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Abstract

Neuroimaging studies have shown that juvenile myoclonic epilepsy (JME) is charac-

terized by impaired brain networks. However, few studies have investigated the

potential disruptions in rich-club organization—a core feature of the brain networks.

Moreover, it is unclear how structure–function relationships dynamically change over

time in JME. Here, we quantify the anatomical rich-club organization and dynamic

structural and functional connectivity (SC–FC) coupling in 47 treatment-naïve newly

diagnosed patients with JME and 40 matched healthy controls. Dynamic functional

network efficiency and its association with SC–FC coupling were also calculated to

examine the supporting of structure–function relationship to brain information trans-

fer. The results showed that the anatomical rich-club organization was disrupted in

the patient group, along with decreased connectivity strength among rich-club hub

nodes. Furthermore, reduced SC–FC coupling in rich-club organization of the patients

was found in two functionally independent dynamic states, that is the functional seg-

regation state (State 1) and the strong somatomotor-cognitive control interaction

state (State 5); and the latter was significantly associated with disease severity. In

addition, the relationships between SC–FC coupling of hub nodes connections and

functional network efficiency in State 1 were found to be absent in patients. The
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aberrant dynamic SC–FC coupling of rich-club organization suggests a selective influ-

ence of densely interconnected network core in patients with JME at the early phase

of the disease, offering new insights and potential biomarkers into the underlying

neurodevelopmental basis of behavioral and cognitive impairments observed in JME.
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1 | INTRODUCTION

Juvenile myoclonic epilepsy (JME) is the most common generalized

genetic epilepsy syndrome, accounting for up to 10% of all epilep-

sies (Camfield, Striano, & Camfield, 2013; Scheffer et al., 2017).

The syndrome's clinical characteristics include myoclonic jerks,

tonic–clonic seizures, and less frequent absence seizures, with typ-

ically cognitive deficits in working memory, attention, and execu-

tive functions (Carvalho et al., 2016; Pascalicchio et al., 2007;

Wandschneider, Thompson, Vollmar, & Koepp, 2012). Although

the underlying neural substrates for JME remain elusive, recent

neuroimaging studies have provided ample evidence of both

abnormal structural connectivity (SC) and functional connectivity

(FC) in the connectome of patients (Caeyenberghs et al., 2015;

Jiang et al., 2018; Ur Ozcelik et al., 2021; Zhong et al., 2018),

together with disrupted topological organization (Parsons,

Bowden, Vogrin, & D'Souza, 2020). These prior research has con-

ceptualized JME as a disorder of brain network dysfunction, pro-

viding a new insight for understanding the underlying

pathophysiology and etiology of this disorder.

A prominent feature of the brain networks is the rich-club organi-

zation, which describes a set of highly central and interconnected ana-

tomical hub regions (van den Heuvel & Sporns, 2011). Generally, the

rich-club organization forms a central structural backbone for global

brain communication and thus plays a crucial role in integrating func-

tional control and information flow (van den Heuvel, Kahn, Goni, &

Sporns, 2012). Disrupted rich-club organization has been repeatedly

reported in previous studies of neuropsychiatric disorders, such as

schizophrenia (van den Heuvel et al., 2013), attention-deficit hyperac-

tivity disorder (Ray et al., 2014), autism spectrum disorder (Keown

et al., 2017), major depressive disorder (X. Liu et al., 2021), and gener-

alized tonic–clonic seizures (Li et al., 2016), indicating that rich-club

disorganization may have a key role in the etiology of these disorders.

However, it remains largely unknown how anatomical rich-club orga-

nization changes in JME.

