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Abstract: Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne
bunyavirus that causes severe disease in humans with case fatality rates of approximately 30%.
There are few treatment options for SFTSV infection. SFTSV RNA synthesis is conducted using a
virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral
propagation. This complex and its activities are, therefore, potential antiviral targets. A library of
small molecule compounds was processed using a high-throughput screening (HTS) based on an
SFTSV minigenome assay (MGA) in a 96-well microplate format to identify potential lead inhibitors
of SFTSV RNA synthesis. The assay confirmed inhibitory activities of previously reported SFTSV
inhibitors, favipiravir and ribavirin. A small-scale screening using MGA identified four candidate
inhibitors that inhibited SFTSV minigenome activity by more than 80% while exhibiting less than 20%
cell cytotoxicity with selectivity index (SI) values of more than 100. These included mycophenolate
mofetil, methotrexate, clofarabine, and bleomycin. Overall, these data demonstrate that the SFTSV
MGA is useful for anti-SFTSV drug development research.

Keywords: SFTSV; minigenome assay; antivirals; antiviral screening; favipiravir; ribavirin

1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV), also called Dabie
bandavirus, belongs to the genus Bandavirus in the family Phenuiviridae. It is an emerging
tick-borne pathogen that is prevalent in China [1,2], South Korea [3], and Japan [4]. Major
clinical symptoms of SFTSV infection include fever, gastrointestinal symptoms, hemor-
rhage, and consciousness deterioration. Total blood cell tests reveal thrombocytopenia
and leukopenia [5]. Favipiravir (an antiviral drug) was reported as a potential drug for
treating animals infected with SFTSV [6–8]. A clinical study to evaluate favipiravir’s ef-
ficacy in treating human patients with SFTS has been initiated in Japan [9]. SFTSV has
three genomic segments of negative-sense or ambisense RNA, designated L, M, and S. The

Viruses 2021, 13, 1061. https://doi.org/10.3390/v13061061 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-2066-1979
https://orcid.org/0000-0001-5458-7298
https://orcid.org/0000-0002-6309-277X
https://doi.org/10.3390/v13061061
https://doi.org/10.3390/v13061061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13061061
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13061061?type=check_update&version=2


Viruses 2021, 13, 1061 2 of 13

L-RNA segment encodes the viral RNA-dependent RNA polymerase (RdRp), the M-RNA
segment encodes the glycoprotein precursor (GPC), and the S-RNA segment encodes the
nucleoprotein (NP) and the nonstructural protein (NSs) [10].

Several approaches have screened for SFTSV replication inhibitors, including high-
content screening to detect viral antigen and the use of recombinant SFTSVs expressing GFP
or luciferase. However, any use of live SFTSV requires biosafety level (BSL) 3 (BSL3) con-
tainment, limiting opportunities for antiviral drug development. An alternative approach
is developing high-throughput screening (HTS) assays based on critical viral functions that
do not involve infectious materials.

SFTSV transcription and genome replication require two viral proteins, NP and RdRp.
Because this RNA polymerase complex is essential for viral propagation, it is an attractive
target for inhibitor development. A functional SFTSV RNA polymerase complex is recon-
stituted by transfecting the two components into mammalian cells. Its activity is measured
through the coexpression of a model viral RNA that encodes a reporter gene flanked by the
appropriate virus-derived cis-acting regulatory sequences [11,12]. Such systems are used
to identify SFTSV RNA synthesis inhibitors. Chemical compound libraries are screened in
BSL1 conditions.

This study optimized an SFTSV minigenome-based HTS assay in a 96-well format to
identify small-molecule inhibitors of the SFTSV RNA synthesis machinery. A pilot screen-
ing of a bioactive library with 1594 compounds identified four compounds that inhibit
SFTSV minigenome activity. The inhibitory chemical scaffolds included mycophenolate
mofetil (MPM), methotrexate hydrate (MTX), clofarabine, and bleomycin (BLM). Overall,
it was demonstrated that the SFTSV minigenome assay (MGA) is useful for anti-SFTSV
drug development research and we identified the benzoquinoline series as broad-spectrum
antivirals for SFTSV.

