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Abstract

Background: Intron mediated enhancement (IME) is the potential of introns to enhance the expression of its
respective gene. This essential function of introns has been observed in a wide range of species, including fungi,
plants, and animals. However, the mechanisms underlying the enhancement are as of yet poorly understood. The
goal of this study was to identify potential IME-related sequence motifs and genomic features in first introns of
genes in Arabidopsis thaliana.

Results: Based on the rationale that functional sequence motifs are evolutionarily conserved, we exploited the
deep sequencing information available for Arabidopsis thaliana, covering more than one thousand Arabidopsis
accessions, and identified 81 candidate hexamer motifs with increased conservation across all accessions that also
exhibit positional occurrence preferences. Of those, 71 were found associated with increased correlation of gene
expression of genes harboring them, suggesting a cis-regulatory role. Filtering further for effect on gene expression
correlation yielded a set of 16 hexamer motifs, corresponding to five consensus motifs. While all five motifs
represent new motif definitions, two are similar to the two previously reported IME-motifs, whereas three are
altogether novel. Both consensus and hexamer motifs were found associated with higher expression of alleles
harboring them as compared to alleles containing mutated motif variants as found in naturally occurring
Arabidopsis accessions. To identify additional IME-related genomic features, Random Forest models were trained for
the classification of gene expression level based on an array of sequence-related features. The results indicate that
introns contain information with regard to gene expression level and suggest sequence-compositional features as
most informative, while position-related features, thought to be of central importance before, were found with
lower than expected relevance.

Conclusions: Exploiting deep sequencing and broad gene expression information and on a genome-wide scale,
this study confirmed the regulatory role on first-introns, characterized their intra-species conservation, and identified
a set of novel sequence motifs located in first introns of genes in the genome of the plant Arabidopsis thaliana that
may play a role in inducing high and correlated gene expression of the genes harboring them.
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Introduction

Introns, seemingly superfluous intragenic regions, are
found across almost all species, in particular in eukary-
otes [1]. The question as to which functions introns and
intron splicing have has been discussed since their dis-
covery. Their almost universal occurrence seems to sug-
gest that introns play an essential role. Allowing
alternative splicing that leads to an expansion of the pro-
tein repertoire of organisms and thus increased com-
plexity and phenotypic diversity [2] is one of the leading
explanations for the prevalence of introns. Besides alter-
native splicing, mRNA-stability has been linked to in-
trons as splicing was found associated with increased
mRNA half-life [3]. Specifically, splicing can assist in the
3’-end formation of mRNAs by recruiting capping fac-
tors [4]. Furthermore, introns can contain RNA genes,
such as snoRNAs, long non-coding RNAs (IncRNAs),
miRNAs, and small-interfering RNAs (siRNAs) [1].
Those intron-located RNAs can exert regulatory roles
on their host genes [5].

As perhaps one of the most essential functions of in-
trons, the enhancement of gene expression has been re-
ported. Studies have shown that certain introns are able
to enhance the expression of their respective genes by a
significant amount [6, 7]. Interestingly, and in contrast
to regular enhancer elements, these introns have to be
transcribed to trigger this effect [8]. This enhancement,
known as Intron Mediated Enhancement (IME), is even
strong enough to be used as a tool in the repertoire of
molecular biology techniques to boost the expression of
specific target genes, and has been suggested to contrib-
ute to the high expression levels of housekeeping genes
[9]. IME was one of the earliest surmised functions of
introns, when it was discovered in 1987 in maize [10].
Since then, IME has been found in a variety of species,
from plants to vertebrates and nematodes [11, 12]. It has
been reported that IME can act via increased transcrip-
tion rate, increased nuclear export of the transcript, in-
creased transcript stability, and even enhanced
translation efficiency [13, 14]. The mechanisms respon-
sible for these diverse modes of action of introns on the
gene expression are not yet understood. However, a
strong correlation between the proximity of an intron to
the transcription start site (TSS) and its potential to en-
hance expression has been observed, with the vast ma-
jority of reported IME found associated with the first
(5'-most) intron of a gene [15]. Furthermore, both
splicing-dependent and splicing-independent effects
have been reported [6, 9, 16].

Primarily, IME-introns have been identified by experi-
mental evidence [10, 17, 18]. While this is essential for
gaining further insight into IME, the currently known
set may cover only a small portion of all IME introns.
To identify IME introns on a larger scale, bioinformatic
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methods are required. Currently, IMEter is the only
available computational method for IME-intron
detection, which works under the assumption that TSS-
proximal introns are enriched in IME sequence motifs
assumed as words (k-mers of length 5) [19, 20]. IMEter
computes a log-odds score for an intron sequence to
correspond to TSS-proximal and, hence, IME-signal-
bearing introns by scoring the present pentamers relative
to observed average relative frequencies of pentamers in
TSS-proximal vs. TSS-distal introns. This straightfor-
ward approach has yielded promising results. Many of
the previously established IME-introns were assigned
high scores by IMEter [21]. Furthermore, in top scoring
introns, two sequence motifs were detected, which, when
present at high densities, are able to induce IME [17, 21].
These motifs even led to an increase of mRNA levels
when located within exons [9]. However, not all introns,
reported to induce IME, score accordingly with IMEter or
are enriched for the two reported motifs [9, 21]. There-
fore, alternative computational approaches may identify
additional regulatory motifs in introns.

Phylogenetic footprinting, a commonly used strategy
to bioinformatically identify functional genome sequence
motifs, assumes that functional motifs are conserved
across different species. With available sequence and as-
sociated single nucleotide polymorphism (SNP) informa-
tion, this approach can also be applied to intra-species
evolution, as applied, for example, in Arabidopsis thali-
ana [22]. Here, a large set of genome sequences is essen-
tial to include sufficient sequence divergence in order to
achieve a high motif resolution. The 1001-Arabidopsis-
genome-project provides such data that includes a Single
Nucleotide Polymorphism (SNP) set for 1135 fully se-
quenced Arabidopsis thaliana accessions [23]. More-
over, a large compendium of gene expression data
(microarray- and RNA-seq-based) is available, allowing
to test whether introns sharing a particular motif also
share a similar expression pattern as well as available
methylome data, permitting to include epigenetic infor-
mation in the analysis [24]. A previous study succeeded
in identifying novel motifs in promoter regions using the
1001-genome project SNP set and available expression
information [25]. The authors compared sequence con-
servation not only across single motif mapping locations,
but compared all mapping locations of a given motif.
This approach circumvents the problem of the relatively
low SNP density across the Arabidopsis accessions by
determining the degree of conservation of a motif over
all its occurrences in the genome.

The present study builds on the rationale that IME-
motifs are conserved more than expected by chance and
uses a SNP-based approach to identify cis-regulatory
intron-located elements, initially defined as sequence hex-
amers. By adding conservation and location distribution as
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characteristic features associated with IME candidate mo-
tifs, our approach attempts to extend the concepts estab-
lished by IMEter, which relies on candidate motif
occurrence differences in the first vs. other introns alone.
Differential methylation as a potential regulator of IME was
also investigated here. For validation of functional rele-
vance, correlation of gene expression of all genes containing
candidate IME motifs in their first intron was used. In
addition, we tested the effect of mutations on the activity of
candidate IME-motifs by exploiting the naturally occurring
variation in the different Arabidopsis accessions along with
associated RNAseq-based expression information.

To assess the information contents of intronic se-
quences on gene expression and to extract associated in-
formative features, this study also includes a Random
Forest (RF) classification model for the prediction of
mRNA expression levels based on intron sequence infor-
mation. A number of sequence characteristics of the re-
spective first intron, such as intron length, nucleotide
composition, distance to TSS, distance to the translation
start codon, and the IMEter score served as features for
the Random Forest classifier. In addition, folding ener-
getics of intronic RNA, cross-species conservation, and
presence of transposons was considered as well. The
goal was not only to create an accurate model, but also
to extract features that contribute to the prediction ac-
curacy in addition to the more targeted k-mer motif
approach.

We report the identification of 16 candidate IME mo-
tifs, collapsing to five consensus motifs. While all five
motifs constitute new motif definitions, two resemble
previously reported IMEter motifs, and three appear
altogether novel. The RF-models confirm the predictive
potential of introns with regard to the expression level
of their host genes and suggest features associated with
base composition as particularly informative. In sum,
our results shed new light on the possible mode of ac-
tion responsible for IME and may serve as a starting
point for further approaches examining IME in the
future.