Moreover, it is widely known that the structural connections

shapes and constrains the function of nervous systems in multiple

scales. Studies using multimodal MRI techniques have also demon-

strated the spatial correspondence between structural and functional

brain networks (Misic et al., 2016), thereby providing important infor-

mation about how structural constraint supports functional communi-

cation. The relationship between SC and FC profiles, namely SC–FC

coupling, characterizes the functional dynamics of structural topologi-

cal properties (Grayson et al., 2014; Zhao et al., 2020), which is promi-

nently associated with the higher-order cognitive processes such as

executive function (Baum et al., 2020; Suarez, Markello, Betzel, &

Misic, 2020; van den Heuvel et al., 2013). Atypical development of

SC–FC coupling could contribute to the emergence of neuropsychiat-

ric disorders such as JME (Jia et al., 2018). Of note, the

abovementioned studies on SC–FC coupling assume that the FC

between two brain regions remains constant throughout the entire

MRI scan. In fact, the human brain is known to be highly dynamic

(Calhoun, Miller, Pearlson, & Adali, 2014). Hence, the dynamic FC,

which describes the time-varying patterns of co-activations among

brain regions, is a more efficient way for uncovering specific proper-

ties of functional communication in health and disease (Allen

et al., 2014; Calhoun & Adali, 2016; Fiorenzato et al., 2019; F. Liu

et al., 2017; Sun, Collinson, Suckling, & Sim, 2019; Tu et al., 2020). For

patients with JME, previous studies have revealed that the dynamic

FC was reduced and linked to disease severity (Wang, Berglund,

Uppman, & Li, 2019; Zhang et al., 2018, 2020). However, to our

knowledge, no prior study has explored the time-varying characteris-

tics of SC–FC coupling in JME, and it is still unclear how anatomical

connectivity constraint supports dynamic functional interaction in the

rich-club organization.

This study aims to investigate the changes of rich-club organi-

zation and its dynamic SC–FC coupling in treatment-naïve newly

diagnosed patients with JME. We first examined the differences in

the white matter connectivity of rich-club organization between

patients and controls. By performing dynamic FC analysis, we then

examined the group differences in the SC–FC coupling of rich-club

organization in each identified dynamic state (depicting transient

FC patterns over time). Moreover, the relationships between SC–

FC coupling and dynamic functional network efficiency were calcu-

lated to explore the supporting of structure–function coupling to

brain information transfer. In addition, we correlated brain changes

with clinical measures of patients to understand whether

structure–function relationship could be a potential indication for

the progress of disease. Based upon the previous evidence

supporting impaired brain networks in JME (Parsons et al., 2020;

Wang et al., 2019), we hypothesized that: (a) the rich-club organi-

zation is disrupted in patients; and (b) the SC–FC coupling and its

support to functional network efficiency are altered in some spe-

cific dynamic states in patients.
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2 | MATERIALS AND METHODS

2.1 | Participants

Sixty-eight treatment-naïve newly diagnosed patients with JME were rec-

ruited from outpatient at the Epilepsy Center of Lanzhou University Sec-

ond Hospital. All of them fulfilled the epilepsy classification criteria of the

International League Against Epilepsy (ILAE) guidelines for JME (Jerome

Engel, 2001). Routine MRI scans were normal, and routine scalp EEG

showed 3–6 Hz generalized spike-wave or polyspike-wave discharges

(GSWDs). Exclusion criteria for patient group were as follows: (a) a history

of any forms of antiseizure medication; (b) other neurological or major psy-

chiatric illness; (c) other developmental disabilities, such as autism and

intellectual impairment; and (d) acute physical illness that would affect the

scanning. The seizure severity of each patient was assessed using the

National Hospital Seizure Severity Scale (NHS3), which is a valid, easily

applicable measure of seizure severity (O'Donoghue, Duncan, &

Sander, 1996). It contains six seizure-related factors (Chinese version),

such as generalized convulsions, falls, incontinence, loss of consciousness,

duration of recovery time, and automatisms, and generates a total score

from 1 to 23. Forty-eight healthy controls were recruited from the local

community via advertisement and those with a history of febrile convul-

sions, seizures, or family history for epilepsy were excluded. This study

was approved by the Ethics Committee of Lanzhou University Second

Hospital. Written informed consent was obtained from all participants.

After head motion exclusion, the remaining 47 patients and

40 healthy controls were included in the subsequent analyses.

Detailed demographic and clinical characteristics of all participants

included in this study are shown in Tables 1 and S1. The basic flow of

this study is depicted in Figure 1.

2.2 | MRI acquisition and data preprocessing

All MRI data were acquired on a Siemens Verio 3.0 T scanner

(Siemens, Erlangen, Germany) with a 32-channel head coil at Lanzhou

University Second Hospital. Participants were asked to stay awake

with their eyes closed, to remain still, and not to think systematically

during the scan. To minimize the head motion, participants' heads

were stabilized in the head coil using foam pads. High-resolution

structural 3D T1-weighted images were obtained using a

magnetization-prepared rapid gradient-echo sequence (repetition time

[TR] = 1900 ms; echo time [TE] = 2.99 ms; flip angle = 90�; slice

thickness = 0.9 mm; acquisition matrix = 256 � 256; field of view

[FOV] = 230 � 230 mm2; in-plane resolution = 0.9 � 0.9 mm2; and

slices = 192). Resting-state functional scans were acquired using an

echo-planar imaging sequence (TR = 2000 ms; TE = 30 ms; flip

angle = 90�; slice thickness = 4 mm; in-plane matrix

resolution = 64 � 64; FOV = 240 � 240 mm2; slices = 33; 200 vol-

umes; and a total of 400 s). DWI scans were obtained using a diffu-

sion weighted spin echo EPI sequence (TR = 11,300 ms; TE = 85 ms;

flip angle = 90�; NEX = 1; voxel size = 2.0 � 2.0 � 2.0 mm2;

matrix = 128 � 128; FOV = 256 � 256 mm2; thickness = 2 mm

without gap; 60 slices covered the whole brain). Three diffusion-

weighted volumes were acquired with b = 0 s/mm2 and 30 diffusion

weighted directions with b = 1,000 s/mm2 and the total scan time

was 386 s.