2. Materials and Methods
2.1. Cells and Drug Compounds

Human embryonic kidney HEK293T, human hepatocellular carcinoma Huh7, African
green monkey kidney Vero, and hamster kidney BHK cells were cultured in Dulbecco’s
modified Eagle medium (DMEM; Nacalai tesque, Kyoto, Japan) supplemented with
10% fetal bovine serum (FBS; Invitrogen, Waltham, MA, USA), 100 µg/mL of strepto-
mycin, and 100 units of penicillin (Nacalai tesque). Favipiravir (6-fluoro-3-hydroxy-2-
pyrazinecarboxamide) and ribavirin (1-b-D-ribofuranosyl-1,2,4-triazole-3-carboxamide)
were obtained from Fujifilm Toyama Chemical Co. Ltd. (Toyama, Japan) and Fujifilm
Wako Pure Chemical (Osaka, Japan), respectively. The compound libraries, namely FDA-
approved Drug Library and G protein-coupled receptor (GPCR) Compound Library, were
purchased from TargetMol (Boston, MA, USA). MMF, MTX, clofarabine, and bleomycin
sulfate were purchased from Tokyo Chemical Industry (Tokyo, Japan). Thonzonium bro-
mide, everolimus, and niclosamide were purchased from MedChemExpress (Monmouth
Junction, NJ, USA).

2.2. Plasmid Construction

The cDNAs of the SFTSV SPL005A strain (GenBank: AB817990) were obtained by re-
verse transcription-PCR (RT-PCR) using a High Pure Viral RNA kit (Roche Applied Science,
Upper Bavaria, Germany), SuperScript IV Reverse Transcriptase (Thermo Fisher Scien-
tific, Waltham, MA, USA), and PrimeSTAR HS DNA Polymerase with GC Buffer (Takara,
Shiga, Japan). We constructed an M segment-based minigenome system consisting of the
expression of viral NP and RdRp proteins and a minigenome plasmid. The minigenome
plasmid carried an enhanced green fluorescent protein (eGFP) with a HiBiT (HBT) peptide
tag as a reporter gene (eGFPHBT). HBT is an 11-amino-acid peptide tag fused to the N or
C terminus of the target protein or inserted into an accessible location within the protein
structure. The amount of HBT-tagged protein expressed in a cell is determined by adding
a lytic detection reagent containing the substrate, furimazine and Large BiT (LgBiT), the
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large subunit used in NanoLuc Binary Technology (NanoBiT). HBT binds tightly to LgBiT
(KD = 0.7 nM), forming a complex in the cell lysate that generates a bright, luminescent
enzyme. The amount of luminescence is proportional to the amount of HBT-tagged protein
in the cell lysate over seven orders of magnitude, with a glow-type luminescent signal
stable for hours. This reporter gene was flanked by the viral untranslated regions (UTRs) in
the viral genomic sense under the control of the human RNA polymerase I (pol I) promoter,
and the human pol I terminator sequence. The viral M segment of SFTSV containing viral
3′ (leader) and 5′ (trailer) noncoding regions were amplified and cloned into the pPolIV
plasmid vector, designated pPolIV-SFTSV-M. Next, all internal coding sequences were
replaced with the coding sequence for an eGFP that is C-terminally tagged with HBT using
NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, Ipswich, MA, USA),
designated pPolIV-SFTSV-M-eGFPHBT. NP, RdRp, and NSs open reading frames were
cloned into the expression vector, pKS336, under the human elongation factor-1α (HEF-1α)
gene promoter [13]. The resulting plasmids were designated pKS-SFTSV-NP, pKS-SFTSV-L,
and pKS-SFTSV-NSs for NP, RdRp, and NSs, respectively.

