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Abstract: During the spring of 2019, distinct virus-like symptoms were observed in the Kafr El-Sheikh
Governorate in Egypt in naturally infected eggplants. Leaves of affected plants showed interveinal
leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic intervention, and
narrowing symptoms. The Alfalfa mosaic virus (AMV) was suspected of to be involved in this disease.
Forty plant samples from symptomatic eggplants and 10 leaf samples with no symptoms were
collected. The samples were tested by double antibody sandwich ELISA (DAS-ELISA) using AMV-
IgG. Six of the 40 symptomatic leaf samples tested positive for AMV, while, DAS-ELISA found no
AMV in the 10 leaf samples without symptoms. The AMV Egyptian isolate (AMV-Eggplant-EG) was
biologically isolated from the six positive samples tested by DAS-ELISA and from the similar local
lesions induced on Chenopodium amaranticolor and then re-inoculated in healthy Solanum melongena
as a source of AMV-Eggplant-EG and confirmed by DAS-ELISA. Reverse transcription polymerase
chain reaction (RT-PCR) assay with a pair of primers specific for coat protein (CP) encoding RNA 3 of
AMV yielded an amplicon of 666 bp from infected plants of Solanum melongena with AMV-Eggplant-
EG. The amplified PCR product was cloned and sequenced. Analysis of the AMV-Eggplant-EG
sequence revealed 666 nucleotides (nt) of the complete CP gene (translating 221 amino acid (aa)
residues). Analysis of phylogeny for nt and deduced aa sequences of the CP gene using the maximum
parsimony method clustered AMV-Eggplant-EG in the lineage of Egyptian isolates (shark-EG, mans-
EG, CP2-EG, and FRE-EG) with a high bootstrap value of 88% and 92%, respectively. In addition
to molecular studies, melatonin (MTL) and salicylic acid (SA) (100 µM) were used to increase the
resistance of eggplant to AMV- infection. Foliar spray with MLT and SA caused a significant increase
in the morphological criteria (shoot, root length, number of leaves, leaf area, and leaf biomass),
chlorophyll and carotenoid content, antioxidant enzymes, and gene expression of some enzymes
compared to the infected plants. On the other hand, treatment with MLT and SA reduced the
oxidative damage caused by AMV through the reduction of hydrogen peroxide, superoxide anions,
hydroxyl radicals, and malondialdehyde. In conclusion, MLT and SA are eco-friendly compounds
and can be used as antiviral compounds.

Keywords: eggplant; AMV; immunity boosting; RT-PCR; sequencing; antioxidant enzymes; gene
expression; oxidative damage
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1. Introduction

Plant viral diseases cause severe economic losses due to agricultural production and
have hindered sustainable agricultural development globally for a long time [1]. Unlike
diseases induced by fungi and bacteria, viral infections are difficult to control once the
plants are infected [1,2]. Over recent decades, various strategies have been developed
to control viral diseases, including breeding virus-resistant/tolerant cultivars through
conventional breeding techniques [3] and using eco-friendly chemical compounds that
induce systemic resistance [4–7].

The eggplant (Solanum melongena) is one of the most important vegetable crops in
cultivation in Egypt, following potatoes and tomatoes [8]. During their biological cy-
cle, eggplants are very sensitive to many abiotic and biotic stresses [9,10], which can
cause substantial crop damage. Therefore, enhancing tolerance to biotic and abiotic
stresses is one of the critical goals of eggplant breeding programs. Several viruses were
identified as affecting eggplants such as the Tobacco mosaic virus, Tomato mosaic virus,
Potato virus Y, Potato virus X, Cucumber mosaic virus, Eggplant mottled dwarf nucleorhabdovirus,
and Eggplant mosaic virus [11,12]. Alfalfa mosaic virus can naturally infect eggplants and
cause a great deal of damage to the leaves [13,14]. Alfalfa mosaic virus (AMV, genus:
Alfamovirus, family: Bromoviridae) can infect many herbaceous hosts, and some woody
plants (150 species in 22 families); it has spread to over 430 species in 51 families of dicotyle-
donous plants [15]. It is mainly transmitted through seeds, and aphids, specifically Myzus
persicae, and it can also be spread through the direct transfer of sap from infected hosts
to healthy plants [16,17]. The AMV genome is a tripartite single-stranded positive-sense
RNA and consists of RNAs 1, 2, and 3, encapsidated into B, M, and T components, respec-
tively [18]. RNAs 1 and 2 encode the replicase subunits 1a, and 2a, respectively [19]. RNA
3 encodes the movement protein [20] and viral coat protein, expressed from a subgenomic
RNA 4 [19].

Chemical priming may be considered a timely and successful management technique
to induce plants’ resistance/tolerance to viruses. Several eco-friendly compounds that are
considered non-toxic, biodegradable, and biocompatible oligo chitosans, such as chitin and
chitosan, can be used to induce the resistance of plants to viruses [21–23]. Melatonin (MLT,
N-acetyl-5 methoxytryptamine), an indoleamine molecule, is regarded as a useful alterna-
tive tool to enhance biotic and abiotic stress defense for plants and has been considered a
good antioxidant for reactive oxygen and nitrogen species (ROS/RNS) over the last two
decades [24]. The major mechanism that facilitates melatonin-induced biotic stress in plants
is the up-regulation of defense genes, thickening of the cell wall, ROS scavenging, and
NO production [25,26]. These regulatory improvements help cope with unfavorable condi-
tions, assuming reinforcement against plant stress. Moreover, MLT enhances physiological
processes such as germination, photosynthesis, primary and secondary metabolism, and
plant hormones regulation [27,28]. Furthermore, the disease severity and concentration of
Tobacco mosaic virus (TMV) in infected Nicotiana glutinosa and Solanum lycopersicum seedlings
decreased after foliar spray with 100 µM melatonin twice [29]. Additionally, MLT has been
considered as a therapeutic indole for combating viral diseases, such as SARS (severe acute
respiratory syndrome) and WNV (West Nile virus) [30].