Materials and methods

Extraction of intron positions and sequences

Version 10 of the Arabidopsis Information Resource
(TAIR) [26] General Feature Format version 3 (GFF3)
file was used to extract the sequence coordinates of all
mRNA introns within the Arabidopsis thaliana genome
sequence via exon positions to infer intron positions. All
introns shorter than ten base pairs (bp) were excluded.
A FASTA file containing all introns was created by using
bedtools [27] and the complete TAIR1O genome se-
quence as a reference. The intron set was then split into
first, i.e. the promoter-proximal intron set, and the set of
other introns. Introns located in the 5UTR of a gene
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were detected by an overlap between an artificially
length-extended (5bp at either end) intron and 5’'UTR
coordinates.

Extraction of relevant single nucleotide polymorphisms
(SNPs)

SNPs were extracted from the 1001 Arabidopsis genome
project variance calling file (VCF) [23]. All variants that
were positioned in one of the introns were extracted. A
threshold of 50 was set as the minor allele frequency for
SNP positions to be considered and 500 valid (i.e. non-
“N”) alleles called, with alleles counted as haploid counts
(i.e. counts per chromosome). With VCFtools [28], the
resulting VCF file was used to extract all SNP positions.
In total, 2,426,458 SNPs were used, of which 382,016
were located in introns.

Selection of candidate hexamers

Selection of k-mer size

As a compromise between specificity of motifs (favoring
longer motifs) and the combinatorial increase associated
with increasing motif-length, a k-mer size of k=6 was
chosen, from here on termed hexamers. For each hex-
amer, their respective positions in each intron were de-
termined using the extracted intron sequences. To avoid
a bias towards hexamers containing part of the highly
conserved splice sites, the first and last three sequence
positions of each intron were excluded from the analysis.
From the obtained hexamer positions, the frequency and
distribution of hexamers within the introns were deter-
mined. For analyzing conservation, frequency, and loca-
tion distribution, results for reverse-complementary
hexamers were combined with their forward definitions
and treated as one hexamer.

Relative frequency of hexamers

Similar to IMEter [21], the frequency of hexamers in
first introns compared to other introns was taken as the
initial criterion for the identification of potential regula-
tory hexamers. For both intron sets, first and other in-
trons, the total occurrence of each hexamer, H;, over all
introns in the Col-0 reference genome sequence was de-
termined, and then normalized by the total occurrence
of all hexamers for each intron group, respectively.
Afterwards, the relative frequency, F, was calculated by
dividing the normalized frequency of hexamers in the
first by the normalized frequency of hexamers in the
other introns, with

Cf,Hi/ZJjV:ICf,H;'
Fy =

= (1)
Co,H,-/ZI}'Vzl Co,H,-

where C stands for counts, H for hexamer, f and o for
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first and others, respectively. N is the total number of
observed hexamers (N = 2080).

Degree of conservation of hexamers, conservation rate

To assess the degree of conservation of each hexamer,
the total number of occurrences of each hexamer in-
trons was compared to the occurrence of the same hex-
amer with SNP positions masked, performed separately
for first and other introns. The masking was done by re-
placing each position containing a SNP with a symbol
not used in the nucleic acid notation, here “*”. The de-
gree of conservation was calculated as the ratio of hex-
amer counts, Cy, with SNPs masked and the counts
without masking. This provides a position and alignment
independent measure of conservation with ratio-values
near one suggesting high conservation and smaller ratios
suggesting increasing variability. For comparison, the
randomly expected conservation was computed as

c, = (1—NSN”)k, )

where Ngyp is the number of SNP-positions found in in-
trons and Ny, is the total number of positions in re-
spective introns, computed separately for first and other
introns. C, corresponds to the probability of a k-mer not
containing any SNP position given the background SNP-
density.

Positional distribution of hexamers in introns

Two factors were considered for the location distribu-
tion of hexamers within introns. First, since many cis-
regulatory elements show preferences for specific
localization, we hypothesized that relevant hexamers
should show a characteristic distribution, which signifi-
cantly differs from a uniform distribution. To examine
this, the relative positioning of each occurrence of a hex-
amer in an intron was determined by dividing the first
position of each hexamer occurrence by the length of
the respective intron. These relative start positions were
then binned into ten bins covering an interval of (0, 1).
Based on the binned occurrence counts, positional pref-
erences were expressed as position entropies, Sy, with

Sy = —Z:,OZIPH,b log (PH.b)> (3)

where pyy, is the relative frequency of hexamer motif (k-
mer) H occurring in bin b.

For each hexamer, 10,000 random uniform distribu-
tions with the same number of occurrences were simu-
lated and the entropy for each distribution was
calculated. Since uniform distributions have the largest
possible entropy (over a finite interval), non-uniform dis-
tributions should be significantly smaller. By comparing
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the entropy of the actual hexamer entropy relative to the
random entropy, an empirical p-value was calculated.

As a second criterion, to be considered a candidate
hexamer motif, the distribution of hexamers was re-
quired to be significantly different in first introns com-
pared to the distribution in other introns. A Fisher’s
exact test on the binned data was used to determine
whether there was a significant difference between the
two distributions.

For both metrics, the Benjamini—-Hochberg method of
False Discovery Rate (FDR) adjustment was applied [29].

Multiple sequence alignments/ consensus motif
generation

For the identification of a consensus motif from candi-
date hexamers, a Multiple Sequence Alignment (MSA)
on a subset of hexamers considered candidate motifs
was performed. The multiple alignment using fast Fou-
rier transform (MAFFT) tool [30] was used to perform
the alignment. JalView [31] was utilized for tree
visualization. For comparison of consensus motifs, the
STAMP tool [32] was used. Collapse of hexamer motifs
into consensus motifs is, by its nature, to some degree
arbitrary and was performed requiring a minimum sup-
port per consensus position of two individual motifs and
guided by the dendrogram of sequence-distance-
clustered motifs (Fig. 4a) with the objective to group
similar motifs together, while unique motifs should re-
main separate.

Calculation of IMEter score

IMEter [20] is a tool scoring the similarity of a sequence
to introns close to the TSS. IMEter version 2.2 was
downloaded from the KorfLab/IME github repository.
IMEter was trained with the Phytozome dataset as de-
scribed in the IMEter use manual [33]. The IMEter score
for each first intron was then calculated. Introns were
subsequently ranked by their IMEter score.

Detection of correlated gene expression

For detecting correlated gene expression, microarray ex-
pression data from Craigon et al. (2004) was used, cover-
ing 20,922 genes with unique probe-genelD mappings,
profiled in 5295 hybridizations/ conditions [34]. The
data was normalized as described in Korkuc et al. (2014)
[25]. For comparing the gene expression of sets of genes,
Pearson correlation of normalized, log-transformed ex-
pression levels across all samples was used. For each
gene subset, the correlations between all possible combi-
nations of two genes was calculated based on the deter-
mined expression levels in the samples contained in the
expression dataset. To compare two subsets, a Cohen’s d
analysis of effect size on the two sets of correlations was
performed. This yielded both an evaluation of the
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direction as well as the magnitude of the effect. Confin-
ing the analysis to genes with introns, annotated 5UTR
with length > 0bp, and requiring a log (median_expres-
sion) >0.1 left 13,504 genes for expression analysis.
Here, we follow the same rationale of testing for func-
tional relevance of motifs with regard to gene expression
as described in [35], where the approach is also illus-
trated schematically.

In general, gene subsets can be compared to a set of
random genes of equal set size, or other gene subsets.
To avoid correlation related to homology present within
a gene subset containing a certain hexamer, comparisons
to subsets of genes containing other, but specific hexam-
ers were performed. For this, hexamers with occurrences
similar to the hexamers of interest (+/-10%) were
chosen, and correlations for their respective gene subsets
were calculated. Then, Cohen’s d values for the gene set
containing the hexamer of interest and each of the new
subsets were calculated. Finally, the mean effect size was
determined.

Potential motifs were compared to high IME-scoring
introns as judged by the IMEter tool. The correlation of
the hexamer gene set was compared to the set of genes
with the highest IMEter score with equal set size by
calculating Cohen’s d effect size.

Analysis of differentially methylated regions

For the analysis of differential methylation, information
on differentially methylated regions (DMRs) from
Kawakatsu et al. (2016) [24] was used. These cover three
different types of methylation, CG-DMRs, representing
differential methylation only in the CG context; CH-
DMRs, which cover only regions that are differentially
methylated in the CHG/CHH context; and C-DMRs,
which are regions with differential methylation in both
contexts. For all sets, all differentially methylated posi-
tions (positions that are part of DMRs) within first
introns were extracted and summarized for each intron,
respectively.