2.3. Minigenome Assay (MGA) and Screening Assay

To transfect the 293T cells in 12-well tissue culture plates, X-tremeGENE9 DNA Trans-
fection Reagent (Roche Applied Science, Germany) was used following the manufacturer’s
instructions. Each well was transfected with 200 ng pKS-SFTSV-NP, 100 ng pKS-SFTSV-L,
and 200 ng pPolIV-SFTSV-M-eGFPHBT. The plasmids for transfection in 10 cm dishes were
2 µg pKS-SFTSV-NP, 1 µg pKS-SFTSV-L, and 2 µg pPolIV-SFTSV-M-eGFPHBT. One hour
post transfection, cells were trypsinized and seeded in a 96-well tissue culture plate. The
minigenome activity was assayed by measuring the luciferase activity at the indicated time
points using the Nano-Glo HiBiT Lytic Detection System (Promega, Madison, WI, USA)
following the manufacturer’s instructions. The luciferase signal was read using a GloMax
Navigator Microplate Luminometer (Promega, Madison, WI, USA). The 50% inhibitory
concentration (IC50) values were calculated using GraphPad Prism 7 (GraphPad Software,
La Jolla, CA, USA) based on a four-parameter, nonlinear regression analysis. The test
drug’s cytotoxicity was measured as described previously [6]. 293T cells were cultured for
2 d in the drug’s presence at designated concentrations with no plasmids. According to
the manufacturer’s protocol, cell viability was measured using the RealTime Glo MT Cell
Viability Assay.

3. Results
3.1. Development of a Pol I-Driven Minigenome System for SFTSV

We constructed an M segment-based SFTSV minigenome containing 3′ (leader) and 5′

(trailer) noncoding sequences. The internal coding sequence was replaced with eGFPHBT
coding sequence (Figure 1). Protein expression plasmids under the control of the HEF-1α
gene promoter allowed in trans expression of SFTSV, NP, and RdRp, which are the mini-
mum requirements to initiate SFTSV replication and transcription [11]. The minigenome
segment was cloned into a pol I expression plasmid in the negative orientation, which
means that it must be first replicated by the NP plus RdRp replication complex before
eGFP-HBT mRNA transcription can occur. In the presence of the pol I promoter, expressed
NP and RdRp proteins can encapsidate the negative-sense reporter genome analog to gen-
erate artificial RNPs and can use viral UTRs as promoters of replication and transcription
to drive reporter gene expression.

First, to evaluate the function of the minigenome constructs, we transfected 293T cells
in a 12-well plate with a pol I-driven eGFP-HBT minigenome construct in the presence or
absence of the necessary helper plasmids encoding NP and L. As shown in Figure 2A, no
eGFP autofluorescence was seen with the minigenome in the absence of helper plasmids.
However, in the presence of helper plasmids, cells exhibited robust eGFP autofluorescence
48 h after transfection. Cells transfected with the functional minigenome, but lacking the
NP- or L-expressing plasmid, showed no eGFP signal. Next, we examined HBT luciferase
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activities in transfected 293T cells in a 12-well plate. As shown in Figure 2B, cells transfected
with the functional minigenome, but lacking the NP- or L-expressing plasmid, showed a
background activity comparable to that observed in mock-transfected 293T cells. However,
in the presence of helper plasmids, cells exhibited more than 4000-fold minigenome activity
than in cells transfected with only minigenome plasmid 48 h after transfection. These data
showed that the expression plasmids of the viral N and L genes and minigenome systems
were functional.

Figure 1. Schematic representation of cRNA-oriented pol I-driven minigenome. The reporter
minigenome was composed of a reporter gene, eGFP, C-terminally tagged with HBT, flanked by the
3′ (leader) and 5′ (trailer) noncoding regions of SFTSV. They were flanked by hammerhead ribozyme
(HamRz) sequence at the N-terminus. These transcription cassettes were then cloned between the
transcriptional start and stop signals of the human RNA pol I.

HBT luciferase activity in 293T cells was assessed at several time points post-transfection
(Figure 3A). There was little activity 2 h post-transfection, but it increased to more than
4000-fold induction at 24 h post-transfection and peaked at 72 h post-transfection. We
therefore chose 32 h post-transfection as the end-point of our SFTSV MGA due to the
robust activity.

