NCI-60 panel resembles that of the
592 tumor panel with both RAS and p53 blocks enriched with
gene mutations and exhibiting statistically significant collabora-
tions in these cell lines (Figure 4B, Po2�10�4), which is in
agreement with the earlier observations. We also benchmarked
the mutated genes derived from a genome-wide sequencing of
22 tumor samples (Sjoblom et al, 2006). Among these 22
samples, 10 breast and 10 colon tumor samples have at least two
gene mutations in the map. As shown in Figure 4C and D, the
p53 block is enriched with gene mutations. For the 10 colon
tumor samples, collaboration between Block 6 and Block p53 is
established, but for the 10 breast tumors, collaborative patterns
between multiple blocks emerged.
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Figure 4 Heatmaps of the gene mutation distributions in oncogene-signaling blocks. Twelve topological regions or oncogene-signaling blocks have been identified
based on the gene connectivity of the human oncogene-signaling map. A heatmap was generated from a matrix, which was built by querying the oncogene signaling
blocks using tumor samples, in which each sample has at least two mutated genes. If a gene of a particular signaling block (b) gets mutated in a tumor sample (s), we set
Ms,b to 1, otherwise we set Ms,b to 0. (A) A heatmap generated using the gene mutation data of the 592 tumor samples. (B) A heatmap generated using the gene
mutation data of the NCI-60 cancer cell lines. (C, D) Heatmaps generated using the output from the genome-wide sequencing of breast and colon tumor samples,
respectively. Rows represent samples, whereas columns represent oncogene-signaling blocks. Samples were organized according to the cancer types they belong to.
Cancer types that have relatively more samples were marked on the heatmap: (a) breast, (b) central nervous system, (c) blood, (d) lung, (e) pancreas and (f) skin tumors.
Blocks with gene mutations are marked in yellow; however, when one sample contains statistically significant co-occurring mutated gene pairs (see Supplementary
Table 7), the blocks are marked in red.
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To further examine the block collaborative patterns in
individual tumor types in higher resolutions, from the
heatmap (Figure 4A) we extracted the sub-heatmap for several
tumor types that are better represented among the 592 tumor
samples, that is, they have relatively more samples within the
592 samples (Figure 5). As shown in Figure 5, signaling block
collaborative patterns are tissue dependent and are classified
into two groups. One group contains pancreas, skin, central
nervous system and blood tumors that have simple block
collaborative patterns. In these tumors, signaling collabora-
tions are mainly between Block p53, Block RAS with some
minor contributions from Blocks 5, 6 or 7, suggesting that they
predominantly use these oncogene-signaling routes to gen-
erate tumors resulting in relatively homogenous cancer cell
types. The other group contains breast and lung tumors that
also contain large proportions of mutations from the p53
block, but also have complex patterns of collaborations
between assortments of multiple blocks, suggesting that these
tumors may have a larger variety of oncogene-signaling routes,
which may explain, in part, the heterogeneous nature of the
tumor subtypes in this category. These results might also
explain why both lung and breast cancers are the most
common types of human tumors.

In this study, the cancer mutated genes were collected from
a ‘directed approach’ (i.e., mutational analysis of specific genes,
such as p53) and a ‘large-scale approach’ (i.e., large-scale
sequencing of tumor samples). We tested whether the mutated
genes from the directed approach introduce bias to our
analysis. Literature-curated cancer mutated genes (directed

approach) have been assembled in the Cancer Gene Census
(Futreal et al, 2004), of which 115 genes were found in the
human signaling network. As of November 30th, 2006, among
the 115 Cancer Gene Census genes, mutations in 55 of them
have been further validated by additional experimental
evidence (i.e., other independent experiments confirming the
mutation of these specific genes in cancer samples have been
documented in the COSMIC database), whereas 60 of them
have no such evidence in the COSMIC database (see Materials
and methods). In fact, we included only these 55 literature-
curated genes in the cancer mutated gene set (227 genes) used
in all of our analyses above (see Materials and methods). Of
the 55 literature-curated genes, only 9 were not already present
in the output of large-scale sequencing of tumor samples
(Figure 1A). We removed these 9 genes from the cancer
mutated gene set (227 genes), mapped rest of the genes onto
the human signaling network and rebuilt an oncogene-
signaling map, oncogene-signaling blocks and a heatmap.
On the other hand, we added the 60 literature-curated genes,
which have no independent supporting evidence in the
COSMIC database, to the 227-gene set and obtained 287
genes. Using these 287 genes, we reran the analyses mentioned
above. In these two analyses, although the gene members of
each oncogene-signaling block have some minor differences
with those of the original blocks, the major collaboration
patterns of oncogene-signaling blocks remain largely un-
changed (Supplementary Figure 6a and b), suggesting that our
findings are robust to addition or removal of the cancer
mutated genes derived from the directed approach.
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Figure 5 Heatmaps of the gene mutation distributions in oncogene-signaling blocks for six representative cancer types. Heatmaps for (A) blood, (B) breast,
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samples, whereas columns represent oncogene-signaling blocks. Blocks with gene mutations are marked in yellow; however, when one sample contains statistically
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The mutated genes in the network provide a
predictive power

