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Abstract

This paper employs a solution to the agent-guidance problem in an environment with obsta-

cles, whose avoidance techniques have been extensively used in the last years. There is

still a gap between the solution times required to obtain a trajectory and those demanded by

real world applications. These usually face a tradeoff between the limited on-board process-

ing performance and the high volume of computing operations demanded by those real-time

applications. In this paper we propose a deferred decision-based technique that produces

clusters used for obstacle avoidance as the agent moves in the environment, like a driver

that, at night, enlightens the road ahead as her/his car moves along a highway. By consider-

ing the spatial and temporal relevance of each obstacle throughout the planning process

and pruning areas that belong to the constrained domain, one may relieve the inherent

computational burden of avoidance. This strategy reduces the number of operations

required and increases it on demand, since a computationally heavier problem is tackled

only if the simpler ones are not feasible. It consists in an improvement based solely on prob-

lem modeling, which, by example, may offer processing times in the same order of magni-

tude than the lower-bound given by the relaxed form of the problem.

1 Introduction

In the last decades, computers assumed an increasing proportion of tasks previously assigned

to humans. Repetitive chores such as an automobile assembly in a production line can already

be almost fully automated. Nevertheless, other tasks depend on human judgment, such as an

aircraft guidance. In such a case, sometimes unpredicted events require immediate responses

that demand fast replanning to obtain alternative feasible routes.

This work proposes a computationally efficient solution to the problem of calculating the

trajectory of mobile agents in an environment populated by obstacles. Linear programming by

itself cannot directly model this type of problem, since the solution domain is nonconvex.
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However, recent research on agent trajectory planning [1–10] shows that it is still possible to

use linear programming subject to integer variables constraints to optimize the trajectory of an

agent in such an environment. We usemixed-integer linear programming with the assumption

that the totality of space available should not be considered as a valid possibility for an agent in

a trajectory optimization problem at any and every moment. In the previous example of the

car travel, the headlights privilege lighting the ground near the car over the more distant areas.

Even though these also require illumination, they are not so relevant as the first ones for steer-

ing the agent.

In Fig 1 we have an example of the use of binary variables in an instance of a trajectory plan-

ning problem. Initially in the position indicated by index k, the agent takes the envelope, repre-

sented in continuous lines, of each obstacle that is represented in dashed lines to obtain the

trajectory along steps k + 1, k + 2, . . ., k + 4. In such a case, each obstacle would have a set of

binary variables, indicated below the figure, that denote at each timestep whether the agent is

respectively in the Left-hand side, Below, in the Right-hand side or Above each obstacle.

Therefore, 28 binary variables would be necessary at every timestep to avoid the obstacle set in

such a case.

This problem of obstacle avoidance is NP-hard [11–13], and the current approaches found

in the scientific literature are tailored for each specific circumstance. For example, [14] obtains

the optimal solution after exploring the complete solution space, which may demand, for com-

plex environments, an intense computational effort that might be unattainable in a small time

slice. With the assumption that it is possible to know in advance the position of fixed obstacles

in the environment, we propose a strategy to obtain a sub-optimal trajectory for the agent

through obstacle clustering. Basically, to the traditional mixed-integer algorithms of obstacle
avoidance we combine an iterative deepening implicit tree search in the subproblems of cluster
avoidance, with a non-increasing clustering distance. As the number of obstacles gives an

upper-bound to the number of clusters, by reducing the clustering distance, we detect the best

existent solution for the trajectory planning problem.

The aforementioned complexity of such problem means that, as the number of obstacle

increases, trajectory optimization becomes considerably more costly. A natural plan, then,

would be to reduce the number of obstacles considered throughout the process. In possession

of scheme in Fig 1, it would be possible to cluster obstacles 1 and 2, once the agent moves

Above both, which sets the fourth column for them along the entire trajectory. Note that this

decreases the size of the problem to be solved, since a single cluster would replace both

obstacles.

The immediate reaction of a human being in traffic, when driving a car and trying to escape

a collision between two other cars in front of his/her own, is to promptly cluster the obstacles

ahead, like other cars or lamp posts, and seek complementary territory, free of obstacles, for

navigation. As previously noted, this will be one of the approaches taken in this paper. In such

a case, the fastest way to compute a safe path is to cluster nearby obstacles and initially seek to

drive the car into an open nearby position. The question that would remain, in such a case,

would be about how far apart two obstacles must be to be clustered together, and the strategy

one would choose would again follow the intuition that one should first look for safe positions

in the wider open areas.

However, other approaches can be additionally adopted to reduce the complexity of such

problem. Consider in Fig 2 the complete map of the environment for the obstacles of Fig 1,

where Q represents the terminal set. Among other simplifications, after step k + 2, the entire

trajectory of the agent shall only move away from obstacles 1 and 2, for example. Considering

them as obstacles to be avoided, when it is already predicted that a possible collision will not

happen, is a source of computational waste. In addition, take for example obstacles 14 and 20.