We next examined if the pol I minigenome system could be used in a broader range of
cell lines, particularly those that are more difficult to transfect. Three cell lines from different
species in the 12-well plate, including well-differentiated hepatocellular carcinoma-derived
Huh7, African green monkey kidney-derived Vero, and hamster kidney-derived BHK,
were transfected with the pol I-driven HBT luciferase minigenome components. At 32 h
post-transfection, cells were lysed, and luciferase activity was measured (Figure 3B). The
pol I minigenome systems worked well in Huh7 cells in a range approximately 3800-fold
over a negative control. In contrast, the HBT luciferase activity was induced in a range
of approximately 300-fold (Vero cells) to 30-fold (BHK cells) compared with the negative
control. Since BHK cells are derived from a different species that is not human, pol I
promoter hardly works, so it seems that the luciferase activity is lower than that of 293T
and Huh7 cells. Therefore, we chose 293T cells for our SFTSV MGA because of their
robust activity.
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Figure 2. Reporter gene expression from cRNA-oriented pol I-driven minigenome. 293T cells in
a 12-well plate were transfected, each with 300 ng of pPolIV-SFTSV-M-eGFPHBT (MG), 300 ng of
pKS-SFTSV-NP, and 150 ng of pKS-SFTSV-L plasmid per well. (A) 293T cells were transfected with
the MG (a), MG and pKS-SFTSV-NP (b), MG and pKS-SFTSV-L (c), or MG, pKS-SFTSV-NP, and
pKS-SFTSV-L (d) and analyzed 48 h post-transfection for expression of eGFP-HBT by fluorescence
microscopy. (B) 293T cells were either transfected with empty vector (mock-transfection) or trans-
fected with the MG, MG and pKS-SFTSV-NP (MG + NP), MG and pKS-SFTSV-L (MG + L), or MG,
pKS-SFTSV-NP, and pKS-SFTSV-L (MG + NP + L). The minigenome activity of eGFP-HBT expres-
sion was assayed by measuring the luciferase activity 32 h post-transfection using the Nano-Glo
HiBiT Lytic Detection System. The results shown are for three independent assays, with error bars
representing standard deviations.
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Figure 3. 293T cells in a 12-well plate were transfected with 300 ng of MG plasmid along with the
necessary supporting plasmids (300 ng of NP and 1500 ng of pKS-SFTSV-L) per well. (A) Time
course of minigenome activity. At each time point post-transfection, luciferase activity was assessed.
(B) Comparison of the minigenome activity in the three cell lines. Huh7, Vero, or BHK cells in
12-well plates were transfected with the indicated plasmids. Empty pKS336 vector was used to
ensure that the total amount of DNA used in each transfection had the same minigenome activity of
eGFP-HBT expression and was assayed by measuring the luciferase activity 32 h post-transfection
using the Nano-Glo HiBiT Lytic Detection System (Promega, Madison, WI). (C) Effect of NSs protein
on minigenome activity. 293T cells were transfected with MG, pKS-SFTSV-NP, and pKS-SFTSV-L,
indicating increasing amounts of pKS-NSs or pKS336. Empty vector pKS336 was used to ensure that
equal amounts of DNA were transfected into each reaction mixture. The minigenome activity was
assayed by measuring the luciferase activity 32 h post-transfection. The minigenome activity was
expressed as the fold induction of normalized luciferase units relative to the background control
(absence of NS-expressing plasmid), corrected as a percentage of the activity observed in the presence
of NP and L proteins for each MG. The results shown are for three independent assays, with error
bars representing standard deviations.
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3.2. Augmentation of Minigenome Activity by NSs