Salicylic acid (SA) is considered a plant hormone and phenolic compound and acts
as a central signaling network regulator in environmental and pathogen infection stress
conditions in plants [2,31,32]. SA participates directly in plant growth, induction of flowers,
ion uptake, yield, and the improvement of chlorophyll pigment content, photosynthetic
rate, and the activity of certain essential enzymes [33]. The initial report on salicylate’s
role as a disease-inducing agent was discovered against TMV on tobacco in 1979 [34].
Furthermore, SA can increase the resistance against Tomato yellow leaf curl virus (TYLCV)
by modulating the expression of genes that encode ROS scavenging, alter the function of
resistance enzymes, and produce systemically acquired resistance to pathogenesis-related
genes [35].
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Plants possess a range of active defense apparatuses that can be actively expressed
in response to biotic stresses (pathogens). If stimulus triggers defense mechanisms before
infection by a plant pathogen, the disease can be reduced [2]. Induced resistance is a
state of enhanced defensive capacity developed by a plant when appropriately stimulated.
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms
of induced resistance wherein plant defenses are preconditioned by prior infection or
treatment that results in resistance against subsequent challenge by a pathogen. Plant
pathogens or chemical compounds cause systemic acquired resistance (SAR), and their
regulation is based on salicylic acid (SA). A number of pathogenesis-related proteins
(PRs) play important roles as anti-pathogenic agents such as peroxidase and chitinase [3].
Induced systemic resistance (ISR) is induced by plant microbes that promote growth, and
its regulation is based on jasmonic acid and ethylene [2].

The aims of the study were to document the association of AMV with eggplant
disease syndrome, to study the genetic variability of Egyptian AMV isolate recovered from
eggplants, to assess the full CP homology between this isolate and other AMV isolates
reported in Egypt and elsewhere in the GenBank database and to induce the resistance of
eggplants to virus infection through the use of eco-friendly compounds like MLT and SA.

2. Results
2.1. Symptomatology, Examination and Biological Purification of AMV-Eggplant Egyptian Isolate

During the spring of 2019, distinct virus-like symptoms were observed in the Kafr
El-Sheikh Governorate in Egypt in naturally infected eggplant. Leaves of the affected
plants showed interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters,
vein enation, necrotic intervention, and narrowing symptoms (Figure 1). Alfalfa mosaic virus
(AMV) was suspected to be been involved in the disease. Forty plant samples were collected
from symptomatic eggplants as well as, 10 leaf samples from plants with no symptoms
growing nearby. DAS-ELISA was used to test the samples for the presence of AMV. Six
of the 40 symptomatic leaf samples were positive for AMV, while, DAS-ELISA found no
evidence of AMV in the samples from the 10 leaf samples without symptoms.
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Figure 1. Eggplant (Solanum melongena) leaves showing different virus-like symptoms such as
interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic
intervention, and narrowing symptoms. Photo (B) is zoomed from photo (A).



Plants 2021, 10, 459 4 of 25

Alfalfa mosaic virus Egyptian isolate (AMV-Eggplant-EG) was isolated from six positive
samples tested by DAS-ELISA and from the similar local lesions induced on Chenopodium
amaranticolor (Figure 2) and then re-inoculated in healthy Solanum melongena as a source of
AMV-Eggplant Egyptian isolate and confirmed by DAS-ELISA.
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2.2. Molecular Characterization of AMV-Eggplant Egyptian Isolate
2.2.1. AMV-Eggplant-EG Coat Protein Gene Amplification and Sequencing

RT-PCR amplification of the coat protein (CP) gene of the AMV-Eggplant Egyptian
isolate was performed on the total RNA isolated from infected Solanum melongena. Using
the AMV-F2/AMV-R2 primer set, it was designed to amplify the entire AMV/CP gene,
generating an amplicon of 666 bp. The specific primers have not amplified viral cDNA
from healthy plants (control). The amplified PCR product was cloned and sequenced where
the complete nucleotide sequence of the amplified PCR fragment of the AMV-Eggplant-
EG/CP gene was determined. The relationship with the CP gene sequences of different
AMV strains available at GenBank was determined through a multiple sequence alignment
and phylogenetic analysis. The sequenced region contained a single open reading frame,
consisting of 666 nucleotides (nt)potentially coding for 221 amino acids (aa).

2.2.2. Viroinformatics Analysis of AMV-Eggplant-EG/CP Gene

Complete AMV-Eggplant-EG/CP gene nt and deduced aa sequences were multiply
aligned using the ClustalW program with minor manual adjustments to compare with
the corresponding sequences of the full CP gene of the various AMV isolates reported in
GenBank, determining nt identities from 92.94% to 96.70% and aa identities from 89.59% to
95.48%. Pairwise similarity has shown that the AMV-Eggplant-EG/CP was closely related
to AMV-Shark-EG/CP (accession no. LN846978) in nt 96.70% and aa with 95.48% (Table 1).
The highest nt identity of 96.70% was found with the Egyptian isolates shark-EG and Potato-
EG (LN846978 and HQ288892, respectively). The lowest nt identity of 92.94% was identified
in the Egyptian isolate Basil-EG (MH625710). On the other hand, the highest aa identity
of 95.48% was found in the Egyptian isolate shark-EG (LN846978) and Korean isolate
KR2 (AF294433). The lowest aa identity of 89.59% was determined in the Egyptian isolate
Basil-EG (MH625710). The nt and aa sequences of the CP gene of the AMV-Eggplant-EG,
along with these retrieved from GenBank (30 isolates), were used to construct a maximum
parsimony phylogenetic tree (Figure 3). AMV-Eggplant-EG was clustered in the lineage of
Egyptian isolates (shark-EG, mans-EG, CP2-EG, and FRE-EG) with high bootstrap value of
88% and 92%, respectively (Figure 3). AMV-Eggplant-EG isolate coat protein alignment of
the nt and aa sequences with Egyptian AMV isolates was demonstrated in (Figures 4 and 5).
There was a total of 668 and 221 positions in the final dataset for nucleotide and amino acid
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sequences, respectively. A total of 79 and 45 variable sites were found in Egyptian AMV
isolates nucleotide and amino acids, respectively, including the gaps where 38 and 22 were
parsimoniously informative nucleotide and amino acids, respectively. In addition, 41 and
23 were single sites (Figures 4 and 5).

Table 1. Comparison of coat protein gene sequence identity: AMV-Eggplant Egyptian isolate sequence is compared at
nucleotide (nt) and amino acid (aa) levels using BLAST and DiAlign tools with Alfalfa mosaic virus isolates available
in GenBank.

GenBank
Accession No.