Resting-state fMRI data were preprocessed using the DPARSF

toolbox (Yan & Zang, 2010). The main preprocessing steps included

discard 10 initial volumes, time-slicing correction, head motion

realignment, normalization to the Montreal Neurological Institute

(MNI) space, and spatial smoothing using a Gaussian kernel of 6 mm

full width at half maximum. To minimize the potential effects of head

motion on FC, we excluded the participants with head motion over

than 2 mm translation or 2� rotation. We also calculated the mean

frame-wise displacement (FD) of each participant on the basis of

realignment parameters and excluded the participants with mean FD

more than 0.2 mm.

DWI images of each participant were preprocessed using the

PANDA toolbox (Cui, Zhong, Xu, He, & Gong, 2013). The main

preprocessing included four steps as follows: (1) estimate the brain

mask using b0 image; (2) remove nonbrain tissue in the raw images;

TABLE 1 Demographic and clinical
characteristics of all participants

JME (n = 47) HC (n = 40) p-Value

Age (years) 17.17 ± 4.12 18.08 ± 3.64 .29a

Gender (males/females) 23/24 13/27 .25b

Handedness (right/left) 47/0 40/0 -

Seizure semiology MS (47), GTCS (33) - -

Age at seizure onset (year) 15.32 ± 2.96 - -

Duration of epilepsy (months) 21.72 ± 19.22 - -

NHS3 total score 9.23 ± 3.94 - -

Mean FD 0.12 ± 0.07 0.12 ± 0.03 .62a

Note: Values are mean ± SD.

Abbreviations: FD, frame-wise displacement; GTCS, generalized tonic–clonic seizure; HC, healthy

control; JME, juvenile myoclonic epilepsy; MS, myoclonic seizure; NHS3, the National Hospital Seizure

Severity Scale.
aTwo sample t test.
bChi-square t test.
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(3) corrections for eddy-current distortion and head motion; and

(4) calculate the diffusion tensor metrics including fractional anisot-

ropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity maps.

2.3 | Group independent component analysis

To identify the intrinsic connectivity networks (ICNs) and their

corresponding activation spatial maps, we used a standard pipeline of

spatial GICA implemented in the GIFT toolbox (http://mialab.mrn.org/

software/gift/) to decompose the fMRI data into multiple indepen-

dent components (ICs). A principal component analysis was first con-

ducted to reduce participant-specific data into 120 principal

components. Then, participant-reduced data of all participants across

time were concatenated and further reduced into 100 ICs using the

infomax algorithm (Bell & Sejnowski, 1995). We selected the ICNs

among 100 ICs by a combination of spatial template-matching and

visual inspection. Templates were derived from the ICA analyses as

described in previous studies (Allen et al., 2014; F. Liu et al., 2017).

The ICNs were further evaluated to test if the peak activation coordi-

nates were located primarily in gray matter, low spatial overlap with

known artifacts (including vascular, ventricular, motion, and suscepti-

bility artifacts), and time courses were dominated by low-frequency

fluctuations (Allen et al., 2014; Fiorenzato et al., 2019). Finally,

47 ICNs were identified and grouped into seven resting-state net-

works (RSNs) based on the spatial correlation values between ICs and

the template (Allen et al., 2014; F. Liu et al., 2017). As shown in

Figure 2, these RSNs were arranged into subcortical (SubC; 1 ICNs),

auditory (AUD; 3 ICNs), visual (VIS; 8 ICNs), somatomotor (SM;

F IGURE 1 Analysis flowchart to study dynamic structural connectivity and functional connectivity (SC–FC) relationships of rich-club
organization in patients with juvenile myoclonic epilepsy (JME). Four major steps were included: (a) perform group independent component
analysis (GICA) and select intrinsic connectivity networks (ICNs); (b) construct structural brain networks between ICNs and find anatomical rich-
club organization; (c) estimate dynamic functional network connectivity and perform clustering state analysis; and (d) conduct SC–FC coupling
analysis based on graph theoretical metrics

F IGURE 2 Averaged structural connectivity and static functional

connectivity between ICN pairs across all participants. Intrinsic
connectivity network (ICN) maps (N = 47) were identified by a group
independent component analysis (GICA) and grouped into seven
resting-state networks based on their anatomical and functional
properties, such as subcortical (SubC), auditory (AUD), visual (VIS),
somatomotor (SM), cognitive control (CC), default mode (DM), and
cerebellar (CB) networks
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11 ICNs), cognitive control (CC; 12 ICNs), default mode (DM; 9 ICNs),

and cerebellar (CB; 3 ICNs) networks. Detailed information regarding

activation spatial maps of these ICNs are provided in Table S2.