A substantial number (B20%) of mutated genes were found in
the network. We asked if a gene that has more links to mutated
genes in the network is most likely to be cancer associated. To
answer this question, we extracted the nonmutated genes that
have more than one link to the mutated genes and then
grouped them based on their link numbers to the mutated
genes. We interrogated a cancer-associated gene set (Supple-
mentary Table 8) compiled from literature mining (see
Materials and methods) to find out how many genes in each
group are cancer associated. As shown in Figure 6, the more
mutated genes a gene links to, the more probably it is cancer
associated. When the link number of the network genes is
more than six,B80% of them are cancer-associated genes. For
example, SHC, a gene that has been implicated in cancer
metastasis (Jackson et al, 2000), has numerous links to the
mutated genes in the network. To further investigate the
predictive power of the mutated genes in the network, we took
the 14 network genes, which not only have at least four links to
the mutated genes, but also are not implicated in cancer in the
literature, to perform a survival analysis using a microarray
data set that contains the gene expression profiles and survival
information for 295 breast tumor samples. As a result, the
expression profiles of 5 out of the 14 genes (36%) are able to
discriminate ‘good’ and ‘bad’ tumors (i.e., patients having
‘bad’ tumors have higher chance of tumor recurrence and
short survival time). Therefore, these genes are potentially
novel biomarkers. In contrast, less than 10% of the non-
mutated network genes have similar discriminatory power.
These results suggest that the network genes, which have more
links to the mutated genes, have more chance to be perturbed
in tumorigenesis and be associated with cancer. Practically, the

mutated genes in the network provide a predictive power that
can be used to discover novel biomarkers of tumors.

Concluding remarks

Although a wide variety of genetic and epigenetic events
contribute to the signaling of tumorigenesis, it has been
challenging to gain a global view of where and how they affect
the signaling alterations to generate tumors on the entire
signaling network. By integrative analysis of the human
signaling network with cancer-associated mutated and methy-
lated genes, we uncovered an overall picture of the network
architecture where the oncogenic stimuli occur and the
regulatory mechanisms involving mutated and methylated
genes. Mutations, the majority of which are activating,
preferentially occur in the signaling hub genes (but not neutral
hubs) and the genes of the positive regulatory loops, whereas
methylated alterations tend to occur in the genes of the
negative regulatory loops. Cancer and cell signaling have been
well established, and extensive efforts have been made to
illustrate cancer signaling during the past few decades.
However, it has been a struggle to get clues of how the
oncogene signaling is structurally and functionally organized.
In this analysis, we extracted an oncogene-signaling map,
which provides a blueprint of the oncogene signaling in cancer
cells. From the map, we discerned that the oncogene-
signaling-dependent events form three highly connected
regions that resemble oncogene-signaling superhighways
frequently used in tumorigenesis. Topologically, the map has
been divided into 12 oncogene-signaling blocks. Functional
collaborations between subsets of these blocks are underlying
tumorigenesis. In most tumors, genes in both p53 and RAS
blocks often get mutated, although the combinations of p53
with other signaling blocks are also found in a small fraction of
tumors. Analysis of the NCI-60 cell line panel mutations
showed the enrichment of gene mutations in p53 and RAS
blocks, which is similar to the patterns found in the 592
samples. Furthermore, we can dissect some of this functional
collaboration among different tumor types. These facts
indicate that at least two signaling gene mutations, one from
the p53 block and the other from another block, are necessary
for tumorigenesis. This fact supports the notion that both the
prevention of cell death (p53 block) and the promotion of cell
proliferation (RAS or other blocks) are necessary to generate
most tumors.