Notation:

X � ℝ4
; polytope of admissible

state values;

U � ℝ2
; polytope of admissible

control values that con-

tains the origin;

x 2 X , plant state;

x0 2 X , initial plant state;

u 2 U , control input;

r 2 R2
, agent position;

k 2 N, current time;

�̂½k þ ajk�, predicted value of� in

time k+ α based on infor-

mation available up to k;

N½k� 2 N, MPC control and predic-

tion horizon;

Q � R4, polytope of terminal state

values;

g � R, weight of the term associ-

ated with fuel consumption

in the cost function;

NQ 2 N, number of sides of the tar-

get set;

Mt 2 Rþ, constant large enough to

make terminal constraints

inactive;

Nf 2 N, number of faces of the

obstacles;

O � R4
, polytopic obstacle;

�N 2 N, maximal horizon;

b 2 {0, 1}, binary variable associated

to horizon minimization;

Mo 2 Rþ, constant large enough to

make obstacle and inter-

sample avoidance con-

straints inactive;

Nob 2 N, number of obstacles in T ;

Rob 2 R
NfNob , coordinates of the

obstacles;

T � R2, territory that contains

obstacles;

bO
f;k 2 f0; 1g, binary variables associated

to the obstacle avoidance

constraints;

Nc 2 N, number of clusters in T ;

PLOS ONE Computational load reduction using MIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0233441 June 5, 2020 2 / 45

(grant 141007/2016-8). NYS acknowledges

FAPESP (grant 2016/01860-1) and CNPq PQ.

RJMA acknowledges CAPES (grant 88881.145490/

2017-01) and the German Ministry of Education

and Research through the Alexander von Humboldt

Foundation for his fellowship. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0233441


Right after step k + 1, the entire trajectory of the agent is predicted to stay below both obstacles

and to the right-side of obstacle 20. The expense of limited computational resources on irrele-

vant calculations such as these is also useless, since they are already predicted not to aid in the

computation of the final trajectory. These are a preview of the techniques we will use here.

1.1 Motion planning and Mixed-Integer programming

In the literature, examples of motion planning are abundant, and regardless of the medium or

vehicle used, they may be split into two separate layers: path planning and trajectory planning.

Path planning methods build routes without time parametrization, as in [15] or [16], which

define crossover and mutation operators on genetic algorithms, or in [17], which uses a wave-

let-based decomposition for easing the computational load of a multiresolution path planner.

Trajectory planning methods, on the other hand, search for routes that respect the move-

ment constraints along time. For example, while in [18] a linear regression model predicts the

evolution of human mobility in regions of a megalopolis, [19] uses statistical modeling to

investigate the hierarchical structure of accident causes in autonomous vehicles and [20] pro-

poses a proportional-integral-derivative (PID) controller for the real-time robotic stabilization

of a robotic arm to act upon a dynamically moving human with a tumor.

However, it is possible to combine both path and trajectory planning by using Mixed-Inte-

ger Programming. The MIP approach is a general problem-solving framework that involves

both discrete and continuous variables. In the case of agent movement, for example, we may

use the former to model the activation of brake mechanisms while the latter calculates the

speed and yaw angle in a curve. By constraining the domain of some variables to integers only,

it becomes an approach much more general than a Linear Program (LP).

In particular, as in [21], for certain measures only Boolean variables are considered (thus

assuming values 0 or 1). This procedure allows the system dynamics to be modeled by trans-

forming propositional logic equations that derive from it into mixed-integer inequalities,

which can be computed by the existent mixed programming solvers, such as CPLEX [22], Gur-

obi [23], Xpress [24], Xpress-MP [25] or ParaXpress [26].

Applications of MIP in the literature are plentiful, whether in terrestrial [1, 5–8, 18, 19],

aquatic [27–29], aerial [2, 4, 9, 16, 30–32] or even spatial [33] environments. For instance, the

authors propose in [14] an approximate model of aircraft dynamics using linear constraints

and they apply a MIP approach to the trajectory planning of airplanes. The model ensures col-

lision avoidance for each aircraft and guarantees the desired hard constraints fulfillment.

Then, [34] applies a constraint tightening strategy to obtain a robust solution that guarantees

finite-time arrival into an arbitrary target set. In spite of unknown disturbances, the central

idea is to hold a “border” for feedback action as time goes by.

We assume in this manuscript that the computation time demanded in trajectory planning

grows with the number of binary variables used for obstacle avoidance. This is not always

valid, but can be used as a rule-of-thumb for improving computational performance. In [35],

such number is used to express the complement of the polytope regions, which associate a

unique number to each obstacle. As the sequence of the number powers in base 2 is super

increasing, according to [36], any integer can be coded in log2(N + 1) binary digits, which is

the number of binary variables necessary to distinguish between N different regions.