2.4 | Brain networks construction

2.4.1 | Structural brain networks

We defined the 47 ICNs as nodes in the white matter network. The spa-

tial maps of these ICNs in the MNI space were transformed into the

native DWI space of each participant. Specifically, the individual FA

image in the native space was first co-registered to its b0 image using a

linear transformation, and then the b0 image was nonlinearly registered

to the ICBM152 template. Based on the resultant transformations in

these two steps, an inverse warping transformation from the MNI space

to the native DWI space can be obtained. To reconstruct the edges in

the white matter network, we tracked the white matter fibers between

pairs of ICNs using the deterministic tractography, which has been shown

to be a suitable method for reconstructing the connectome (Sarwar,

Ramamohanarao, & Zalesky, 2019). In particular, we chose this metric as

a measure of the strength of SC since it has been widely used to quantify

the anatomical rich-club organization in previous studies (Li et al., 2016;

Liu et al., 2021; van den Heuvel et al., 2013; Zhao et al., 2020), which

makes our findings be comparable to these studies. Deterministic

tractography was performed in the native space for each participant using

the fiber assessment by continuous tracking (FACT) algorithm (Mori,

Crain, Chacko, & Van Zijl, 1999). Here, fiber tracking was terminated

when the angle between two consecutive orientations was >45� or when

the FA value was <0.2. Given that the outcome of tractography is

affected by the initial position of the seed points within the voxel,

100 seeds were randomly selected within each voxel to avoid biases from

initial seed positioning. Resultant whole-brain tracts provided the edges

for building the white matter network. SC was weighted as the number

of deterministic fiber streamlines (FN) connecting each pair of nodes. To

further assess the reproducibility of our findings, we have also taken

average FA of the streamlines, streamline volume density (SVD; obtained

by dividing the FN by the average cortical volume of the connected

regions and corrected for potential effects of differences in cortical vol-

ume), streamline length density (SLD; obtained by dividing the FN by the

mean length of streamlines and compensated for the bias toward longer

fibers during streamline reconstruction), and the product of FN and aver-

age FA (FA � FN) as weight of SC.

2.4.2 | Dynamic functional brain networks

The dynamic functional brain networks were estimated using a sliding

window approach and a clustering analysis (Allen et al., 2014). A

tapered window was used to divide the time courses of ICNs into

169 windows with one TR increment-step across the entire scan for

each participant. Of note, here the window length of 22 TRs was

selected, which has been demonstrated to provide a good trade-off

between the quality of the correlation matrix estimation and the abil-

ity of to detect functional dynamics (Allen et al., 2014). The covari-

ance matrix with 47 � 47 size within each window was calculated to

construct functional brain networks (Smith et al., 2011), wherein each

ICN was defined as node and the correlation between two ICNs was

defined as an edge. The resulting 169 matrices for each participant

represent the dynamic changes of functional brain networks over

time. Subsequently, a k-means clustering analysis was conducted on

the dynamic FC matrices of all participants to estimate reoccurring

functional network connectivity states that represent the transient

patterns of FC over time. We categorized these matrices into five dis-

tinct clusters based on the similarity of L1 distance between matrices

and cluster centroids. The optimal number of clusters was estimated

using the elbow criterion, which is defined as the ratio of within clus-

ter distance to between-cluster distance, and each cluster represented

a different dynamic state (Damaraju et al., 2014). To verify the repro-

ducibility of the findings across different sliding window sizes and

number of clusters, we also constructed the dynamic functional brain

networks and tested group differences in the window sizes of 18–26

TRs (36–52 s) and the number of clusters as 4 and 6.

2.5 | Graph theoretical metrics

2.5.1 | Anatomical rich-club organization

We identified the rich-club organization of the structural brain net-

works using the approach as described in van den Heuvel et al. (2012).