At present, a number of researchers doubt or even argue
against the value of large-scale human cancer genome
sequencing as a meaningful or efficient strategy in cancer
research. Their arguments are based on the following
observations (Chng, 2007): (a) previous large-scale human
cancer genome sequencing revealed that each tumor has a
different mutation pattern, and the prevalence and patterns of
somatic mutations in human cancers are tremendously diverse
and complex (Kaiser, 2006; Sjoblom et al, 2006; Greenman
et al, 2007); (b) the interpretation of such complex somatic
alterations is a formidable challenge (Chanock and Thomas,
2007; Thomas et al, 2007). We mapped the mutation data from
the genome-wide sequencing tumor samples (Sjoblom et al,
2006) using the oncogene-signaling map as a framework.
Although the number of mutated genes is impressive in toto,
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most signaling gene mutations are limited to 2–3 critical
mutations, divided among several signaling blocks, per
individual tumor. This result suggests that the mutations in
the samples of the same tumor type might share a similar
underlying signaling mechanism, because each oncogene-
signaling block contains a set of genes linked together through
shared regulatory relations and key input and/or output
signaling nodes that are involved in tumorigenesis. These
findings imply that although the mutations seem tremen-
dously diverse and complex at the gene level, clear patterns
emerge recurrently at the network level in most tumors.
Therefore, with proper bioinformatics analysis, large-scale
cancer genome sequencing efforts would be fruitful in finding
appropriate combinations of biological targets for cancer
diagnostic and therapeutics.

In summary, this work revealed novel insights into the
oncogenic regulatory mechanisms, oncogene-signaling net-
work architecture and oncogene-signaling cooperative rela-
tionships that drive cancer development and progression. It
also highlights the emergence of the central players in cancer
signaling. Cancer studies have integrated microarray, knowl-
edge, pathways and networks (Liu and Lemberger, 2007), but
not genetic and epigenetic data yet. However, as the next
generation of genome sequencing technology becomes more
accessible and affordable, much more efforts involving
genome-wide sequencing of large number of tumor genomes
will be conducted. Our work provides a conceptual and
technical framework for incorporating the genome sequencing
outputs and other types of data such as microarray profiles to
get more insights into the cancer-signaling mechanisms that
will facilitate the identification of key genes for biomarkers
and drug development.

Materials and methods

Data sets used in this study

Human signaling network
To build up the human signaling network, we manually curated the
signaling molecules (most of them are proteins) and the interactions
between these molecules from the most comprehensive signaling
pathway database, BioCarta (http://www.biocarta.com/). The path-
ways in the database are illustrated as diagrams. We manually
recorded the names, functions, cellular locations, biochemical
classifications and the regulatory (including activating and inhibitory)
and interaction relations of the signaling molecules for each signaling
pathway. To ensure the accuracy of the curation, all the data have been
crosschecked four times by different researchers. After combining the
curated information with another literature-mined signaling network
that contains B500 signaling molecules (Ma’ayan et al, 2005), we
obtained a signaling network containing B1100 proteins (Awan et al,
2007). We further extended this network by extracting and adding the
signaling molecules and their relations from the Cancer Cell Map
(http://cancer.cellmap.org/cellmap/), a database that contains 10
manually curated signaling pathways for cancer. As a result, the
network contains 1634 nodes and 5089 links that include 2403
activation links (positive links), 741 inhibitory links (negative links),
1915 physical links (neutral links) and 30 links whose types are
unknown (Supplementary Table 9). To our knowledge, this network is
the biggest cellular signaling network at present.

Cancer mutated genes
The cancer mutated genes were taken from the COSMIC database
(http://www.sanger.ac.uk/genetics/CGP/cosmic/) and other large-scale

or genome-wide sequencing of tumor samples (Sjoblom et al, 2006;
Greenman et al, 2007; Thomas et al, 2007). COSMIC database contains
manually curated cancer mutated genes and the information of tumor
samples, mutated sequences from literature and the output from the
CGP’s large-scale sequencing of tumor samples (Davies et al, 2005;
Stephens et al, 2005; Greenman et al, 2007). The literature-curated genes
were compiled as the Cancer Gene Census (Futreal et al, 2004), which is
accessible in COSMIC database. The CGP is using human genome
sequences and high-throughput mutation detection techniques to
identify somatically acquired sequence mutations and hence to identify
genes critical in the development of human cancers. A few recent
publications (Davies et al, 2005; Stephens et al, 2005; Greenman et al,
2007) represent a small fraction of the CGP output. In addition, COSMIC
database has provided mutation frequencies for most of the cancer
mutated genes. The cancer gene mutation frequency of a gene is defined
as the ratio of samples containing the mutated gene to the total samples
screened for that gene. In the database, about one-third of the literature-
curated mutated genes (Cancer Gene Census genes) have nonzero
mutation frequencies, suggesting that the literature curation of these
genes (i.e., included them into the Cancer Gene Census) has been
supported by one or more other independent experiments.