Origin Year Host Strains
Identity

nt
(666)

aa
(221)

LN846978

Egypt

2015 Tomato shark-EG 644/666 (96.70%) 211/221 (95.48%)

HQ288892 2010 S. tuberosum Potato-EG 644/666 (96.70%) 210/221 (95.02%)

LN846979 2015 Tomato mans-EG 643/666 (96.55%) 210/221 (95.02%)

KY471416 2014 S. tuberosum CP2-EG 638/668 (95.51%) 204/221 (92.31%)

KY549685 2014 - FRE-EG 638/668 (95.51%) 204/221 (92.31%)

MH625710 2016 Basil Basil-EG 619/666 (92.94%) 198/221 (89.59%)

HQ185569

USA

2006 Soybean Joe Davis 643/666 (96.55%) 210/221 (95.02%)

M59241 1991 Lucerne YSMV 638/666 (95.80%) 209/221 (94.57%)

K02703 1983 N.tabacum 425M 639/666 (95.95%) 208/221 (94.12%)

JN256026 2011 Soybean SE12 639/666 (95.95%) 208/221 (94.12%)

L00162 1977 N. glutinosa 425L 635/666 (95.35%) 205/221 (92.76%)

AJ130709

France

1998 Wild tomato Lyh1 634/666 (95.20%) 204/221 (92.31%)

AJ130708 1998 Carrot Dac16 634/666 (95.20%) 204/221 (92.31%)

AJ130707 1998 Pepper Caa1 636/666 (95.50%) 203/221 (91.86%)

AJ130703 1998 Tomato Lye80 629/666 (94.44%) 201/221 (90.95%)

Y09110 Italy 1997 Tomato Danza 641/666 (96.25%) 209/221 (94.57%)

AJ130706 1998 Bean F430 639/666 (95.95%) 209/221 (94.57%)

AF015716 England 1997 Garden lupin VRU 634/666 (95.20%) 205/221 (92.76%)

AF015717 1997 Garden lupin 15/64 628/666 (94.29%) 204/221 (92.31%)

DQ314753

Canada

2004 Potato Ca401 637/661 (96.37%) 209/220 (95.00%)

DQ314751 2004 Potato Ca399 642/667 (96.25%) 209/221 (94.57%)

DQ314749 2004 Potato Ca375 640/667 (95.95%) 209/221 (94.57%)

DQ314752 2004 Potato Ca400 640/667 (95.80%) 209/221 (94.57%)

DQ314750 2004 Potato Ca175 639/667 (95.80%) 208/221 (94.12%)

DQ314754 2004 Potato Ca508 636/667 (95.35%) 207/221 (93.67%)

JX112759
Australia

2001 Medicago sativa Hu 641/666 (96.25%) 209/221 (94.57%)

HM807304 1985 Medicago sativa N20 638/666 (95.80%) 209/221 (94.57%)

AF294433
Korea

2000 Solanum tuberosum KR2 641/666 (96.25%) 211/221 (95.48%)

AF294432 2000 Solanum tuberosum KR1 638/666 (95.80%) 208/221 (94.12%)

AF215664 New Zealand 1999 S. tuberosum NZ34 640/666 (96.10%) 208/221 (94.12%)
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2.3. Systemic Protection against Alfalfa mosaic virus (AMV) in Eggplant

AMV symptoms, including mottling, net yellow, blisters, leaf narrow, leaf distor-
tion, vein enation, and necrotic intervention disease severity of 90%, were observed for
the infected eggplants (Figure 6b and Table 2) compared to mock inoculated eggplants
(Figure 6a). The protective antiviral activity of MLT and SA against AMV was evaluated.
The results show that foliar spraying of MLT and SA substantially reduced the virus concen-
tration, the percentage of infection with the virus, and the disease severity (DS), compared
to challenge control (ChC) (Figure 6b–d and Table 2).
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Figure 6. Mock inoculated (a) and Alfalfa mosaic virus symptoms in challenge control (b) and eggplant
foliar sprayed with MLT (c) and SA (d) at 21 days after inoculation.

Table 2. Effect of foliar spraying of MLT and SA on virus concentration, percentage of infection (%), and disease severity of
eggplant leaves under AMV infection.

Treatments Virus Concentration Percentage of Infection (%) Disease Severity (%)

Challenge control (ChC) 0.50 a 100 a 90.0 a

Melatonin + V 0.18 c 25 c 13.33 c

Salicylic acid + V 0.22 b 40 b 21.66 b

According to Fisher’s test, the different letters (a, b, c) are significantly different at the treatments’ 0.05 level.

2.4. Physiological and Biochemical Studies
2.4.1. Changes in Plant Growth

The AMV infection caused a drastic decrease in shoot length (37.2%), root length
(28.7%), number of leaves (42.8%), leaf area (35.8%), and leaf biomass (38.2%) on eggplants
as compared with mock inoculated plants (Figure 7). In addition, eggplants challenged with
AMV and treated with MLT, and SA recorded substantial increases in all morphological
parameters compared to the challenge control plants. MLT and SA resulted in the highest
values in all the morphological parameters in healthy and infected plants. In addition, the
highest increases in shoot length (28.4%), root length (65.5%), number of leaves (112.4%),
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leaf area (56.7%), and leaf biomass (166.7%) were recorded in plants treated by MLT as
compared to the challenge control plants (Figure 7).
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Figure 7. Effect of foliar spraying of MLT and SA on plant growth. Shoot length (a), root length
(b), number of leaves (c), leaf area (d), leaf biomass (e) of eggplant under mock inoculation (MK),
and AMV infection (challenge control, ChC). According to Fisher’s test, the different letters (a–f)
are significantly different between treatments at the 0.05 level. Vertical bars represent the means
of 10 independent determinations ± standard error (SE). *, **, ***, and ns (non-significant) indicate
significant and highly significant differences according to two-way analysis of variance (ANOVA)
with a Fisher’s post hoc test.