Briefly, the weighted rich-club coefficient φw kð Þ was computed as the

ratio between the sum of the weights of the edges' subset with

degree > k and the sum of the weights of all the connections of the

whole network. The normalized rich-club coefficient φnorm kð Þ was

defined as the ratio of φw kð Þ in the structural brain network and the

mean φrandom kð Þ across 1000 random networks. According to the

φnorm kð Þ for a given k, rich-club nodes and local nodes were identified

for each participant, and the edges associated with these nodes were

further categorized into the rich club, feeder, and local edges, rep-

resenting the connections linking rich-club nodes, linking rich-club

nodes and nonrich-club nodes, and linking nonrich-club nodes, respec-

tively. Of note, rich-club nodes were defined on the basis of the

group-averaged structural network, which was computed by selecting

the connections that were present in at least 75% of all participants.

2.5.2 | Dynamical functional network efficiency

To characterize the parallel information transfer in the functional brain

networks, we evaluated the network efficiency (defined as inversely

proportional to the harmonic mean of the shortest distance between

all possible pairs of nodes) for each participant and each dynamic

state, both globally (global efficiency) and locally (local efficiency). The

network efficiency was calculated at a sparsity threshold S (the ratio

of the number of actual edges to the maximum possible number of
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edges in a network). Here, the threshold range of sparsity was identi-

fied as 0.1 to 0.35 in 0.01 increments. We applied an area under the

curve (AUC) approach to avoid the specific selection of a threshold as

suggested by previous studies (Tu et al., 2019; Yu et al., 2015). Finally,

the AUC was calculated within the defined threshold range for each

measure of network efficiency.

2.6 | SC–FC coupling

The level of SC–FC coupling was measured as the Pearson's correlation

between the strength of the structural connections and their functional

counterparts in each dynamic FC state. Of note, the fiber strengths

reconstructed by the streamline tractography are exponentially distrib-

uted and spanned several orders of magnitude, yet interregional physio-

logical efficacies would not span such a large range (Honey et al., 2009).

Thus, following previous studies (Collin, Scholtens, Kahn, Hillegers, & van

den Heuvel, 2017; van den Heuvel et al., 2013; Zhao et al., 2020), these

correlations were constrained by the edges with nonzero values in the

structural brain networks, which were rescaled to Gaussian distributions

before coupling analysis. The SC–FC coupling analysis was performed for

the three categories of connections (i.e., rich club, feeder, and local edges)

separately, resulting in different types of SC–FC coupling matrices for

each of the brain networks.

2.7 | Statistical analysis

Group differences in age and gender were explored using a two-sample

t test and a chi-square test, respectively. Differences in rich-club organiza-

tion measures and dynamic network efficiency between patients and con-

trols were examined using a Wilcoxon rank test. In addition, the

Spearman's correlation analysis was conducted to examine the relationships

between altered brain measures and clinical measures (i.e., age at seizure

onset, disease duration, presence of generalized tonic–clonic seizure, and

NHS3 score) in patients, controlling for age, gender, and mean FD. All sta-

tistical analyses were performed by SPSS 24.0 (IBM Corporation, Armonk,

NY). Statistical significance was established at p < .05 with false discovery

rate (FDR) correction conducted for each brain measure separately.

2.8 | Data availability

The data that support the findings of this study are available from the

corresponding author (Zhe Zhang) upon reasonable request.

3 | RESULTS

3.1 | Anatomical rich-club organization

No significant group differences in the structural network density

(Z=�.215, p = .728) and overall SC strength (Z=�1.192, p = .255) were

found. Relative to controls, patients had a lower rich-club coefficient

φnorm kð Þ for degree k ranging from 10 to 13 (Z = �2.923, p = .006;

Figure 3a). Figure 3b shows the rich-club regions in the structural brain

network (averaged over participants) for degree k>11, including bilateral

middle temporal gyrus, precentral gyrus, superior parietal lobule, insula,

inferior parietal lobule, and right inferior frontal gyrus. We further investi-

gated the group differences in the strength of three connection catego-

ries and found that the density of rich-club edges was significantly

decreased in patients when compared with controls (Z = �3.100,

p = .003, FDR-corrected; Figure 3c), suggesting that anatomical rich-club

connectivity is selectively affected in patients with JME. These findings

were validated in other degrees of rich-club examination (k = 10–13).

Examining other definitions of SC weight, such as average FA, SVD, SLD,

and FA�FN, showed similar results (see details in Figure S1).

3.2 | Dynamic SC–FC coupling

The visualized connectivity patterns (centroids of clusters) of five

dynamic FC states across all participants are shown in Figure 4a. We

first investigated the FC counterparts of structural connection

F IGURE 3 Rich-club organization in the structural brain network. (a) The average φnorm kð Þ is plotted against the degree (k) for both healthy
controls (HCs) and patients with juvenile myoclonic epilepsy (JME). (b) Averaged structural connectivity network for all participants. Rich-club
regions (red) were identified by setting the threshold as degree >11. (c) Box charts showing mean (SD) density values of rich club, feeder, and local
edges per participant group. *p< .05, **p< .01, FDR-corrected
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categories in each dynamic state and compared them between groups.