For the network analysis in this study, we first intersected the
network genes with the literature-curated mutated genes. As a result,
we obtained 115 genes (Supplementary Table 10), of which 55 genes
(Supplementary Table 10) have nonzero mutation frequencies. Mean-
while, we intersected the network genes with the mutated genes
derived from the CGP large-scale sequencing output and several other
genome-wide and high-throughput sequencing of tumor samples
(Stephens et al, 2005; Sjoblom et al, 2006; Greenman et al, 2007;
Thomas et al, 2007). As a result, we obtained another gene set
containing 218 genes. Finally, we obtained 227 genes by merging the
55 genes and the 218 genes mentioned above. Among these 227 genes,
218 (96%) and 55 (24%) genes were collected from the large-scale
sequencing of tumors and literature curation, respectively (Figure 1A).
Notably, 46 genes (84%) of the literature-curated genes were
overlapped with the mutated genes derived from the large-scale gene
sequencing of tumors. The genes and their mutation frequencies from
sequencing of tumors and literature were collected in Supplementary
Table 10.

Methylated genes in cancer stem cells
We obtained 287 DNA-methylated genes from the three recent genome-
wide determinations of the methylated genes from cancer stem cells
(Ohm et al, 2007; Schlesinger et al, 2007; Widschwendter et al, 2007).
Out of the 287 genes, 93 were mapped onto the human signaling
network (Supplementary Table 11).

Cancer-associated gene set
The cancer-associated gene set contains the following data sources: (a)
the cancer mutated genes we mentioned above; (b) a literature-mined
breast cancer gene set from plasmID database (http://plasmid.hm-
s.harvard.edu/GetCollectionList.do); (c) the genes extracted from the
NCBI’s Online Mendelian Inheritance in Man (OMIM) data set using
the keywords such as ‘cancer’, ‘tumor’ and ‘onco’ etc. The cancer-
associated gene list contains 2128 genes (Supplementary Table 8).

Microarray data
Gene expression profiles and the patients’ survival data for the 295
breast tumor samples were obtained from Chang et al (2005).

Oncogenic map extraction
To extract an oncogenic map from the human signaling network, we
mapped all the mutated and methylated genes onto the network. As a
result, 67% of these genes are connected together to form a giant,
linked network component. To include the mutated and methylated
genes that are not present in this network component, we first found
one shortest path between such a gene and a component node. If the
length of the shortest path is 2 (i.e., the gene reaches one of the
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component nodes via a nonmutated network node), we linked that
gene and the node on the shortest path into the component. A Java
program had been written to implement this procedure (Supplemen-
tary File 1).

Network analysis
To extract the members of the branching and convergent units and
3-node- and 4-node-size network motifs, mfinder program (Kashtan
et al, 2004) was used. To detect the signaling network communities
from the oncogene-signaling map, we applied a network community
algorithm (Newman, 2006).

Analyzing the enrichment of the mutated and
methylated genes in the network motifs
We mapped the mutated and methylated genes onto each type of the
motifs. We then counted the number of mutated or methylated genes in
each motif and classified each type of motif into several subgroups
based on the number of nodes that are mutated or methylated genes.
We then calculated the ratio (Ra) of the activation links to the total
activation and inhibitory links in each subgroup.

Randomization tests
We performed randomization tests to evaluate the statistical sig-
nificance of the observations. A more detailed explanation of the
randomization tests was described previously by Wang and Purisima
(2005).

Survival analysis
To evaluate the prognostic value of a gene based on the gene
expression profiles and the survival information of the tumor samples,
we performed Kaplan–Meier analysis by implementing the Cox–
Mantel log-rank test using R, a statistical computing language (http://
www.r-project.org/). If the P-value is less than 0.05, the gene was
thought as statistically significant to classify the tumor samples into
‘good’ and ‘bad’ groups.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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