Identification of new motifs and motif binding
comparison

The tool Tomtom was used to compare candidate motifs
to a set of 872 sequence motifs reported as part of the
published DAP-seq motif dataset for Arabidopsis thali-
ana [36]. DAP-seq motifs correspond to transcription
factor binding sites motifs derived from binding assays
of transcription factors to “naked” genome DNA
segments.

Using natural variants to assess the effect of mutations in
candidate motifs on gene expression level

For every candidate motif as detected in the reference
genome sequence, all genes were identified harboring
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that motif in their first intron. Then, based on SNP in-
formation, for every such gene, Arabidopsis thaliana ac-
cessions with available expression information were
divided into two sets: one containing the identified ori-
ginal motif in a given gene and its intron, and one with
at least one mutation in the motif locus in that gene (al-
lelic variant). The expression levels of variants without
mutation were compared to the variants with mutations.
Expression levels were taken as obtained from a log-
transformed (natural log) upper-quartile normalized
RNA-seq transcriptome dataset containing 728 acces-
sions [24], and requiring the median expression level to
be greater than one across all samples to exclude genes
expressed at very low levels, where proper sample
normalization is less robust. Two-sample t-tests were
applied to filter for significantly different expression of
the gene harboring the unmutated vs. mutated motif
variant and Cohen’s d effect sizes were calculated. This
was done across all genes containing the motif of inter-
est and with identified motif-based allelic variants yield-
ing a distribution of Cohen’s d values. This process was
repeated for all identified candidate intron motifs as well
as for all other (non-candidate) hexamer motifs to serve
as a control.

GO-term enrichment

Gene Ontology (GO)-term enrichment analysis was per-
formed based on a Fisher’s exact test with FDR correc-
tion. The terms were extracted from the GO-slim-term
subset available from TAIR10 [26].

Prediction of expression level with Random
Forest models
Selected features
All features chosen to characterize introns were directly
or indirectly linked to information contained in first in-
trons. Table 1 lists all features along with a short de-
scription. The length of the first intron, the distance of
the first intron to the coding sequence, the distance of
the first intron to the transcription start site and intron
retainment of the proximal intron were derived from the
extracted intron GFF3 file. The relative base-type fre-
quencies were derived from the extracted FASTA file of
the first introns, with the flanking three bp bordering the
splice sites masked. The relative dimer counts were calcu-
lated in a similar fashion as the hexamers described above,
but with k = 2. All possible dimers were determined, their
occurrence in each first intron, excluding the splice sites,
were assessed, and the count of reverse complementary
dimers were combined. Finally, the counts were normal-
ized by dividing by the respective intron length.
Information about differentially methylated regions
(DMRs) was derived as described above. Similarly, the
IMEter score for the first introns was calculated as
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Table 1 Features used for the prediction of expression level based on Random Forest models

Feature Abbreviation

Description

intron length length
distance_CDS

distance_TSS

distance to CDS-start

distance to TSS

IMEter score imeter

SNP ber bp SNP_per_bp
DMRs C context DMR_C
DMRs CG context DMR_CG

transposable elements n_transposons
intron retainment IR

CNS CNS

minimum folding energy
A/T/C/G content

dimer percentages

min_fold_energy
A/T/C/G
TA/CG..

length of the first intron

distance of the first intron to the translation start codon of its gene

distance of the first intron to the transcription start site

calculated IMEter score of the first intron

SNP rate per base pair

number of differentially methylated areas with CG/CHG/CHH context in the intron
number of differentially methylated areas with CG context in the intron

normalized number of transposable elements in the proximal intron

“1" if first intron is retained in some isoforms as reported in the GFF file, otherwise “0"
number of conserved non-coding sequence (CNS) sections in the intron

normalized minimum folding energy of the first intron

base-type occurrence percentage of A/T/C/G of first introns, excluding the splice sites

relative frequency of all possible dimers in the first intron, with reverse complement

dimers combined. Splice sites are excluded

described above. The SNP-frequency per bp was calcu-
lated using the VCEF file.

The minimum folding energy was calculated using
mfold [37]. For each first intron, an overhang of 20 bp
into the flanking exons on both sides were included in
the calculation. The minimum energy was then normal-
ized by dividing by intron length with 40 bp for the over-
hang added.

For considering the presence of conserved non-coding
sequences (CNS), a dataset from Haudry et al. (2013)
was used [38]. A position was considered conserved if an
associated CNS sequence was found present in at least
four of the nine Brassicaceae species examined in [38].
The relevant positions, i.e. positions that overlapped
with first introns, were extracted. For every intron, the
total number of CNS positions was determined, and nor-
malized by intron length.

Transposable elements were extracted from the
TAIR10 transposable element dataset [26]. The total
number of transposable elements per intron was nor-
malized by intron length.

As an indication of functional relevance, we probed
introns for evidence of retention in annotated splice
variants as reported in the GFF-file. If an intron
sequence was found to overlap with an exon of an
alternative transcript, it was considered retainable
(retention = 1), otherwise not (retention = 0).

Classification

As a target variable for prediction, gene expression level
as reported by the above-mentioned microarray data
[34] was utilized. The median expression for each gene
across all samples was determined. A binary classifica-
tion into high/low expression was chosen using the me-
dian as a set division threshold. To potentially increase

prediction performance, models were also created for a
modified dataset, which contained only genes found in
the upper and lower quartile of RNA expression levels.
The goal was to create two more distinct groups to allow
better classification (increased contrast).

Model selection

For creating the actual prediction model, the Random
Forest (RF) classifier as implemented in the sklearn [39]
module was used. Hyperparameter tuning via random
grid search with cross-validation to increase perform-
ance and reduce overfitting of the model was performed.
The final RF-models contained 6000 trees. Each tree had
a maximum depth of 10 with a minimum number of
samples per split of 5, and a minimum of two samples at
the leaf nodes. Number of features to choose from at
every split was set to sqrt(total_number_of_features).

Dataset selection

For training the Random Forest model, the dataset for
the introns was randomly split into training and test
dataset with a ratio of 80 and 20%. For the ROC curve
analysis, ten-fold cross-validation on the whole set was
performed.

Feature importance

For determining the feature importance, permutation
feature importance was selected. It has been suggested
that this method provides better results than the “Mean
Decrease in Gini” method, which is used by the sklearn
classifier [40]. After training the classifier, one feature of
the test set was permuted randomly and the accuracy
was scored. This was repeated five times for each fea-
ture, and the mean decrease in accuracy (MDA) was
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calculated, respectively. This process was repeated for all
features.

SHAP importance

The Shapley Additive explanation (SHAP) method ex-
plains individual predictions of a model [41]. It is based
on Shapley Values, which have their origin in game theory.
A Shapley value of a feature is the average contribution to
all possible feature combinations. Calculation of Shapley
values is computational expensive due to combinatorial
explosion. SHAP therefore uses sampling to approximate
Shapley values to reduce the computational burden. The
Python package SHAP [42] was used to calculate SHAP
values for the trained models, and to visualize the results.

Statistical analysis and visualization

All statistical analyses were done in Python 3.7 [43]. The
modules scipy [44], numpy [45], and pandas [46] were
used. Visualization and plotting was performed with the
modules matplotlib [47] and seaborn [48]. In cases of sin-
gle test statistics, reported p-values less than p = 0.001 are
not specified further (precision) and indicated as p < 0.001.

Code availability and additional set data

Code and scripts developed and used in this study are
available at https://github.com/georgback/IME or via
https://doi.org/10.5281/zenodo.4749386. For the five
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reported consensus and the two IMEter motifs,
associated lists of genes harboring them in their first
intron are made available as a Supplementary data file.

Results

The primary objective of this study was to identify novel
IME-inducing intron motifs. In the following, we shall de-
scribe the rationale and workflow for their identification
and functional characterization. To support this verbal de-
scription, Fig. 1 provides a schematic graphical illustration.