As shown in Figure 4b, patients exhibited a significant decrease in the

strength of FC counterpart of rich-club edges in State 5 (Z = �3.102,

p = .003, FDR-corrected), as well as in the strength of FC counter-

parts of feeder and local edges in both State 1 (feeder edges

Z = �2.612, p = .010; local edges Z = �2.484, p = .013, FDR-

corrected) and State 5 (feeder edges Z = �2.176, p = .021; local

edges Z = �2.871, p = .008, FDR-corrected). State 1 showed a pre-

dominance of within-RSN connections whereas State 5 exhibited

strongly positive couplings between the SM and CC. We then

explored the SC–FC coupling of every connection category in each

state and observed a significant group difference. Specifically, for

patients, the level of SC–FC coupling of feeder edges was significantly

decreased in both State 1 (Z = �2.415, p = .016, FDR-corrected) and

State 5 (Z = �2.792, p = .009, FDR-corrected; Figure 4c). These find-

ings were independent of different settings of sliding window

(Figures S2 and S3) and clusters (Figures S4, S5), indicating JME-

related state-specific disruptions of SC–FC coupling in feeder edges.

3.3 | Relationship between SC–FC coupling and
functional network efficiency

To investigate how structure–function coupling supports information

transfer in the functional brain networks, we evaluated dynamic net-

work efficiency and correlated it with the SC–FC coupling of every

connection category in each state. We observed that the patients not

only showed a lower global efficiency in State 1 (Z = �2.866,

F IGURE 4 State-specific functional connectivity density and structural connectivity and functional connectivity (SC–FC) coupling of rich-club
organization measures. (a) Five discrete dynamic functional connectivity patterns across all groups. (b) Box charts showing mean (SD) density
values of FC counterparts of rich club, feeder, and local edges per participant group for each state. (c) Box charts showing mean (SD) level values
of SC–FC coupling of rich club, feeder, and local edges per participant group for each state. JME, juvenile myoclonic epilepsy; HC, healthy
controls. *p < .05, **p < .01, FDR-corrected
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p = .008, FDR-corrected; Figure 5a) but also exhibited a lower local

efficiency both in State 1 (Z = �2.901, p = .007, FDR-corrected) and

State 5 (Z = �2.183, p = .0201, FDR-corrected; Figure 5b). Further

observation revealed that the SC–FC coupling of rich-club edges was

both significantly correlated with the global efficiency (r = �.45,

p = .005, FDR-corrected; Figure 5c) and local efficiency (r = �.44,

p = .006, FDR-corrected; Figure 5d) in State 1 in healthy controls,

while these relationships were not present in patients. These findings

suggest that the constraint of SC–FC coupling to functional network

efficiency in specific dynamic state is relaxed in JME.

3.4 | Clinical correlates

We further test whether brain network measures with significant

group differences are correlated with clinical variables. As shown in

Figure 6, we found that the SC–FC coupling of feeder edges in State

5 was negatively correlated with the NHS3 scores in patients

(r = �.47, p = .005, FDR-corrected). This means that the lower level

of SC–FC coupling in State 5 is associated with the greater disease

severity. In addition, we did not find any significant associations

between other clinical variables (e.g., age at seizure onset, disease

duration, and presence of generalized tonic–clonic seizure) and aber-

rant SC–FC coupling (all tests p > .05, FDR-corrected).

4 | DISCUSSION

We performed a combination analysis of SC and dynamic FC, for the

first time, to examine the abnormalities in the rich-club organization

and its dynamic SC–FC coupling in treatment-naïve newly diagnosed

JME. Beyond previous studies reporting altered rich-club organization

and structure–function coupling in generalized epilepsy, we not only

found significant rich-club organization deficits but also state-specific

F IGURE 5 Dynamic network efficiency and its association with structural connectivity and functional connectivity (SC–FC) coupling. (a) Box
charts showing mean (SD) values of global efficiency per participant group for each state. (b) Box charts showing mean (SD) values of local
efficiency per participant group for each state. (c) Scatter plot showing the association between global efficiency and SC–FC coupling of rich club,
feeder, and local edges in patients with juvenile myoclonic epilepsy (JME) and healthy controls (HCs) for each state. (d) Scatter plot showing the
association between local efficiency and SC–FC coupling of rich club, feeder, and local edges in patients with JME and HCs for each state.
*p < .05, **p < .01, FDR-corrected
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SC–FC coupling alterations in patients with JME. These results sug-

gest the rich-club disorganization and its disrupted role in dynamic

structure–function coupling for patients with JME at the early phase

of the disease.