2.4.2. Changes in Photosynthetic Pigments

The data in Figure 8 show that infected eggplants with AMV caused a significant
decrease in chlorophyll a (35.3%), chlorophyll b (41.5%), carotenoid (39.7%), and total
chlorophyll content (37.6%) relative to mock inoculated plants. In addition, MLT and



Plants 2021, 10, 459 10 of 25

SA not only counteracted the drastic influence of AMV on chlorophyll concentration but
induced a considerable stimulating impact of chlorophyll assimilation compared to the
challenge control plants. The most effective treatment for enhancing chlorophyll content
was MLT, which increased the content of Chl a by 33.9%, Chl b by 77.4%, carotenoid by
53.7%, and total chlorophyll by 45.7% in the leaves of eggplants over the challenge control
plants (Figure 8).
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2.4.3. Changes in ROS Damage

One of the harmful effects of viral infection is oxidative damage to cell membranes. To
examine the role of MLT and SA in oxidative damage, we next measured the reactive oxygen
species production and malonaldehyde (MDA) content in eggplant leaves infected with
AMV. H2O2, O2

− OH, and MDA contents increased by 71.6%, 64.8%, 134.5%, and 33.1%,
respectively, in challenge control plants compared to the mock inoculated plants (Figure 9).
Meanwhile, treatment with MLT and SA significantly decreased the H2O2 content (24.5%
and 14.5%), O2

− (22.3% and 12.2%), OH (35.6% and 19.3%), and MDA content (49.0% and
43.1%) as compared to the challenge control plants, respectively (Figure 9).
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Figure 9. Effect of foliar spraying of MLT and SA on ROS content (H2O2 (a), O2 (b), OH (c), and
malondialdehyde (MDA) (d)) content in leaves of eggplants under the mock inoculation (MK) and
AMV infection (challenge control, ChC). According to Fisher’s test, the different letters (a–f) are
significantly different between treatments at the 0.05 level. Vertical bars represent the means of three
independent determinations ± standard error (SE). ** and *** indicate highly significant difference
according to two-way ANOVA with a Fisher’s post hoc test.

2.4.4. Changes in Secondary Metabolites and Salicylic Acid Content

To clarify MLT and SA’s role in eggplants infected with AMV, we assessed the sec-
ondary metabolites, lignin, and endogenous SA production. The results revealed that
total phenol, flavonoids, lignin, and endogenous SA content rose considerably by about
180%, 130.8%, 167.7%, and 25% respectively, in eggplants inoculated with AMV compared
to non-inoculated plants (Figure 10). Moreover, the foliar spraying of challenge control
eggplants with MLT and SA led to a higher accumulation of total phenol, flavonoids, lignin,
and endogenous SA content compared to challenge control eggplants (Figure 10).

2.4.5. Changes in Antioxidant Enzymes

Eggplant infection with AMV was more effective in terms of increasing the activity of
all antioxidant enzymes studied, including superoxide dismutase (SOD), catalase (CAT),
peroxidase (POX), and phenylalanine ammonia-lyase (PAL), when compared to the mock
inoculated plants (Figure 11). In addition, treatment with MLT and SA in challenge plants
with AMV stimulated the activity of SOD (9.7% and 4.3%), CAT (10.6% and 5.7%), POX
(9.9% and 4.3%), and PAL (49.9% and 15.6%) as compared to the challenge control plants,
respectively (Figure 11).
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Figure 10. Effect of foliar spraying of MLT and SA on phenol content (a), flavonoids content (b),
lignin content (c), and salicylic acid content (d)) content in leaves of eggplant under mock inoculation
(MK) and AMV infection (challenge control, ChC). According to Fisher’s test, the different letters
(a–f) are significantly between treatments at the 0.05 level. Vertical bars represent the means of
three independent determinations ± standard error (SE). *** indicates highly significant difference
according to two-way ANOVA with a Fisher’s post hoc test.
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Figure 11. Effect of foliar spray by MLT and SA on enzymatic antioxidants content in leaves of
eggplant under mock inoculation (MK) and AMV infection (challenge control, ChC). SOD (a), CAT
(b), POX (c), and PAL (d). According to Fisher’s test, the different letters (a–f) are significantly
different between treatments at the 0.05 level. Vertical bars represent the means of three independent
determinations ± standard error (SE). *** indicates a highly significant difference according to
two-way ANOVA with a Fisher’s post hoc test.
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2.4.6. Changes in Gene Expression

Significant increases in the relative expression levels of GR, DHAR, MDHAR, PR3,
and MPK1 were seen in infected eggplants treated with MLT and SA compared to the
challenge control plants (Figure 12). Compared to the challenge control, a significant
up-regulation of GR, DHAR, MDHAR, PR3, and MPK1 with relative expression levels
representing 72%, 54.5%, 79.5%, 55.5%, and 22% increases were detected in plants treated
with MLT, respectively (Figure 12).
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Figure 12. Effect of foliar spraying of MLT and SA on the gene expression of relative Glutathione
reductase (GR) (a), Dehydroascorbate reductase (DHAR) (b), Monodehydroascorbate reductase
(MDHAR) (c), Chitinase (PR3) (d), and mitogen-activated protein kinase (MPK1) (e) in leaves
of eggplant under AMV infection and challenge control (ChC; untreated CMV-infected plants).
According to Fisher’s test, the different letters (a–c) are significantly different between treatments at
the 0.05 level. Vertical bars represent the means of three independent determinations ± standard
error (SE).

3. Discussion

During the spring of 2019, the eggplants grown in an open field (Kafr El-Sheikh Gov-
ernorate, Egypt) showed interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling,
blisters, vein enation, necrotic intervention, and narrowing symptoms. The presence of
Alfalfa mosaic virus (AMV) in individual plants was serologically tested by DAS-ELISA.
Six of the 40 symptomatic leaf samples were positive for AMV, while, DAS-ELISA found
no evidence of AMV in the 10 leaf samples without symptoms. Alfalfa mosaic virus Egyp-
tian isolate (AMV-Eggplant-EG) was isolated from the six positive samples and from
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the similar local lesions induced on Chenopodium amaranticolor and then re-inoculated in
healthy Solanum melongena as a source of AMV-Eggplant Egyptian isolate and confirmed
by DAS-ELISA. AMV is considered one of the most economically important viruses, in
that it is a widespread, common virus that infects various plants and consists of many
strains that differ in symptomatology between different hosts [2,36]. Several reports have
described the natural occurrence of AMV in Solanum melongena from India, Turkey, and
Saudi Arabia [13,14,37]. The size of the RT-PCR product of AMV-Eggplant-EG infected
Solanum melongena tissue was identical to that of the 666 bp AMV/CP gene using the
AMV-F2/AMV-R2 primer set designed to amplify the entire AMV/CP gene [38]. How-
ever, the specific primer pair did not amplify viral cDNA from extracts of uninfected
Solanum melongena.