Comparison of SNP-frequencies in first versus other
introns

Since it has been shown that specifically the first intron
bears the capacity to influence expression of the gene it
is part of, the set of Arabidopsis introns was split into
two sets, one with only the first introns, i.e. the 5'-most,
of each gene, and another for all remaining introns,
termed “other introns”. The average intron length of first
introns was determined as 259.7 bp, with a median of
161 bp, and a mean of 160.8 bp for the other introns,
with a median of 100 bp, respectively. For both intron
sets, the respective SNP-density was calculated by using
the variants data of the 1001 Arabidopsis genome pro-
ject [23]. Only positions with at least 50 alleles contain-
ing a different variant (minor allele) were considered as
SNP positions, and the first and last three positions of
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motif) and the non-canonical/variant (mutated motif) allele set, and expression levels of the different alleles were compared. Figure created
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each intron were excluded to avoid over-representation
of splice sites. Surprisingly, first introns were observed
to have a slightly higher SNP-density of 0.0164 SNPs
(i.e. polymorphic positions) per bp compared to the
other introns with 0.016 SNPs per base position. These
mean values reflect the global average. The associated
averages per intron are 0.177 and 0.171, respectively
(Mann—Whitney U test, p <0.001, distributions shown
in Fig. 2). A visualization of the relative SNP-frequency
for the first (5’ end of intron) 20 bp positions, including
a 20bp overlap into the preceding exon clearly shows
this difference (Fig. 2a). This effect is not only observable
in the introns itself, but also in the preceding exons,
likely explained by the embedding of other introns in
coding regions with associated conservation pressure,
whereas first introns are often found in a non-coding
UTR context. The position-resolved conservation pro-
files (Figs. 2a, b) also confirm the expected lower SNP-
frequency on and near the exon/intron splice site as well
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as the expected three-bp periodicity within the exon/
coding region. To test whether the difference in conser-
vation effect is related to the positioning of introns in
the 5’ untranslated region (UTR), which could poten-
tially explain reduced conservation, first introns were
separated into introns positioned in the 5'-UTR and in-
trons positioned in the CDS. Surprisingly, first introns in
5'-UTRs were found to have a lower SNP-density than
first introns in the CDS, with an average SNP-density
per intron of 0.0147 for the 5'-UTR introns and 0.0182
for the CDS introns (Mann—Whitney U test, p < 0.001)
(Figs. 2b, ¢, d). By contrast, upstream intron-flanking
regions showed the expected behavior with UTR-exons
being less conserved than CDS-exons (Fig. 2b).

High sequence conservation, as reflected by a low
SNP-density, can be an indicator of functionality [49].
This agrees well with IME-function predominantly being
found in introns close to the TSS and therefore close to
(or even within) the 5'-UTR, indicating a possible

a b
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Fig. 2 Comparison of SNP-frequencies of intron subsets. (a) Average relative SNP-frequency of the first 20 bp of the first introns compared to the
other introns including the last 20 bp of the preceding exons (b) Average relative SNP-frequency of the first 20 bp of first introns in 5-UTRs
compared to first introns in CDS including the last 20 bp of the preceding exons (c) Comparison the average SNP-frequency per bp (SNP-density)
and confidence intervals of different intron subsets (d) Violin plots of SNP-frequencies per bp (SNP-densities) of different intron subsets. In (a) and
(b) positions are relative to the exons-intron junction with zero denoting the first intron position
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correlation between conservation and IME function, but
within CDS regions, first and other introns do not follow
the expected conservation pattern.

Selection criteria for potential cis-regulatory intron motifs
For identifying candidate intron motifs associated with
IME, a k-mer-based strategy similar to IMEter was ap-
plied, with additionally utilizing conservation and rela-
tive position in introns as informative criteria, similarly
as described by Korkuc et al. (2014) [25]. As a com-
promise between specificity of a sequence motif and
combinatorial explosion, a k-mer length of k=6 was
chosen. All counts of reverse-complement hexamers
were combined, leading to a total of 2080 unique poten-
tial 6-mer (hexamer) motifs. Four properties were exam-
ined for determining whether a hexamer was considered
a candidate: 1) higher sequence conservation in first in-
trons than in other introns, 2) higher relative occurrence
in first introns than in other introns, 3) non-uniform
distribution of the motif within the first intron, and 4)
dissimilar positional distribution of the motif between
first and other introns. Criteria 3 and 4, which impose
positional preferences, were introduced to follow the ra-
tionale that similarly to transcription factor binding sites
[25, 50], intronic motifs may exhibit such positional
preferences as well. Of those criteria, criterion 2 follows
the approach of IMEter, while criteria 1, 3, and 4 are in-
troduced in addition in this study.

Evolutionary conservation of hexamers

Our approach builds on the rationale that functional
motifs show increased conservation. Therefore, and if in-
deed IME is associated specifically with first introns, we
expect potential motifs to be more evolutionarily con-
served in first introns than in other introns. The mean
conservation rate (see Methods for definition) over all
hexamers was determined as 0.9131, higher than the
randomly expected rate, C,, Eq. 2, of 0.905 (Fig. 3a).
Similarly, other introns had an average hexamer conser-
vation of 0.915 compared to the expected value of 0.907
(Fig. 3b). At first, it may seem surprising that the average
observed hexamer conservation is higher than that based
on the expected background conservation (Eq. 3). This
apparent contradiction can be explained as an indication
that SNPs are not completely randomly distributed
within introns, but tend to positionally cluster. Similar
observations have previously been reported [51]. This
could be due to either a bias in the sequencing technol-
ogy or some biological reason. Also, hexamers with very
low occurrences tend to have higher SNP-rates (Figs. 3a,
b). This may point to a sequencing artifact as well
(homo-oligomeric stretches). A total of 929 hexamers
were determined to have a higher conservation in first
introns relative to other introns, while 1151 hexamers
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were more conserved in other introns, which reflects the
observed higher SNP frequency, and hence, lower con-
servation, in first vs. other introns (Fig. 3a).

Relative occurrence of hexamers in first vs. other introns
Under the assumption that functional sequence motifs
induce IME, it appears plausible to expect that these
motifs show a higher relative occurrence in first introns
compared to other introns, since the vast majority of re-
ported IME-introns are first introns of a gene [20].
Inspecting relative hexamer counts (count of a particular
hexamer divided by the total number of detected hexam-
ers), 843 hexamers were detected with higher relative
occurrence in first compared to other introns, while for
1237 hexamers, the inverse was true. A closer examin-
ation of the relative count distribution of hexamers re-
vealed a significant difference between the distribution
of hexamers with lower relative frequency versus those
with higher relative frequency in first introns (Fig. 3c,
Kolmogorov-Smirnov test p <0.001). While there are
fewer hexamers with higher relative occurrence in first
vs. other introns than what is observed in reverse, those
that are overrepresented in first introns show a pro-
nounced tail (at around a twofold enrichment factor)
that may point to the ones that are functionally signifi-
cant and, thus, enriched.

Non-uniform positional distribution of hexamers in introns
Studies have shown that functional sequence motifs
often exhibit a positional preference [25, 50], including
signals associated with IME [20]. Assuming that poten-
tial functional motifs in introns exhibit this preference
as well, hexamer positional distributions were tested for
deviation from uniformity (see Methods), yielding 1448
hexamers detected with significantly non-uniform pos-
itional distributions in first introns.

To exclude positional preferences unrelated to hex-
amer IME function, only hexamers with significantly dif-
ferent positional preferences in first and other introns
were considered further. A Fisher’s Exact test comparing
positionally binned distribution of hexamers (ten bins,
see Methods) within first introns to other introns re-
spectively yielded a subset of 459 hexamers, which were
significantly differently distributed in first vs. other
introns.

In total, 81 hexamers met all four requirements laid
out above, and were investigated further.

Analysis of identified candidate hexamers

Expression correlation of genes containing candidate
intronic hexamer motifs

To test for any regulatory effects of the identified 81
candidate first-intron motifs, at first, correlation of
gene expression level was taken as an indicator, while
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later, we also inspected expression level. Under the
assumption that an intron motif regulates gene ex-
pression, those genes that harbor a particular motif
should exhibit a higher correlation of gene expression
amongst them than a comparable set of random
genes. However, increased correlation among genes
with a specific intron motif could not only indicate
regulatory effects, but also originate from the genes
being homologous. Closely related genes might exhibit
a similar expression profile and will also be more
sequence-similar to one another with a correspond-
ingly increased probability to find the same hexamer
in their introns. Therefore, candidate motifs were
compared to hexamers with similar occurrences as
the one under consideration (within a 10% interval of
higher/lower occurrence) to account for this effect.
Gene expression correlation of the gene subset

containing the hexamer of interest was computed,
and then compared to the correlation of genes ob-
served to each contain a comparable hexamer in their
first intron. Of note, as a control, we compared the
matching k-mer approach to the naive approach to
simply use all other genes and found concordant re-
sults (Supplementary Fig. S1).