Patients with JME were found to exhibit weaker strength in ana-

tomical rich-club edges than healthy controls. Studies examining

structural brain network abnormalities in JME have provided evidence

of white matter fiber changes in the corpus callosum, longitudinal fas-

ciculus, and thalamic radiation (Ekmekci, Bulut, Gumustas, Yildirim, &

Kustepe, 2016; Lee & Park, 2019; O'Muircheartaigh et al., 2012;

Vollmar et al., 2012), and these track pathways often pass through the

rich-club hubs we identified. It has been suggested that the connec-

tions among rich-club hubs form a central high-cost, high-capacity

backbone for global brain communication (van den Heuvel

et al., 2012). Thus, the SC reductions we observed may suggest a

selective influence of the key pathways within this concentrated

backbone rather than an equal effect of all connections among brain

regions in JME. More importantly, we examined the impairment of

rich-club organization in a cohort of treatment-naïve newly diagnosed

patients, which reduced the potential influences of medication and

chronic disease on our findings. Contemporary theories have

suggested that JME is likely to be a neurodevelopmental condition

(Wandschneider et al., 2019). Indeed, the myelination in highly con-

nected fronto-parietal hubs has been demonstrated to continue post-

natally until the third decade of life (Silbereis, Pochareddy, Zhu, Li, &

Sestan, 2016), which overlaps with the frequent period of JME onset.

Therefore, our current study suggests that atypical myelination in

microstructure content may transform into changes in large-scale

whiter matter connections among rich-club hubs which, in turn, lead

to aberrant neurodevelopment of JME patient.

Studies on resting-state fMRI data have frequently revealed

dynamic FC changes in patients with generalized epilepsy, ranging

from individual connectivity circuit to network topologic organization

(Liao et al., 2014; F. Liu et al., 2017; Zhang et al., 2018). Intriguingly,

our results demonstrated significant group differences in FC

counterparts of structural connection categories in two distinct

dynamic states including State 1 and State 5. As noted above, State

1 was characterized by the predominance of within-RSN connections,

representing a functional segregation state. Abnormal FC within multi-

ple RSNs, such as the sensorimotor, basal ganglia, executive control,

and default mode networks, has been identified in previous studies of

JME (Dong et al., 2016; Gleichgerrcht, Kocher, & Bonilha, 2015; Lee &

Park, 2019; O'Muircheartaigh et al., 2012; Zhong et al., 2018). The

reduced FC in State 1 demonstrated a wide RSNs dysfunction that

may lead to various cognitive impairments in working memory, atten-

tion, and self-referential processing in patients with JME. Aside from

dysconnectivity within RSNs, abnormal functional interaction

between the insula (a key node of the CC) and motor system in

patients with JME were also reported (Jiang et al., 2016; Paulus

et al., 2015). Consequently, our lower FC in State 5, which had stron-

ger positive connectivity between SM and CC, may suggest declined

ability to integrate neural information between motor and cognitive

control communities in JME. Furthermore, we observed that the SC–

FC coupling of feeder edges in patients was decreased in both of the

two abovementioned states. It is believed that the SC–FC coupling

plays a critical role for developing higher-order executive functions

such as working memory, mental flexibility, and inhibitory control

(Misic et al., 2016; Vazquez-Rodriguez et al., 2019). Previous studies

linking structural and static functional connectivity networks have

indicated that people with epilepsy had lower SC–FC coupling both in

the individual connection level and the whole brain level (Chiang,

Stern, Engel Jr., & Haneef, 2015; Zhang et al., 2011). The present

study extends current research to temporal dynamic domain and fur-

ther suggests that attenuated structural support for functional com-

munication may be dominated by distinct dynamic states, which in

turn leads to different cognitive deficits in patients. Also, previous

studies have reported that the SC–FC coupling is continuously

remodeled with age in childhood and adolescence (Baum et al., 2020;

Osmanlioglu et al., 2019), and this neurodevelopmental trajectory

seems to be altered by various neuropsychiatric disorders (Collin

F IGURE 6 Clinical association analysis. (a) Matrix representation of feeder edges in group-averaged structural connectivity (SC) and
functional connectivity (FC) matrices. (b) Scatter plot showing the association between SC–FC coupling of feeder edges in State 5 and the
National Hospital Seizure Severity Scale (NHS3) score in patients with juvenile myoclonic epilepsy (JME)
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et al., 2017; Straathof, Sinke, Dijkhuizen, & Otte, 2019). Thus, our

findings of state-specific coupling reductions may further suggest an

abnormal reorganization in functional dynamics of structural topologi-

cal properties during brain development, which may be prominently

associated with failures of executive function observed in people with

JME. More importantly, we found that the lower level of SC–FC cou-

pling in State 5 was linked to greater disease severity. This finding is

consistent with previous observations of associations between SC–FC

decoupling and duration of epilepsy in patients (Chiang et al., 2015;

Zhang et al., 2011), indicating that the early identified abnormalities in

structure–function relationship may be implicated in the progress of

the disease, and can be an indication of disrupted developmental pro-

cesses in JME.