In order to classify sequences and variability with the 30 worldwide isolates available
in GenBank, the complete CP gene sequence (666 bp) of an isolate of AMV-Eggplant-EG
RT-PCR amplified fragment was determined. The maximum parsimony phylogenetic
tree of the nucleotide and deduced amino acid sequences showed that AMV-Eggplant-EG
clustered in the lineage of Egyptian isolates (shark-EG, mans-EG, CP2-EG, and FRE-EG)
with a high bootstrap values of 88% and 92%.

Treatment with MLT or SA substantially reduced the virus concentration and the
disease severity in the symptomatic plants’ leaves (Table 2). MLT and SA decreased the
AMV concentration that was detected by DAS-ELISA. The reduction in virus concentrations
may be due to the increase in the POX enzyme, which is known to catalyze the final
polymerization step of lignin synthesis and is directly associated with the increased ability
of systemically protected tissues to lignify [39] and help in the defense responses against
viral infection. Also, during pathogen attack in plants, AS treatment, including H2O2
accumulation, can act with at least one of two mechanisms against pathogens: H2O2 can
act directly by killing the pathogen and H2O2 also hinders the penetration of plants by
microorganisms [2]. It contributes to cell wall stiffening by facilitating peroxidase reactions
catalyzing intra and inter-molecular cross-links between the structural components of cell
walls and lignin polymerization [40]. In addition, the production of ROS can reinforce plant
cell walls through cross linking reactions of lignin and protein. ROS are toxic agents against
either the host plant cells, with the development of a hypersensitive response and systemic
acquired resistance (SAR), or against pathogens, killing them or stopping their growth
and development. Moreover, ROS are considered secondary messengers in signaling
routes leading to the activation of plant defense related genes [4,40]. Also, in this work, an
increase in the level of phenolics and flavonoids with either virus infection or MLT and SA
treatments was observed. Flavonoids mainly act as antioxidants, to prevent viral binding
and penetration into cells and to trigger host cell self-defense mechanisms [41]. This
supports a role of SA in the induction of antioxidants and enhanced resistance. Moreover,
the accumulation of SA after treatment with SA and MLT can be dramatically induced
in plants when challenged by various pathogens, including viruses [29]. An increased
level of SA is necessary for plants to acquire resistance to viral infection by interfering in
the major stages of the virus cycle: replication, cell-to-cell movement, and long-distance
movement [29].

In this respect, Sudhakar, et al. [42] found that SA accumulation after Cucumber mosaic
virus (CMV) inoculation contributes to boosting the activity of enzymes such as PAL or
POX, helping with the plant’s resistance to viral infection. SA allows for strength mecha-
nisms like the development of phytoalexins, proteinase inhibitors, cell wall strengthening,
and lignification. Also, the use of SA on tobacco improved resistance to CMV, and the
inhibition of virus movements, demonstrated systemic resistance [43]. Moreover, the
Potato virus Y (PVY) and Bean yellow mosaic virus (BYMV) concentration and infection per-
centages decreased when the plants were sprayed with SA. This reduction may be due
to the suppressed virus replication, reduced virus accumulation, and virus entry into the
vascular system via treatment [44,45].
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Moreover, treatment with MLT helped with resistance to Apple stem groove virus (ASGV)
due to encouraging the rapid extension of shoot tips to avoid infection with the virus,
reducing the virus amount in the shoot tips and inhibiting viral movement in the shoot
tips [30]. In the TMV-infected Solanum lycopersicum seedlings, the exogenous use of MEL
has substantially increased SA levels. Therefore, increased SA levels can be seen as one of
the MEL-mediated virus resistance mechanisms [29].

One effect of the application of MLT and SA is an improvement in plant growth under
normal conditions (Figure 7), as well as in plants under viral stress, indirectly due to their
strong anti-pathogenic activity and explicitly due to (i) the stimulation of biosynthesis
of phytohormones, (ii) the stimulation of soil nutrient absorption and solubilization, and
(iii) the stimulation of root hardness and growth [4]. Also, MLT and SA are considered
multifunctional plant-growth regulators. They help alleviate the oxidative damage from
various stresses [46] and increase gene expression involving cell division, cell expansion,
photosynthesis, metabolism, and hormonal balance [27,47,48].

In eggplants infected with AMV, the photosynthetic pigment content was considerably
reduced compared to mock inoculated plants (Figure 8). Similar data indicate that CMV
infection decreased the chlorophyll content in cucumber plants [4,7,49]. The content of
chlorophyll in plants infected with the virus may be reduced due to activating certain cell
enzymes such as chlorophyllase [50] or the virus’s effect on pigment synthesis, mineral
uptake, and transport [51]. Additionally, applied MLT and SA increased the chlorophyll
and carotenoid contents in the leaves of infected plants compared to the infected plants
without treatments. Under pathogen infection, the defense function of MLT in chloro-
phyll can be due to its antioxidant ability and the inhibition of up-regulation in certain
senescence-associated genes [52]. In particular, MLT can boost the activity and enhance
the photosynthetic carbon assimilation of Calvin cycle enzymes [53]. It was found that an
increase in the photosynthesis rate of SA-treated plants could be due to metabolic changes
at the level of chloroplasts such as photosystem efficiency II, enzyme activity Rubisco, and
the carbon-reducing supply of ATP and NADPH [54]. Moreover, SA improves membrane
permeability, making it easy to absorb and use mineral nutrients such as Mg and Fe, which
are essential in the biosynthesis of chlorophyll and transport of assimilates [55].

Like other biotic stresses, viral inoculation provokes oxidative stress in different ways.
Modified stomatal conductance, disrupted photosystem activity and altered enzymatic
activities of cytosol, chloroplast, mitochondrial, or other ultrastructural organs are the com-
mon reasons for viral-induced oxidative stress [4,5,56–58]. In the present study, eggplants
inoculated with AMV showed a highly significant increase in the contents of H2O2, O2

−,
OH, and MDA which are indicators of oxidative stress. Our findings were consistent with
those of Xi, et al. [59], who found that synergistic CMV and TNV infections led to higher
MDA and H2O2 rates and lower catalase activity than those individually infected. The
accumulation of H2O2 in host cells plays a significant role in enhancing virus resistance
in plants [60]. MLT and SA foliar spraying decreased the H2O2, O2

−, OH, and MDA,
compared to AMV stress alone, and in this case, the lowest reduction of these oxidative
stress markers has been documented for 100 µM MLT. MLT and SA have been proven to
up-regulate the content of different non-enzymatic antioxidants in addition to the activity
of enzymes of the antioxidant defense system under stress conditions, which alleviates the
oxidative stress induced by other biotic stresses [61].