The median Cohen’s d effect size, i.e. the magnitude of
the difference of correlation values for the two gene sets
across all 81 motifs was 0.018 (std.dev.=0.029), with
only 10 hexamers having a negative mean effect size
(Table 2; for the complete set of 81 candidate motifs, see
Supplementary Table 1). Thus, a significant majority (71
in total) of the 81 selected hexamers exhibited higher
correlation than hexamers of similar occurrence (p =
1.8E-12, binomial test, with pp, = 0.5). Sixteen candi-
date motifs with a mean effect size of greater than an



Back and Walther BMC Genomics (2021) 22:390

Page 11 of 24

Table 2 Hexamers with potential regulatory function as evidenced by increased conservation, positional preferences, and co-
expression of genes harboring respective motifs in their first introns. ‘Cohen’s d correlation’ is the effect size of difference in the
distribution of correlation coefficients between the expression levels of genes harboring the respective motif relative to a gene set
containing frequency-matched random hexamer motifs across all experimental conditions present in the expression dataset.
‘Cohen’s d expression level' refers to the effect size related to expression level of genes containing the respective motif in the first
intron relative to all other intron-harboring genes. Listed also are the numbers of genes, in which the respective intron motif was
found. Listed are all motifs with ‘Cohen’s d expression'>0.05. For a complete listing of all 81 candidate motifs, identified based on
conservation and positional preference alone, see Supplementary Table 1

Hexamer Cohen'’s d, Correlation, comparable, random hexamer Cohen’s d, Expression level Number of genes
AGATCG 145E-01 046 1807
ACCCTA 9.82E-02 0.18 2964
TCGATC 9.16E-02 034 2014
TCGGAG 8.58E-02 027 857
TCTCGC 8.13E-02 0.19 785
GATTCG 7.68E-02 032 2516
ATCGAA 7.07E-02 0.31 4188
AAATCG 7.00E-02 0.28 4086
AATCGA 6.88E-02 031 4406
TTAGGG 6.76E-02 0.19 2896
ATCGAG 6.20E-02 0.28 1773
TCTCGA 5.79E-02 022 2044
CTCTCG 5.77E-02 0.23 1124
AAACCC 5.33E-02 0.18 4970
TTCTCG 5.27E-02 0.19 2188
TTTCGA 5.20E-02 021 3866

arbitrarily chosen threshold of + 0.05 (5%) were selected
and investigated further.

Analysis of candidate hexamer subset with evidence of
expression regulation

For each of those 16 hexamers, the average gene expres-
sion level of genes harboring them in their first introns
was significantly higher than the average of the whole
set (» <0.001), with Cohen’s d effect size ranging from
0.18 for ACCCTA to 045 for AGATCG. This result is
in line with motif-mediated IME being associated with
highly expressed genes.

Candidate consensus motifs and gene function
association

The set of hexamers contained sequence-related hex-
amer sequences, which may be equivalent in function
or part of a larger consensus motif, e.g. AGATCG
and TCGATC (with its reverse-complement GATC
GA). Using the program MAFFT, the set of 16 motifs
was collapsed into five motifs, GATTCG, TTTCGA,
KCGAGAR, ACYCYR, and ARATCGA. Three of
these are consensus motifs from several individual
hexamers, and two remain as their original hexamer
definition (Fig. 4a).

Next we tested whether the identified motifs corres-
pond to known binding sites of known DNA-binding
proteins, such as transcription factors. A motif compari-
son analysis performed with the motif comparison tool
Tomtom against the DAP-seq database for Arabidopsis
transcription factors and their associated target motifs
revealed no significant overlap (all E-values> 1) with any
of the 872 DAPseq-reported motifs.

To elucidate the biological role of the genes harbor-
ing the candidate motifs, a GO-term enrichment ana-
lysis for genes, whose first introns contain the five
motifs were performed, with gene sets considered
separately for every motif (Table 3). With regard to
GO-cellular components, gene sets for all motifs were
significantly enriched for cytosol and cytoplasmic
components, with gene sets associated with three mo-
tifs being significantly enriched for Golgi apparatus
(ARATCGA, GATTCG, TTTCGA), and two for endo-
plasmatic reticulum (ARATCGA, GATTCG) and nu-
cleus (ACYCYRA, KCGAGAR), respectively. All motif
sets were significantly depleted for mitochondrial and
extracellular genes, with four sets being also depleted
for chloroplast genes (ACYCYRA, ARATCGA, GATT
CG, KCGAGAR). Testing GO-function terms, all
motifs were found enriched for protein binding.
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Furthermore, structural molecule activity (ARATCGA,
GATTCG, TTTCGA) and DNA/RNA-binding (ACYC
YRA, ARATCGA, GATTCG) were overrepresented in
gene sets of three motifs, respectively. The GO-term
“unknown molecular function” was significantly un-
derrepresented for all motifs. Additionally, gene sets
of three motifs were depleted for transcription factors
(ARATCGA, GATTCG, TTTCGA). Lastly, signifi-
cantly enriched process terms were and DNA/RNA
metabolism (ACYCYRA, ARATCGA, KCGAGAR,

TTTCGA), cell organization (ACYCYRA, ARATCGA,
KCGAGAR, TTTCGA), and transport (ARATCGA,
GATTCG, KCGAGAR, TTTCGA) with four motif
sets each, while signal transduction (ARATCGA,
GATTCG, KCGAGAR, TTTCGA) and unknown pro-
cesses (all) were underrepresented. Thus, generic
housekeeping functions appear overrepresented, while
signaling and transcription factor activities appear to
be less present in the gene sets associated with the
five identified IME-candidate-motifs.
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Table 3 Enriched and depleted GO-terms in gene sets harboring the identified consensus intron motifs in their first introns. For
every GO-term, significant FDR-corrected p-values (prpr< 0.05) based on Fisher exact tests are listed (correction per GO-category) or

left empty if prpr>0.05

GO- category GO-term ACYCYRA ARATCGA GATTCG TTTCGA KCGAGAR
component enriched
cytosol 1.16E-06 2.08E-07 6.42E-05 3.66E-03 5.21E-05
Golgi apparatus 6.10E-07 1.61E-04 3.72E-02
endoplasmatic reticulum 5.56E-03 241E-02
nucleus 2.78E-12 249E-02
depleted
mitochondria 8.15E-04 1.04E-02 241E-02 4.17E-02 249E-02
extracellular 1.84E-12 1.11E-14 544E-14 8.27E-13 5.92E-11
chloroplast 4.12E-02 6.09E-04 1.34E-02 3.16E-02
function enriched
protein binding 7A47E-11 3.69E-07 1.12E-04 1.81E-05 1.19E-4
structural molecule activity 1.36E-03 1.56E-02 344E-04
DNA or RNA binding 8.06E-05 8.31E-03 2.64E-02
depleted
unknown molecular function 747E-11 245E-09 4.30E-04 7.35E-11 2.81E-05
transcription factor activity 1.68E-03 2.64E-02 1.54E-02
process enriched
DNA or RNA metabolism 3.65E-06 1.82E-04 6.25E-04 8.49E-04
cell organisation 4.84E-03 3.27E-04 3.64E-02 1.29E-02
transport 3.39E-03 1.79E-02 6.21E-04 4.78E-02
depleted
unknown processes 6.93E-11 7.53E-10 2.07E-03 1.24E-06 849E-04
signal transduction 1.13E-02 1.79E-02 791E-03 1.53E-02

Comparison of potential regulatory motifs to IMEter
To further evaluate the newly identified motifs, they
were compared to IMEter, the most commonly used tool
for identifying potentially IME introns. IMEter scores
whole introns [21], or, in a new version, a sliding win-
dow of 50 bp [20]. For all first introns, the IMEter score
was calculated, and then sorted by score. Genes with the
highest scoring introns were correlated amongst them-
selves at significantly higher levels than a subset of ran-
dom genes of equal set size (p <0.001), with an average
Cohen’s d of 0.183 (Fig. 5a). The mean expression level
of the top 2000 IMEter score genes was significantly
higher than that of the whole gene set (p< 0.001,
Cohen’s d effect size of 0.43). By comparison, correlation
of expression amongst genes containing either one of
the five consensus motifs reported in this study was ei-
ther comparable to or only slightly below that of the
IMEter set (Fig. 5b, |Cohen’s d| <0.1), suggesting a
potentially cis-regulatory role.