It has been previously reported that Bunyamwera orthobunyavirus (BUNV), RVFV,
and SFTSV (HB29 strain) NSs proteins inhibit the viral polymerase as measured by
MGA [14,15]. To investigate whether the NSs of SFTSV SPL005A strain affect viral poly-
merase, M-segment-based minigenome plasmid (200 ng of pPolIV-SFTSV-M-eGFPHBT)
was transfected into 293T cells in a 12-well plate along with 200 ng pKS-NP, 100 ng pKS-L,
and increasing concentrations of pKS-NSs (up to 500 ng). As seen in Figure 3C, HBT
luciferase activity was significantly increased when approximately 12.8 ng of pKS-NSs
was added. However, HBT luciferase activity was inhibited when more than 32 ng of
pKS-NSs was added. These results suggest that NSs protein coexpression with L and
NP proteins substantially increases minigenome activities, although significant amounts
showed marked inhibition. NSs forms distinct punctate structures in the cytoplasm of
infected or plasmid-transfected cells. The NSs structures have been shown to colocalize
with N protein and are associated with viral RNAs, suggesting that an appropriate amount
of NSs plays a role in the replication of the virus.

3.3. Optimization of SFTSV Minigenome System for a 96-Well Format

We examined when to add inhibitors into the culture medium after transfection of
three plasmids, pPolIV-SFTSV-M-eGFPHBT, pKS-NP, and pKS-L. We tested two small
molecule inhibitors for activity against SFTSV minigenome activity. Two of these com-
pounds, favipiravir and ribavirin, had been previously tested for activity against SFTSV
and thus served as positive controls [6,16]. They have a broad spectrum of antiviral activity
against various RNA viruses [17] and were previously described as SFTSV replication in-
hibitors [6,16]. Several times after transfection of 293T cells in 12-well plates, we trypsinized
and seeded cells in 96-well plates in culture media with or without 640 mM of favipiravir
or ribavirin. Following a 32 h incubation, HBT luciferase activity was assessed. As shown
in Figure 4A, the inhibitory effects of favipiravir and ribavirin were found to be most effec-
tive after 1 h when compared at each time after transfection. Thus, we selected 1 h after
transfection for trypsinizing and seeding cells in culture media with or without inhibitors
after transfection.

To ensure that our minigenome system could be adapted to a high-throughput format,
we first tested the system’s activity in 293T cells in a 96-well format. Three plasmids were
transfected into 293T cells in 10 cm dishes to produce a uniform transfection of many
cells. One hour post-transfection, cells were trypsinized and seeded in a 96-well plate in
culture medium with or without increasing favipiravir or ribavirin concentration. After an
additional 32 h incubation, HBT luciferase activity was assessed. As shown in Figure 4B,
favipiravir and ribavirin inhibited SFTSV minigenome activity by approximately 2.5 log
units at a concentration of 1000 mM. Favipiravir and ribavirin are potent inhibitors of
SFTSV minigenome activity in a 96-well format. Favipiravir and ribavirin did not affect
cell viability in the test range, as measured using the RealTime Glo MT Cell Viability Assay
in parallel.

3.4. A High-Throughput Screen for Small Molecule Inhibitors of SFTSV Replication

Using the optimized conditions for a 96-well format, we screened a library of bioactive
chemicals (1594 compounds) to identify compounds that inhibit SFTSV RNA synthesis.
The optimized conditions included bulk-transfecting 293T cells in 10 cm dishes. The cells
were then replated in 96-well plates in media containing inhibitors 1 h after transfection. A
final concentration of 1% DMSO used in these assays did not affect minigenome activity
(data not shown). We identified 171 compounds (10.7% of the total library) that inhibited
minigenome activity by more than 50%, 22 (1.4% of the total library) of which reduced
minigenome activity by more than 70% at a concentration of 5 µM. We retested them in
triplicate in the minigenome assay and cytotoxicity assays. This identified seven com-
pounds that inhibited the minigenome assay by at least 70% and exhibited less than 20%
cell toxicity. From these, we selected four small molecule inhibitors for further study.
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Figure 4. The SFTSV MG assay for favipiravir or ribavirin. (A) 293T cells were transfected with MG plasmid and the
necessary supporting plasmids (pKS-SFTSV-NP and pKS-SFTSV-L). At each time point post-transfection, 293T cells were
seeded in a 96-well plate in media containing 640 mM of favipiravir or ribavirin. After 32 h of incubation, luciferase activities
were measured. (B) Inhibitory effect of favipiravir and ribavirin on SFTSV MG activity (•) in 293T cells. One hour after
transfection with MG, pKS-SFTSV-NP, and pKS-SFTSV-L plasmids, 293T cells were seeded in a 96-well plate in media
containing various concentrations of favipiravir or ribavirin. After 32 h of incubation, luciferase activities were measured.
MG activity is expressed as the fold induction of normalized luciferase units relative to the background control (absence
of reagents), corrected as a percentage of the activity observed in the presence of NP and L proteins for each MG. Cell
viability (�) was determined in the presence of drugs using the RealTime Glo MT Cell Viability Assay in parallel. A
sigmoidal dose–response curve was fitted to the data using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA).
The results shown are for three independent assays, with error bars representing standard deviations.
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3.5. Validating Hit Compounds Identified in a Primary Screen