Phenolic, flavonoid, lignin, and endogenous SA content are dramatically increased in
eggplants infected with AMV alone or treated with MLT and SA (Figure 10). High amounts
of phenolic compounds can result in the higher rigidity of the host cell walls through
lignin and suberin synthesis, which is regarded as a physical obstacle to propagating
viruses [42,62]. Furthermore, phenols such as SA have high antifungal activity and help
protect host plants against a fungal pathogen’s infestation [63–65]. Through secondary
metabolic pathways, plants generate a number of metabolites that work mostly in plant
defense responses to pathogen infection and environmental stresses [66–71]. Previous
studies have shown that CMV can boost phenol and flavonoid concentration in leaves [4].



Plants 2021, 10, 459 16 of 25

In addition, a proteomic analysis revealed that MLT can also affect the biosynthesis of
flavonoids [28].

In addition, the antioxidant enzymes play essential roles in counteracting the effects
of AMV infection. This has become evident through the comparatively increased activity
of enzymes that scavenge ROS in cucumber plants [72]. The results of the current study
(Figure 11) have supported this finding. The antioxidative enzymes assayed in the present
work, such as SOD, CAT, POX, and PAL, play a unique role in terms of mitigating the
effects of oxidative stress stimulated by AMV infection. More broadly, TMV and Tomato
mosaic virus (ToMV) inoculated Nicotiana glutinosa seedlings demonstrated improved POD
and CAT activity compared with uninfected seedlings [73]. Because SOD is an effective
O2– scavenger, it is the plant’s first defense against ROS [74,75], demonstrating the SOD’s
defensive role in biological systems. Moreover, POX and CAT may be considered radical
scavengers and catalyzed H2O2 producing H2O and O2 [76,77]. Thus, the rise in POX
may be thought to lead to oxidative stress in systemic interactions between the plant and
virus. Up-regulated peroxides may also reduce growth and malformation in virus-infected
plants by oxidizing indole-3-acetic acid [78]. Higher amounts of ROS-related enzymes
have also been observed in bean plants infected with the White clover mosaic virus [79].
Our results show that the activity of all enzymes rose under AMV infection and further
increased with MLT and SA treatment, especially MLT. SA plays an essential role in ROS
scavenging by boosting the activity of SOD, POX, and APX in tomato plants inoculated
with TYLCV [35]. Also, SA-induced higher PAL amounts led to an improved build-up of
phenolic compounds and/or antimicrobials after infection with Potato virus X [31].

The expression of pathogenesis-related genes like GR, DHAR, MDHAR, PR3, and
MPK1 was greater in infected eggplants foliar sprayed with MLT and SA (Figure 12).
Similar findings are mentioned by Li et al. [35], who observed that SA could up-regulate
gene expression and control TYLCV resistance in tomato plants. Also, MLT increased
the gene expression of chitinase (PR3) [80], which has a crucial function in that it reduces
lesion expansion and inhibits pathogen growth [81,82]. More broadly, the effects of MLT on
biotic stress are a combined consequence of increases in endogenous hormone, antioxidant
enzymes, and PR3 expression [83].

In addition, mitogen-activated protein kinase (MAPK/MPK) cascades are strongly pre-
served signaling modules that translate cell surface signals into cellular specific targets that
involve plant growth, development, and biotic and abiotic stress responses [84,85]. Also,
SA-treated Solanum melongena seedlings after being infected with Verticillium dahliae caused
an increment in MPK gene expression, triggering the prevailing biosynthetic pathway
of SA, based on iso-chorismate (ICS). The biosynthesized SA also controls the expres-
sion of stress and defense genes such as PR proteins, which results in systemic resistance.
Solanum melongena resistance to Verticillium host pathogens may be supported by protective
response gens (β-1,3-glucanase and chitinase) and growth and developmental participants
(IAA27, MPK1, and GPX) [86]. In this regard, Pacheco et al. [54] and Hackmann et al. [87]
found that the exogenous application of SA has induced the expression of several defensive
genes encoding various secondary metabolic enzymes into bioactive compounds such as
phenolics under pathogen infection. PR-2 and PR-3 are essential protein groups, acting on
their own or in combination against fungal infection and viruses [4,5,31].

4. Materials and Methods
4.1. Sample Collection and Virus Detection

Naturally infected eggplant (Solanum melongena) with virus-like symptoms were
collected from Kafr El-Sheikh Governorate, Egypt. The Alfalfa mosaic virus (AMV) was
suspected of involvement in this disease. There were 40 plant samples from symptomatic
eggplants, and 10 leaf samples with no symptoms were also collected. DAS-ELISA was
used to analyze the samples as described by Clark and Adams [88] using AMV poly-
clonal antibody.
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4.2. Isolation and Propagation of Virus

The inoculum of infectious sap was prepared by grinding the DAS-ELISA positive
leaf samples in 0.1 M phosphate buffer, (pH 7.2, 1:2 containing 0.3% β-mercaptoethanol)
in a sterilized mortar and pestle. A single local lesion technique was used for the biolog-
ical isolation of AMV, according to Noordam [89], where infectious sap was inoculated
in Chenopodium amaranticolor as a local lesion host. Control plants were inoculated with
phosphate buffer. The inoculated plants and control were kept under insect-proof green-
house condition.