The overlap between the candidate motif gene sets
and the corresponding IMEter sets of equal size was
large, with an average overlap of 34% (p< 0.001,

regarding the overlap in percent, note that sets were al-
ways of the same size). This is expected, since both ap-
proaches partly employ similar strategies for identifying
IME. When the candidate motifs were compared to the
IMEter set not containing overlapping genes, the effect
size associated with the candidate motif gene set gener-
ally increased, resulting in comparable gene expression
correlation of genes within the respective gene sets as
observed for the size-matched top-IMEter gene sets,
with effect size ranging from 0 to 0.1 (Fig. 5¢), suggest-
ing an even stronger, albeit slightly, regulatory effect
associated with the identified five consensus motifs com-
pared to IMEter-selected gene sets.

Based on the IMEter tool, Rose et al. (2008) [21] and
Parra et al, [20] identified two motifs, CGATT and
TTNGATYTG, which were overrepresented in introns
with high IMEter scores, and were shown to be associ-
ated with induction of gene expression [52]. Judged by
their sequence, of the five identified consensus motifs
two motifs (ARATCGA, GATTCG) show some resem-
blance with the two IMEter motifs, albeit not identical,
while three motifs (ACYCYRA, TTTCGA, KCGAGAR)
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can be considered more distinct, and thus, potentially
novel functional IME motifs (Fig. 4b).
Compared to the top-scoring IMEter genes, genes con-

taining either one of the two IMEter motifs had a com-
parable correlation amongst each other, with associated
Cohen’s d of 0.004 and -0.072, respectively (Fig. 5b,
asterisk-labeled motifs). With overlapping genes

removed from the IMEter set, Cohen’s d increased to
0.088 and 0.089 (Fig. 5c, asterisk-labeled motifs), thus,
requiring the motifs to be present alone yielded a signifi-
cant co-expression signal. The two IMEter motifs exhib-
ited a significantly higher mean expression than the total
set (p <0.001), with effect size of 0.31 for CGATT and
0.37 for TTNGATYTG. By comparison, our consensus
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motifs were found with corresponding effect sizes of variants harboring the unmutated motif were found with
ARATCGA: 0.33, GATTCG: 0.32, KCGAGAR: 0.23, increased expression relative to versions of those genes
TTTCGA: 0.21, ACYCYRA: 0.14 (mean: 0.25). Thus, the  (i.e. present in different accessions = allelic variants) with
two consensus motifs detected as sequence-similar to  the motif locus containing mutations (Fig. 6, Table 4).
the reported IMEter motifs (ARATCGA and GATTCG) Based on median effect sizes, 14 of the 16 hexamer mo-
showed the largest effect size and comparable to the two  tifs were positive (Table 4, column B) with associated
IMEter motifs, while the other three consensus motifs Fisher exact test p-values of p =0.029, so were 6 out of
were found with slightly lower, but still very strong the 7 consensus motifs, though significance could not be
effects. established for the latter due to the small number of

Taken together, our consensus motifs resulted in simi-  only seven motifs (p =0.19). In the Fisher exact test, all
lar effects as compared to the IMEter-based intron scor- 2064 non-candidate motifs were taken as controls (1288
ing and the two IMEter-motifs, and yielded novel motif  of which were detected with positive median Cohen’s d).
definitions and/or altogether novel motifs that may func- Note that this reference applies to the hexamer motifs

tion in a cis-regulatory fashion. only, as for consensus motifs, their lengths vary and the

collapse of motifs into a consensus is not properly
Test for effect of naturally occurring mutations in reflected. Yet, for completeness, we provide the p-value
candidate motifs on gene expression for consensus motifs as well. The evidence for higher

With the availability of both sequence and expression in-  gene expression of unmutated- vs. mutated-motif-
formation for many Arabidopsis accessions under con-  containing alleles was even stronger when considering
trolled and identical conditions, it is possible to probe only those genes with significant expression differences
for the effect of mutations in candidate motifs on gene (up or down) between their two versions (mutated vs.
expression, allowing to test the hypothesis that mutated  unmutated, Fig. 6, bottom panels, Table 4), with 15 out
motifs cause lowered gene expression relative to levels of 16 motifs observed with positive median Cohen’s d
of allelic versions of that gene containing the unmutated  (Prisherexace = 0.015 with non-motif hexamers taken as
original motif version as found in the reference genome.  control; Table 4, column E) as well as greater mean

Indeed, for most of the 16 hexamer motifs and the values (Table 4, column A (all) vs. D (significant genes),
seven candidate consensus motifs (five identified in this  paired t-test p-value = 1.2E-04). Of all seven consensus
study, two IMEter motifs), expression levels of allelic  motifs, six showed increased mean Cohen’s d values

Candidate hexamer motifs Consensus motifs
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Fig. 6 Effect of mutations in candidate motifs on gene expression level. For every candidate motif ((@) hexamers; (b) consensus motifs) the
difference of gene expression of allelic variants of every gene containing it was compared. Allelic variants as present in different Arabidopsis
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filter that imposes some level of significance of difference). For further summary statistics, see Table 4
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(p =0.015). Notably, our five consensus motifs proved of
very similar strength as the two IMEter motifs as judged
by effect size. The increased significance for IMEter
motif “CGATT” is explained by the higher occurrences
due to shorter (5 bp) motif size.

Effect of differential methylation in first introns on gene
expression

A study of vertebrates by Anastasiadi et al. (2018) has
shown a strong inverse correlation between methylation
in the first intron and gene expression [12]. They also
showed that first introns exhibit the highest density of
differentially methylated regions (DMRs) of any genomic
feature and that certain DMRs could positively correlate
with gene expression. These findings suggest a potential
influence of DMRs on IME and therefore on gene ex-
pression, which was further investigated here using pub-
lished DMR data [24]. The gene sets associated with the
two methylation contexts, CG- and C-DMRs, that each
were found with sufficient numbers of observations
(CH-DMRs were not considered as fewer than 100 cases
of overlaps with first introns were observed) had very lit-
tle overlap with either the top scoring IMEter genes, or
any of the potential hexamer motif gene sets. Genes con-
taining C-DMRs in their first intron were significantly
more correlated than a set of random genes, with an
average effect size of 0.1. However, C-DMR genes had a
significantly lower gene expression than the set average
(p < 0.001) with an effect size of —0.74. Conversely, genes
with intronic CG-DMRs were expressed at significantly
higher levels than the set average (p < 0.001) with an ef-
fect size of 0.07. Yet, the CG-DMR subset showed a
comparatively lower expression correlation than the C-
DMR set, with only 0.054 as the average effect size com-
pared to a subset of random genes of equal set size.
With regard to overlap of DMR-set genes and the gene
sets associated with any of the five candidate motifs re-
ported here, for C-DMR, no significant overlap was de-
tected. By contrast, the CG-DMR genes overlapped
significantly with all five consensus motifs (p <0.004),
with enrichment factors of 1.2-fold and higher.

In conclusion, no coherent picture emerges with re-
gard to the role of DMRs in IME. While genes with CG-
DMRSs in their first introns are expressed at higher than
average levels, the corresponding set of genes does not
show correlated gene expression, a feature that we con-
sidered evidence of regulation used to identify IME
motifs.

Random Forest model for prediction of expression level
based on intron features

IME has been connected to highly expressed genes such
as housekeeping genes. Thus, it appears possible to cast
the problem of identifying features responsible for IME
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as a feature extraction problem with Machine Learning
methods applied to the prediction of expression level. By
only including features of the first intron, the goal was
to investigate the predictive value of first introns with re-
gard to expression level of their respective genes. Ran-
dom Forest classifiers were trained for the prediction of
expression level. Initially, genes were binned into two
groups, sets with high and low expression level, respect-
ively, used as classes for building the classification
models, with the global median expression level taken as
the threshold value. To increase contrast, binning of
genes was performed based on the upper and lower
quartile of expression levels. A spectrum of sequence-
dependent and sequence-independent intron features,
which we considered potentially predictive, were selected
and tested (Table 1).

Using the median-split gene classes, the achieved
model performance was modest (area under the ROC
(AUC) of 0.68 and an average accuracy in a tenfold
cross-validation of 63%. When increasing the gene ex-
pression difference between the two considered gene
sets by using the upper and lower quartile of expressed
genes to train models, a substantial increase of model
performance was observed (AUC = 0.78, accuracy = 72%)
(Fig. 7a).