To evaluate the reproducibility of the identified hit compounds, seven compounds
that varied in inhibition from 70% to 90% on the screen were chosen for retesting. The
50% inhibitory concentrations (IC50) and 50% cell cytotoxic concentrations (CC50) were
assessed by measuring the reduction of substrate for the compounds in parallel to allow
for the elimination of those that inhibited SFTSV minigenome activity by causing cell
death (Table 1). The selectivity index (SI) of each compound was calculated using the CC50
and IC50 values (Table 1). Of the six compounds retested, we identified four compounds
with IC50 values below their CC50 values, four of which have SI values of more than 500
(Figure 5 and Table 1). Hit compounds, mycophenolate mofetil, clofarabine, bleomycin,
and methotrexate, had SI values of more than 500, suggesting that they inhibit SFTSV MGA
at concentrations independent of their cytotoxic effects. Notably, these compounds did
not reach a CC50 value when assayed at 32 h after addition in our assays. It is possible
that some, such as the protein synthesis inhibitors, would have reached a CC50 value if the
cytotoxicity assay was extended to 48 or 72 h after compound addition.

Figure 5. Inhibitory effect of mycophenolate mofetil, clofarabine, bleomycin, and methotrexate hydrate on SFTSV MG
activity (•) in 293T cells. (A) One hour after transfection with MG, pKS-SFTSV-NP, and pKS-SFTSV-L plasmids, 293T cells
were seeded in a 96-well plate in media containing various concentrations of mycophenolate mofetil (A), clofarabine (B),
bleomycin (C), and methotrexate hydrate (MTX) (D). After 32 h of incubation, luciferase activities were measured. Cell
viability (�) was determined in the presence of drugs using the RealTime Glo MT Cell Viability Assay (Promega, Madison,
WI) in parallel. The minigenome activity is expressed as the fold induction of normalized luciferase units relative to the
background control (absence of reagents), corrected as a percentage of the activity observed in the presence of NP and L
proteins for each MG. A sigmoidal dose–response curve was fitted to the data using GraphPad Prism 7. The results shown
are for three independent assays, with error bars representing standard deviations.
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Table 1. Anti-SFTSV activity and cytotoxicity of six selected drug compounds.

Compound % Inhibition in Screen CC50 (µM) IC50 (nM) SI (CC50/IC50)

Mycophenolate mofetil 72.0 500 580 862
Clofarabine 80.0 >600 580 >1034
Bleomycin 90.9 >300 290 >1034

Methotrexate hydrate 90.4 70 140 500
Thonzonium 83.3 8.6 2000 4.3
Everolimus 75.0 11.3 1000 11.3

4. Discussion

Although some drugs have an inhibitory effect on SFTSV replication in vitro and
in vivo [6], there are currently limited treatment options for SFTSV infection. This study
described the establishment of an RNA polymerase I-based MGA for the recently emerged
SFTSV and the use of this system as a HTS platform for potential antiviral drugs that
interfere with viral transcription and replication processes.