4.3. Total RNA Extraction and RT-PCR Amplification of AMV/CP Gene and Sequencing

According to the manufacturer’s instructions, total RNAs were isolated from healthy
and infected Solanum melongena plants with AMV-Eggplant Egyptian isolate (AMV-Eggplant-
EG), using a QIAamp RNA isolation kit. The AMV-F2 and AMV-R2 oligonucleotide primers
were designed to amplify the AMV/CP gene according to Xu and Nie [38]. RT-PCR was
performed according to Xu and Nie [38], where the mixtures were incubated at 94 ◦C
for 2 min, followed by 35 cycles, with final incubation at 72 ◦C for 7 min, followed by
4 ◦C. The PCR-product was purified using a QIAquick PCR purification kit. The purified
amplicon was then cloned into a pGEM-T Easy Vector in DH5 Escherichia coli competent
cells according to the manufacturer’s instructions and directly sequenced using the same
primer pair using RT-PCR. Data were analyzed using FinchTVTM version 1.4.0 software of
sequencing analysis. The CP gene nucleotide sequence of the AMV-Eggplant-EG isolate
was registered under GenBank accession number MW428250.

4.4. Multiple Alignments and Phylogenetic Analysis

The AMV-Eggplant-EG sequence generated in this study was compared with avail-
able AMV sequences in GenBank (http://www.ncbi.nlm.nih.gov/BLAST/, accessed on
1 December 2020). Multiple alignments of sequences were performed using BioEdit soft-
ware (Ver.7.2.5), and ClustalW was included within the software MEGA 7.0. The phyloge-
netic reconstructions were performed using the maximum parsimony method implemented
in MEGA 7.0 with a statistical confidence of 1000 replicates to assess the constructed phylo-
genetic tree’s reliability.

4.5. Plant Materials, Eggplant Treatments, and Alfalfa mosaic virus Inoculation

Eggplant (Solanum melongena) seeds were grown in plastic pots in a mixture of sand
and clay (1:2 v/v) in separate growth chambers with a photoperiod of 12 h. The tempera-
tures in the light and dark period were 27 ◦C and 23 ◦C, respectively; the relative humidity
was about 70%. The plants had a relative water content of 100%. After seven days of
growth, seedlings were transferred to 40 cm pots containing a sterile soil mixture of 35%
clay, 35% sand, and 30% peat moss and grown under the same conditions. The plants were
divided into six groups after 14 days of growth. Five replications were made of each group.
The groups were divided into:

1. The first group, the plants were inoculated with only phosphate buffer without virus
as mock inoculation (MK).

2. The second group, the plants were foliar sprayed with 100 µM melatonin (MLT),
combined with two drops of Tween 80 into the leaves until run-off.

3. The third group, the plants were foliar sprayed with 100 µM salicylic acid (SA),
combined with two drops of Tween 80 into the leaves until run-off.

4. The fourth group, the plants were inoculated with Alfalfa mosaic virus as challenge
control (ChC).

5. The fifth group, the plants were foliar sprayed with 100 µM MLT and then inoculated
after three days with AMV.

6. The sixth group, the plants were foliar sprayed with 100 µM SA and then inoculated
after three days with AMV.

http://www.ncbi.nlm.nih.gov/BLAST/
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All the leaves were inoculated mechanically. The inoculation was prepared from
infected leaves ground in a mortar containing a phosphate buffer of 0.1 M (pH 7.0). It
was filtered through two layers of cheesecloth. The leaves of healthy plants were dusted
with carborundum and gently rubbed with a soft cotton swab that had previously been
dipped into an inoculum suspension. The percentage of infected plants and the severity of
symptoms were assessed three weeks after inoculation using the following rating scale:
0 = no symptoms, 2 = mild chlorosis, 4 = mottling, net yellow, blisters and leaf narrow,
6 = leaf distortion, vein enation, and necrotic intervention. Disease severity values were
calculated using the formula of Yang, et al. [90].

DS (%) =
∑(Disease grade × Number of plants in each grade)
(Total number of plants × Highest disease grade)

× 100

4.6. Growth Indices

Ten plants were harvested randomly from each treatment to determine the shoot and
root length, number of leaves, leaf surface, and leaf biomass three weeks after inoculation.

4.7. Biochemical Analysis

Three weeks after inoculation, the younger leaves produced from both the control and
treatment plants were collected for examining biochemical changes.

4.7.1. Determination of Photosynthetic Pigments

Fresh leaves (0.5 g samples) were ground with acetone (80%), and the homogenate
was filtered through Whatman No 1 filter paper. A spectrophotometer was used to read the
absorbance of filtrate at 470, 652, and 665 nm to assess the chlorophyll-a, chlorophyll-b [91],
and carotenoids [92].

4.7.2. Determination of Oxidative Damage Marker

A half gram of eggplant leaf was ground with a KH2PO4-KOH buffer (pH 7.8) and
centrifuged at 10,000× g for 15 min. The collected supernatant was used to determine
H2O2 using TiCl2 and a spectrophotometer was used to read the mixture’s absorbance at
410 nm according to an earlier protocol by Patterso, et al. [93]. The supernatant was also
used to determine O2

− by adding it to hydroxylamine hydrochloride and heating at 25 ◦C
for 1 h, it was then mixed with sulfanilamide and α-naphthylamine at 25 ◦C for 20 min. The
mixture was read at 530 nm using a spectrophotometer [94]. In addition, the supernatant
was used to determine OH by adding 100 µM of FeCl3, 104 µM of EDTA, one mM of H2O2,
and 100 µM of ascorbate to the final 1 mL and heating at 37 ◦C for 1 h. The absorbance was
read at 532 nm using a spectrophotometer, according to Babbs et al. [95].

The MDA level was determined by using 0.5 g of leaf samples ground in 5 mL of 0.1%
(w/v) trichloroacetic acid, and centrifuged at 10,000× g for 10 min, and then 5 mL of 20%
TCA containing 0.5% (w/v) 2-thiobarbituric acid was added to 2 mL of the supernatant.
The mixture was heated at 95 ◦C for 30 min, then cooled, and the mixture’s absorbance was
read at 532 and 600 nm using a spectrophotometer as described by Heath and Packer [96].