Feature importance

For the trained Random Forest models, feature impor-
tances, as reflected by the mean decrease in prediction
accuracy (MDA), were determined. For the best per-
forming model, sequence composition features seemed
most important, with the percentage of guanine (G) and
adenine (A) having the highest impact on model per-
formance (Fig. 7b). IMEter score, which is derived from
the distribution of pentamer-motifs in introns, the relative
occurrence of TC-dimers and percentage of Cytosine (C)
were also found to have high feature importance, further
suggesting sequence-dependent effects. Finally, intron-
length and distance to the TSS had only a small positive
effect on prediction performance. This is surprising, since
IME has been closely associated with distance to the TSS.
However, MDA, while powerful, is susceptible to corre-
lated features, as influences can be masked.

SHAP values are an alternative and very informative
way to assess feature importance and decision making of
a model. They are calculated for all predictions individu-
ally, making them ideal for analyzing the effect of feature
values on the prediction. For the model at hand, positive
SHAP values indicate that this feature value increases
the chance of the model classifying the sample as highly
expressed, while negative SHAP values increase the
chance of low expression classification. The importance
of features determined by SHAP was assessed similarly
as by MDA (Fig. 7c). Sequence features, such as A-, G-,
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TC-content, and IMEter-score again had the biggest im-
pact on model prediction. Low values for A-content
resulted in positive SHAP values, while high values re-
sulted in negative SHAP value. A similar pattern was ob-
served for the dinucleotide TA. By contrast, for IMEter,
length, G and TC, high feature values generally resulted
in a higher SHAP value, with lower values having a
negative impact. Notable differences between MDA im-
portance and SHAP importance were observed for the

features distance-to-the-TSS and CDS-start, which were
considered less important by SHAP, and number of dif-
ferentially methylated regions (methylation C), which
had a stronger effect on model prediction according to
SHAP. In the case of C-DMRs, an interesting pattern
was observed. While a low number of differentially
methylated sites had no effect on the model prediction,
high numbers resulted in a negative SHAP value, indi-
cating that the model associated them with lower gene
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expression. This is consistent with the significantly lower
mean gene expression level of C-DMR genes reported
above. The low impact of both distance features (dis-
tance_TSS, distance_CDS) was yet again surprising,
since IME has been associated with both, a short dis-
tance to the TSS, as well as being positioned in the
UTR. Even more surprising is that very small feature
values (distances <200b) were associated with negative
SHAP values, ie. the model was more likely to classify
the respective gene as expressed at low levels (Fig. 7d).

As considered above for the relevance of motifs, it
needs to be considered whether there is indeed a specific
signal in introns that causes increased gene expression
of the associated genes, or whether our classifier simply
picks up on features associated with genes that are
expressed at high levels, such as housekeeping genes. To
test for that, we extracted the same set of features as
considered for introns for first exons of the same genes
and built RF-models using exon-only, intron-only, and
exon-intron-combined features. As shown in Fig. 8a,
while the performance of exon-only and intron-only fea-
tures is comparable (AUC =0.78), considering both
combined leads to a significant increase of predictability
(AUC = 0.81). We interpret this as evidence that introns
hold information over and above that, which is associ-
ated with recognition of highly expressed gene families
alone, for which exon-only and intron-only serve as a
suitable point of reference. Furthermore, both exon and
intron features were considered equally important
(Figs. 8b, c).

Taken together, these classification results imply that
there is indeed relevant intronic information for deter-
mining the expression level class (high vs. low) of genes
and suggest a number of informative features.

Discussion
Intron-mediated enhancement (IME) has been discussed
as an important regulator of gene expression, found in
nearly all eukaryotic systems tested so far [14] and found
associated with highly expressed genes [15, 53, 54].
However, the exact mode of action for inducing expres-
sion enhancement is not yet understood. Several differ-
ent mechanisms have been proposed, with the seemingly
biggest open question being the importance of splicing
[14]. Several studies suggest that the recruitment of spli-
cing factors, even in the absence of splicing, are the
major determinants for the induction of enhancement
[14, 16]. Conversely, studies have shown that some in-
trons and intronic motifs were able to induce enhance-
ment irrespective of splicing and splicing factors, and
suggested a mechanism acting at the level of genomic
DNA [15, 52, 55].

Here, we reported the identification of 16 hexamer
and five resulting consensus DNA sequence motifs that
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may be related to IME in the plant Arabidopsis thaliana.
Building on previous studies on sequence signals associ-
ated with IME [20, 21], our study exploited the available
deep sequencing information of more than one thousand
Arabidopsis thaliana accessions allowing us to probe for
conservation as a hallmark of functional relevance. Fur-
thermore, we imposed more explicitly that motifs may
show positional preferences within introns, an assump-
tion that appears supported by prior findings [25, 50],
and tested as evidence of a functional effect that motif
harboring genes exhibit correlated gene expression in
addition to elevated expression level, making use of the
plethora of available expression information. Thus, we
postulated that IME not only leads to increased expres-
sion, but also includes a regulatory component, leading
to concerted gene expression of subsets of genes. In line
with this assumption, out of 81 motifs, identified based
on conservation and evidence of preferential intron loca-
tions alone, 71, i.e. almost all, were associated with in-
creased correlation (positive, rather than negative effect
Size, Pbionial, prior = 0.5 = 1.8E-12, Supplementary Table S1)
and 16 (19.7%) were found associated with significantly
elevated co-expression (effect size, Cohen’s d>5%)
(Table 2).

In addition to this indication of an existing common
regulatory control, we also showed that the identified intron
motifs cause elevated gene expression levels. This was
tested by exploiting the natural sequence variation across
hundreds of Arabidopsis accessions along with available ex-
pression information. Allelic variants containing mutated,
and thus presumably less active or even inactive motif ver-
sions were found to be expressed at lower levels compared
to variants of that same gene in different accessions with
the unmutated motif version present (Fig. 6, Table 4).
While this effect was small and, except for one motif
(“AAATCG”, prpr =0.04), not significant at individual
motif level after correcting for multiple testing, across all
candidate motifs, significance was established (p = 0.029).
Furthermore, at the significance level of FDR < 10%, nine
motifs were found significant (Table 4). We consider this
result remarkable, as across different accessions, mutations
will not only affect our candidate motif - if that were the
case, testing for functional relevance would be methodo-
logically cleanest - but many other sites as well, including
other gene expression regulatory regions (promoter, en-
hancers). Furthermore, alleles with variant motifs in their
intron may also contain non-mutated motif versions, buff-
ering the mutation effect in another motif instance. As this
would further decrease the already low number of genes
available for testing, we did not include checking for this
possibility. Thus, the observation that despite these add-
itional influences being present, a statistical signal was de-
termined can be seen as strong evidence in support of the
functional relevance of the candidate motifs identified here.
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In this analysis, a stronger signal was observed for the 16  already captures some level of sequence variation, depar-
individual hexamer motifs as compared to the consensus tures from it are more likely to be tolerated and likely less
motifs (Fig. 6, Table 4). As a consensus motif, by definition,  associated with expression effects.



Back and Walther BMC Genomics (2021) 22:390

Contributed by the seminal studies on IME [20, 21],
IME has been associated with whole introns (IMEter
tool and score) and two motifs (CGATT and TTNGAT
YTG, with the first being a sub-motif of the other) have
been implied as functional. Our study enlarges this set
by 16 hexamer and five consensus motifs that now can
be explored further and experimentally characterized.
The IMEter tool has been shown to be a good indicator
of IME, with experimentally identified IME introns hav-
ing consistently high IMEter scores, and the level of en-
hancement of known IME introns correlating with
IMEter score [17, 20, 52, 56]. The motifs identified here
and based on conservation, relative occurrence, and pos-
itional distribution were comparable with regard to their
effect on correlation of gene expression and expression
level to genes with the highest IMEter score (Figs. 5b, c).
Therefore, it seems likely that the discovered hexamer
and consensus motifs are truly related to IME. Building
on conservation using intra-species sequence variation,
as done here, also is supported by previous observations
indicating that regions with high IMEter score were con-
served among different species [20, 57].

As the mode of action of IME still is unknown, the
fact that we did succeed in identifying motifs that are,
based on our filter and test criteria, associated with IME,
suggests that either a molecular recognition event - such
as binding by proteins - may be at work, or that the mo-
tifs play a RNA-structural role relevant for splicing. At
this point, using the approaches presented here, we can-
not interpret the data in favor of either of the two alter-
natives. However, our study provides novel candidates
for targeted follow-up studies.