Previously reported minigenome rescue systems for members of the family Phle-
boviridae have been based exclusively on a bacteriophage T7 polymerase-driven reverse
genetics technology that requires the introduction of the exogenous T7 polymerase [10,18].
Although this can be achieved in several ways, including recombinant vaccinia virus infec-
tion and transient expression from plasmid DNA [19–21], this step can limit the system’s
efficiency because of technical difficulties in achieving T7 expression in all cells. In contrast,
pol I is a eukaryotic host cell polymerase which is localized in the nucleoli, transcribing
mainly rRNA genes [22]. Using this enzyme to drive a reverse genetics system provides
a substantial advantage because it alleviates the need to supply the polymerase in trans.
Pol I localization in the nucleus is a potential limitation, especially for its application to
viruses that replicate exclusively in the cytoplasm. However, it was previously employed
successfully for the developing minigenome for several members of Bunyaviridae [23–25],
Arenaviridae [26], and Filoviridae [27], which all replicate in the cytoplasm. Altogether, this
indicates that pol I-driven transcription is a broadly applicable system for minigenome
rescue, even for viruses that do not replicate in the nucleus.

Favipiravir is a pyrazine derivative, and after phosphoribosylation by host cellular
kinases, metabolite favipiravir-RTP (favipiravir ribofuranosyl-5′-triphosphate) inhibits
the activity of the RNA-dependent RNA polymerase of several viruses [17]. Ribavirin
(1-b-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a guanosine analog. It has a broad
spectrum of activity against various RNA viruses through various mechanisms, includ-
ing the reduction of viral RNA-dependent RNA polymerase activity, mutagenesis in the
viral genome, inhibition of RNA capping, reduction of cellular inosine monophosphate
dehydrogenase (IMPDH) activity, and modulation of the host immune response [28].

We identified four drug compounds that inhibited SFTSV replication at low micromo-
lar concentrations, namely clofarabine, MPM, BLM, and MTX. Interestingly, clofarabine,
MPM, and MTX are involved in the cellular nucleotide synthesis pathway. MPM, a prodrug
form of mycophenolic acid (MPA), is an immunosuppressant, a noncompetitive, selective,
and reversible inhibitor of IMPDH. IMPDH controls the rate of guanine monophosphate
synthesis in the de novo pathway of purine synthesis, and is FDA-approved for immuno-
suppression. It has been reported that guanosine depletion by MPA inhibits viral RNA
replication in HCV, chikungunya, and dengue viruses [29–31].

MTX, an FDA-approved folic acid antagonist and potent anti-inflammatory agent,
inhibits dihydrofolate reductase (DHFR). It hinders intracellular folate metabolism and ob-
structs thymine and purine synthesis, prompting the hindrance of tumor development and
cell death initiation through possible genotoxic effects or apoptosis [32]. Clofarabine is an
FDA-approved ribonucleotide reductase (RNR) inhibitor used to treat acute lymphoblastic
leukemia. As a purine nucleoside analog, clofarabine is transported into cells and is phos-
phorylated by host enzymes to the active forms of the drug, which subsequently prevents
the formation of active enzyme. Owing to the necessity of RNR in de novo dNTP synthesis,
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this inhibition reduces endogenous dNTPs, which in turn inhibits DNA synthesis because
of limited substrate availability [33]. BLM is an FDA-approved radiomimetic glycopeptide
antitumor antibiotic produced by the bacterium S. verticillus. Its action mechanism causes
single- and double-strand DNA breaks and initiates cleavage events on RNA and DNA
molecules, interrupting the cell cycle. It has been used as an antineoplastic, especially for
solid tumors [34]. Nucleoside analogs and inhibitors of cellular nucleos(t)ide synthesis
pathways have frequently been identified as antiviral agents. MPA and MTX possess antivi-
ral activity against a broad range of viruses. These reagents generally interfere with cellular
nucleos(t)ide synthesis pathways, resulting in the depletion or imbalance of (d)NTP pools
and activated innate immunity, thereby inducing the expression of interferon-stimulated
genes, through nucleos(t)ide synthesis inhibition [35,36].

These findings could open up new opportunities for anti-SFTSV drug discovery. No-
tably, the benzoquinoline derivatives are novel and have not been reported as antiviral
agents. Our study provides a foundation for the discovery of bioavailable derivatives
for in vivo evaluation and for investigations into the mechanism of action of these antivi-
ral agents.
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