4.7.3. Determination of Total Phenolic and Flavonoid Compounds

First, 80% methanol (v/v) was homogenized with 0.5 g of dried leaves and centrifuged
for 20 min at 10,000× g to obtain a clean solution. For estimating the total phenolic
compounds, the Folin–Ciocalteu (FC) test was used, and the spectrophotometer read the
absorption at 765 nm as described by Singleton and Rossi [97]. The methanolic extract was
also used to determine flavonoid compounds by using an ALCl3 reagent. The obtained
color has been measured at 510 nm using a spectrophotometry method described by
Zhishen et al. [98].
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4.7.4. Determination of Lignin

One gram of dry leaves was ground in ice-cold 95% ethanol, and the homogenate was
centrifuged at 3000× g for 15 min. The resulting pellet was washed with 95% ethanol three
times and with a 1:2 (v/v) hexane/ethanol mixture twice and dried overnight at 37 ◦C. In
acetic acid, the dried pellet was ultrasonically homogenized and centrifuged at 1000× g for
a total of 5 min. After heating at 70 ◦C for 30 min, the sample was applied with 270 mL of
2 M NaOH, 30 mL of 7.5 M of hydroxylamine, and 900 mL of acetic acid. Samples were
centrifuged for 5 min at 1000× g, and the lignin content was read at 280 nm, according to
Bruce and West [99].

4.7.5. Determination of Salicylic Acid

One gram of the leaf tissue was homogenized in 2.5 mL of 90% methanol and cen-
trifuged for 15 min at 12,000× g. The pellet was homogenized again with 100% methanol
(v/v) and centrifuged for an additional 15 min at 12,000× g. The supernatants were mixed
and dried under liquid N2 from both extractions. In 2.5 mL of 5% trichloroacetic acid (v/v),
the residue was resuspended and filtered. Filtration was separated by 5 mL (1:1 v/v) of
a 1% (v/v) isopropanol mixture of ethyl acetate/cyclohexane. SA was determined using
HPLC, as described by Raskin et al. [100].

4.7.6. Enzymatic Antioxidant Assays

Half a gram of fresh leaf was ground with 10 mL of 50 mM KH2PO4 buffer (pH 7.8),
and the sample was centrifuged at 10,000× g for 15 min at 5 ◦C. Then the protein con-
centration of the extract was determined [101]. Superoxide dismutase activity (SOD, EC
1.15.1.1) was measured by the Kono [102] method with the help of Na2CO3 as a buffer
and nitrobluetetrazolium (NPT) as the substrate. The inhibition was reported using a
spectrophotometer at 540 nm of NBT reduction. A catalase activity test (CAT, EC 1.11.1.6)
was carried out using potassium phosphate as a buffer, with H2O2 as a substrate as de-
scribed by Aebi [103], and the absorption was read at 240 nm. The peroxidase (POX, EC
1.11.1.7) activity test was performed by the method reported in Thomas et al. [104] using
benzidine and a spectrophotometer to record the absorbance at 470 nm. The phenylalanine
ammonia-lyase activity (PAL, EC 4.3.1.5) was assessed as described by Assis et al. [105].

4.7.7. RT-PCR Analysis

Four days after inoculation, the leaf tissues were sampled from inoculated eggplants
treated with MLT and SA, and challenge control plants. The protocol was defined by
Wang et al. [106] and, Derbalah and Elsharkawy [107]. qRT-PCR was performed with
gene-specific primers [108], as shown in Table 3. Standardizing, the ACTIN constitutive
gene’s abundance was achieved to normalize the target gene quantity (Table 3). The 7000
RT-PCR system was used, and the data collected were analyzed with the ABI PRISM
7000 program (Bio-Rad iCycler).

Table 3. Forward and reverse primers sequence for GR, DHAR, MDHAR, PR3, MPK1, and ACTIN genes.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′)
GR

Glutathione reductase TTGGTGGAACGTGTGTTCTT TCTCATTCACTTCCCATCCA

DHAR
Dehydroascorbate reductase GAAGTGGAGTGTGCCTGAAA CGTACTTCTCTTCAGCCTTGG

MDHAR
Monodehydroascorbate reductase TCCGAACAAACATACCTGGA GTGTGCGTGTGTGCAGTTAG

PR3
Chitinase

expression
AGAGAACAAGGTAGCCCAGG TAAAAGGTCCACTCCGATGGC

MPK1
Mitogen-activated protein kinase 1 CCTCCGTGGGTTGAAATAC GTCACAACATATTCGGTCATAAAG

ACTIN TGGTCGGAATGGGACAGAAG CTCAGTCAGGAGAACAGGGT
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4.8. Statistical Analysis

The experimental design was randomized, and statistical analysis was conducted with
the statistical software SPSS (Statistical Package for the Social Science Version 26.0) [109].
A one-way or, two-way ANOVA with post hoc test variance analysis from Fisher’s test
with Levene’s sample parametric distribution, was used for the quantitative analysis. The
confidence interval was set to 95%, and the negotiated margin for error was fixed at 5%.

5. Conclusions

AMV Egyptian isolate (AMV-Eggplant-EG) was biologically isolated from the six
positive samples tested by DAS-ELISA and from the similar local lesions induced on
Chenopodium amaranticolor, and then it was re-inoculated in healthy Solanum melongena as a
source of AMV-Eggplant-EG and confirmed by DAS-ELISA. RT-PCR assay with a pair of
primers specific for coat protein (CP) encoding RNA 3 of AMV yielded an amplicon of 666
bp from infected plants of Solanum melongena with AMV-Eggplant-EG. The amplified PCR
product was cloned and sequenced. Analysis of the AMV-Eggplant-EG sequence revealed
666 nucleotides (nt) of the complete CP gene (translating 221 amino acid (aa) residues).
Analysis of phylogeny was performed for nt and deduced aa sequences of the CP gene
using the maximum parsimony method clustered AMV-Eggplant-EG in the lineage of
Egyptian isolates.

Eggplants can resist AMV infection through a wide range of cellular processes: (i) up-
regulation of different genes; (ii) changes in pathway levels of various compounds, like
reactive oxygen species (ROS); (iii) stimulation of various transcription factors activity, and
regulation of defense genes; (iv) stimulation of protective signaling enzymes and phyto-
hormones such as SA. The results indicated that MTL and SA induced systemic acquired
resistance and could regulate ROS production, thus contributing to enhanced resistance of
eggplants to AMV. Since MLT is considered a naturally occurring and safe compound, MLT
and SA’s application could be an ecofriendly strategy for the effective management of AMV
infection in eggplants by reducing the virus concentration. In conclusion, foliar spraying of
challenge control eggplants with MLT and SA could be a method for counteracting AMV
infection by activating phenolic and flavonoids’ accumulation, lignin content, endogenous
SA content, the antioxidant defense system, genes expression and molecules involved in
scavenging free radicals (Figure 13).
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