In addition to a search for sequence motifs, we per-
formed a Random-Forest-based classification of genes
with regard to gene expression level. Here, the goal was
to a) prove predictability of expression level using
intron-based information, and b) to identify additional
features relevant for IME. Indeed, we were able to show
that introns hold information on expression level over
and above the information provided by the gene context
(exon-related information), (Fig. 8a). Overall, base com-
positional features (most significantly, G-contents) were
found most informative, and more important than other
parameters such as distance to the TSS or other parame-
ters that would allow to arrive at more interpretable
conclusions with regard to mode of action of IME (such
as DMRs, folding energy and others) (Figs. 7b, 8b). Low
A- and high G-content of the first intron were pivotal
for classification as a highly expressed gene. In contrast
to the k-mer-based IMEter score, A- and G-content are
more general features, describing the composition of the
intron and the pre-mRNA. This could indicate a motif-
independent influence of first introns on gene expres-
sion. Studies have shown that intron composition can
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regulate splicing by influencing pre-mRNA folding
around the splice sites [58], which could explain the ob-
served effects. Compositional effects have also been re-
ported to influence mechanical properties of genomic
DNA, such as bending flexibility [59]. However, initial
attempts by us to use machine learning to associate re-
ported sequence-dependent DNA flexibility measures to
IME proved unsuccessful (not shown). However, consid-
ering mechanical properties of pre-mRNA may offer a
fruitful avenue for further research. Of note, we checked
for GC-content of first vs. other introns and found no
relevant difference (G + C content (fraction), first in-
trons: 0.315 +/- 0.051 (s.d), others: 0.318 +/- 0.047).

Confirming the validity of prior approaches, the previ-
ously published IMEter score was among the most im-
portant features. Correlation between IMEter score and
enhanced gene expression by IME has been established,
also experimentally for selected gene sets [20]. The re-
sults of this study show that this also applies to the
whole genome.

DNA-methylation has been shown to play a central
role in gene expression regulation, to be linked to nu-
cleosome positioning, and exon-intron boundaries [60]
as well as to influence alternative splicing [61]. Regard-
ing the role of DNA-methylation in IME, more specific-
ally, differential methylation (DMRs), given the data and
approaches used here, no consistent picture emerged.
While C-DMR regions in introns were found associated
with increased correlation of the corresponding genes,
they were expressed at low levels. Conversely, CG-DMR
intron genes showed higher expression, but low correl-
ation. Hence, a cis-regulatory role of DMRs in introns
related to IME appears unlikely.

With regard to intron-related cis-regulatory functions,
first introns (5'-most) have been considered most rele-
vant [62]. Our observation that first introns, on average,
show a slightly increased SNP-density compared to the
remaining introns (Fig. 2) appears counter-intuitive.
However, introns located in 5-UTRs exhibit a reduced
SNP-density, and hence increased conservation. There-
fore, UTR-located introns may play a different functional
role than introns embedded in coding regions, which is
consistent with previous reports that several UTR in-
trons have been reported to induce IME [62].

Also, when considered as a predictive feature, the
distance of the intron to the transcription start site
(TSS), with close distances having been discussed as
more associated with IME, was not found to be particu-
larly informative. This relatively low impact of the dis-
tance to the TSS on the expression level prediction
(Figs. 7b, c) is surprising. Previous studies had suggested
that proximity to the TSS is an essential property of
IME introns [63], and that IME effect declines with dis-
tance to the TSS [21]. Our observations were to some
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degree contradictory. While large distances of introns to
the TSS had very little impact on the prediction accuracy
of the model, distances shorter than 200bp increased
the likeliness of a gene to be classified as expressed at
low, not high levels (Fig. 7d). Parra et al. (2011) observed
a similar pattern when comparing the IMEter score of
introns to their distance to the TSS. Relatively low
IMEter scores were found for introns close to the TSS,
with the highest IMEter scores observed at a distance of
about 200bp [20]. However, in their analysis, the ob-
served IMEter scores were still positive, suggesting en-
hancement, while in the case of the Random Forest
model, very small distances were an indication of low
expression (Fig. 7d). Our findings suggest that the dis-
tance of the first intron to the TSS, as such, is perhaps
less important than previously thought, and TSS-
proximal introns must, in addition, exhibit a particular
composition to lead to IME. The sharp drop in SHAP
values, even into the negative value range, for very small
distances to the TSS (Fig. 7d), which suggests low ex-
pression, may perhaps also indicate gene annotation
problems, which need to be inspected on a case-by-case
basis.

On the technical side, with regard to the employed
gene expression data, this study made use of the large
microarray-based dataset covering ~20K genes and
thousands of different conditions in order to discern
correlated gene expression. As RNAseq has increas-
ingly become de-facto standard, we checked whether
consistent results would have been obtained had this
study been performed with available RNAseq datasets.
Using TravaDB [64], a large compendium of
Arabidopsis thaliana RNAseq data (158 conditions),
we determined a high correspondence of gene expres-
sion level (r = 0.88, Supplementary Fig. S2), and, as re-
ported previously [65], also a high correspondence of
pairwise correlation (r=0.49). It should be noted that
the probed conditions were very different. Hence, ex-
pression level and pairwise correlation proved robust,
reflecting condition-independent, coherent expression
regulation. Thus, as expression level and pairwise cor-
relation were the two criteria tested for in this study,
the microarray data used here can be considered
representative.

We performed our analysis within one species
(Arabidopsis  thaliana) with sequence variations
amounting to single nucleotide polymorphisms
(SNPs). While this intra-species approach eliminates
the alignment challenges associated with inter-species
studies, evolutionary conservation is confined to a
relatively short divergence time (about 5mya [66]).
The associated limitations have been discussed before
in a study on promoter elements [25] and correlated
mutations [67] and apply here as well.
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When probing for effects of intron-located motifs on
gene expression, the question of expressed alternative
splice-forms needs to be considered. We based our ana-
lysis on unique first introns (N = 24,763). With regard to
gene expression and classification, all values were taken
as reported and as integrated per gene, not per splice
variant. This is due to technical limitations as the used
microarray expression data are by design largely splice-
variant insensitive. Also, in RNAseq, mappings of short
reads (100 bp) to long mRNAs do not necessarily cover
relevant splice junctions and the dataset used here does
report expression per gene, not per variant, only. How-
ever, given the data used in this study, the discrepancy
of the gene vs. unique intron seems small (24,763 unique
first introns and 21,420 intron-containing genes). Ignor-
ing splice variation can be seen as probing for the rele-
vance of motifs as present in the genome sequence,
which may exert their effects on all different splice vari-
ants. Thus, the pursued approach may have a precise
merit and interpretation For future studies, however, it
seems worthwhile to test for specific effects on tran-
scripts emerging from splicing of the respective intron,
i.e. those transcripts that originated from a nascent pre-
mRNA containing that intron.

Concerning the employed classification methodology,
we employed Random Forest classifiers. While recently,
deep learning architecture (Recurrent and/ or Convolu-
tional Neural Networks (RNNs, CNNs), have proven to
be powerful sequence-based classification approaches
[68], RFs, in addition to being a powerful classification
engine, allow for a more direct assessment of feature im-
portance, which specifically was the goal of our study.

Conclusions

Exploiting deep sequencing and broad gene expression
information and on a genome-wide scale, this study con-
firmed the regulatory role on first-introns, characterized
their intra-species conservation, and identified a set of
novel sequence motifs located in first introns of genes in
the genome of the plant Arabidopsis thaliana that may
play a role in inducing high and correlated gene expres-
sion of the genes harboring them.
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the motif relative to a gene set containing frequency-matched random
hexamer motifs across all experimental conditions present in the expres-
sion dataset. ‘Cohen’s d expression level’ refers to the effect size related
to expression level of genes containing the respective motif in the first
intron relative to all other intron-harboring genes. Listed also are the
numbers of genes, in which the respective intron motif was found.
Highlighted bold are the 16 hexamers with Cohen'’s d (correlation) > 0.05.
Supplementary Fig. 1. Comparison of resulting effect sizes (Cohen’s d)
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mers (hexamers) as opposed to comparing them to the complete set of
other genes. Results were largely consistent (r = 0.83). Supplementary
Fig. 2. Correspondence of mean expression level of the 20,807 Arabidop-
sis genes present on both expression platforms (ATH1 microarray and
TravaDB-RNAseq). Plotted are the mean expression values across all avail-
able conditions in the two databases, respectively, with N = 5295 for the
microarray set, and N =158 for TravaDB, Pearson correlation coefficient,
r=0.88.
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