One important question concerns how structure–function cou-

pling is related to the information transfer in dynamic functional net-

works for patients with JME. Extending the findings of time-invariant

FC studies in generalized epilepsy (Liao et al., 2013; Pegg, Taylor, Kel-

ler, & Mohanraj, 2020; Pegg, Taylor, Laiou, Richardson, &

Mohanraj, 2021), our patients showed lower global and local efficien-

cies in two dynamic connectivity patterns (i.e., State 1 and State 5),

suggesting an inefficient brain information transfer in JME. We

further observed the relationships between SC–FC coupling and func-

tional network efficiency. Intriguingly, the SC–FC coupling of rich-club

edges showed negative correlations with global and local efficiencies

in State 1 for healthy controls, but these relationships were not signif-

icant for the patients, suggesting that the efficiency of brain informa-

tion transfer in JME is no longer tethered by anatomical constraints

on functional communication. Tightly coupled structure and function

of hub regions have been demonstrated to support efficient commu-

nication among strongly interconnected association areas within seg-

regated RSNs (Baum et al., 2020). At the same time, high SC–FC

coupling in the key hubs could reduce competitive interference

between different RSNs, allowing for the suppression of irrelevant

cognitive activity while processing target brain information

(Hampson, Driesen, Roth, Gore, & Constable, 2010). Therefore, the

untethered relationships between SC–FC coupling and functional

network efficiency in State 1 may suggest a reduced functional spe-

cialization of neural networks in patients with JME, paralleled by an

inefficient functional flexibility and dynamic recruitment to balance

various cognitive activities that are related to different RSNs, pro-

viding new evidence for the aberrant brain networks in this

disease.

Our study has some limitations that should be noted. First, accu-

rately reconstructing cortico-cortical white matter pathways from dif-

fusion MRI remains challenging. In this study, we adopt a

computationally inexpensive deterministic tractography to construct

structural networks (Mori et al., 1999). It is well known that DTI has

difficulty in detecting crossing fiber bundles, which may hinder the

tracking algorithm from correctly tracing fiber streamlines (Jones,

Knsche, & Turner, 2013), resulting in an underrepresentation of the

number of connections of the structural network with reduced

connectome sensitivity. Therefore, it would be important to see

future attempts utilizing probabilistic tractography which is

advantageous in overcoming the fiber crossing problem to reconstruct

white matter fiber pathways (Behrens, Johansen Berg, Jbabdi,

Rushworth, & Woolricha, 2007). Second, epileptic transients have

been suggested to influence resting-state functional connectivity

(Bettus et al., 2011). Because it is difficult for patients to continue not

to move their head, we did not record EEG data during MRI scanning

in this study. It would be necessary to examine the effects of interictal

epileptic discharges on SC–FC coupling in the future simultaneous

EEG-fMRI study. Third, we mainly focused on the connections with

nonzero structural connectivity when analyzing SC–FC coupling in

our study, ignoring to consider the associations between FC and indi-

rect fiber pathway. Previous studies have suggested that a strong FC

could exist between regions with indirect SC (Honey et al., 2009).

Future work should be done to assess the communicability for each

structural network connection, which could capture the communica-

tion capacity through both direct and indirect SC between each pair

of brain regions.

5 | CONCLUSIONS

Our study described the alterations of anatomical rich-club organiza-

tion and abnormalities of dynamic SC–FC coupling in treatment-naïve

newly diagnosed JME. SC differences in the patients versus healthy

controls were in particular shown with connections among rich-club

hubs. Moreover, the reduced SC–FC coupling of feeder edges in a

strong SM-CC interaction state could reflect disease severity of

patients JME with. Additionally, the global and local efficiencies of

dynamic functional brain networks were decreased in patients,

accompanied with a relaxed relationships between SC–FC coupling

and network efficiency in a functional segregated state. Overall, these

findings demonstrate a significant disruption of rich-club organization

and altered role in dynamic structure–function coupling at the early

stages of JME, which may contribute to the cognitive deficits such as

impaired executive function in patients during development, advanc-

ing our understanding of the neurobiology mechanisms for this

disorder.
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