In other words, [35] sets a global limit to the encoding itself. It is important to recall that the

directMIP solution for the trajectory optimization problem in an environment with obstacles

is hard because in every timestep each obstacle face introduces non-convexity into the solution

space [11–13]. As a consequence, for every obstacle with Nf faces, Nf non-convex constraints

shall be added at each timestep to ensure that the desired trajectory remains outside the

Rk 2 R
NfNc , coordinates of the

clusters;

O 2 R2
, edges that connect neigh-

boring obstacles;

O 2 RNf , obstacle set with coordi-

nates Rob;

G ¼ ðO;OÞ, undirected graph of the

obstacle set O with jOj ¼
Nob vertices and |Ω| edges;

dmaxc 2 R, maximum clustering dis-

tance for some given clus-

tering region;

rdðp�Þ 2 R
2
, position values of point p�;

A 2 f0; 1gNob�Nob , adjacency matrix of a

graph with Nob obstacles;

Nd 2 N, number of nodes in the

graph;

C 2 f0; 1gNob�Nob , connectivity matrix of a

graph with Nob obstacles;

d 2 Rþ, Hausdorff distance

between obstacles;

dc½m� 2 R
Nob , interobstacle clustering

distance of the μ-th

obstacle;

Ric 2 R, radius of the inner zone

clustering region;

Rsc 2 R, radius of the surroundings

zone clustering region;

dic 2 R, clustering distance of the

inner zone clustering

region;

dsc 2 R, clustering distance of the

surroundings zone cluster-

ing region;

doc 2 R, clustering distance of the

outer zone clustering

region;

Drao 2 R
Nob , agent-obstacle distances;

Dro 2 R
Nob�Nob , interobstacle distances;

~C 2 f0; 1gNc�Nob , connected components

matrix of a graph with Nob

obstacles and Nc clusters;

Rf 2 R
4, coordinates of the projec-

tion of Q onto the position

space;

PQ, projection of Q onto the

position space;

Ns 2 N, number of steps used in

the simulation;

rx 2 R, position along a coordinate

axis in a horizontal plane

regarding an arbitrary

origin;
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obstacle. As a result, to obtain further processing speedup, every technique obtained after [35]

should involve a pre-processing step, performed separately with respect to the optimization.

For example, [37] proposes a strategy which requires a pre-planned path to define interme-

diate target sets, known as waypoints. Alternatively, [38] obtains large ellipsoidal regions of

convex obstacle-free space in intricate environments with a greedy convex segmentation tech-

nique and [31] provides an entirely collision-free path with reduced number of integer vari-

ables. In turn, [39] divides large and complex environments into smaller segments through

many pre-processing steps, [40] uses convex optimization to obtain target defect areas and

[41] builds a convex lifting which partitions the space and descends to convex optimization.

However, we often demand a dynamically-built method in actively-changing scenarios, and

this is a special contribution offered here. For instance, [42] develops a resembling approach

with a three-stage algorithm: first it computes a collision-free path through the environment,

next it generates convex polytopes that contain such route and then it poses a MIP to deter-

mine the dynamically feasible path. Yet, we know that peripheral, possibly distant, obstacles

are not as significant as those circumvented along a path, which opens way to achieve perfor-

mance gains in scenarios with many obstacles.

Additionally, it is worth noting that the approaches here presented do not count on pre-pro-

cessed trajectory segments. But, as it will be clear, the results we achieved introduce a feasible

and versatile way of solving the trajectory planning problem, more specifically through obsta-

cle clustering.

2 Materials and methods

In this article we study the problem of maneuvering an agent into a target region in a

two-dimensional environment. The agent has state x, compounded by its position r and

velocity v, and must not collide against obstacles. The dynamics of the agent is represented

in Eq (1):

x½k þ 1� ¼ Ax½k� þ Bu½k� ð1Þ

Model Predictive Control (MPC) is used to perform the maneuver of the system in Eq (1).

The core of the control problem is to choose optimally the predictions x̂½kþ jjk� and the corre-

sponding û½kþ jjk� for each timestep j 2 {0, . . ., N}. To attain the target set Q in finite time,

we take the horizon length N[k] as a decision variable within the optimization, which repre-

sents the predicted time of entering it.

This paper deals with the task of maneuvering an agent with linear dynamics minimizing

the cost function

J½x½k�� ¼ min
û;x̂ ;N½k�

XN½k�

j¼0

ð1þ g k û½kþ jjk� k1Þ ð2Þ

subject to

x̂½kþ jjk� 2 X ; ð3aÞ

û½kþ jjk� 2 U; ð3bÞ

r̂½kþ jjk�=2O; ð3cÞ

x̂½kþ N½k� þ 1jk� 2 Q½N½k� þ 1�; ð3dÞ

ry 2 R, position along a coordinate

axis (perpendicular to the

first) in a horizontal plane

regarding an arbitrary

origin;

vx 2 R, velocity regarding the rx

position;

vy 2 R, velocity regarding the ry

position;

ax 2 R, acceleration regarding the

vx velocity;

ay 2 R, acceleration regarding the

vy velocity;

T 2 Rþ, sample period in time

units;

Lz 2 R, dimension of the random

obstacle environment in

the same axis as the one of

rz, where rz refers to either

the same axis of rx or ry;

bz 2 R, relative coordinate of the

obstacle center in the

same axis as the one of rz,

where rz refers to either

the same axis of rx or ry;

hz 2 R, average length of a ran-

dom obstacle in the same

axis as the one of rz, where

rz refers to either the same

axis of rx or ry;

Bz 2 R, coordinate of the center of

the obstacle regarding an

arbitrary origin, where z

refers to either the same

axis of rx or ry;

f0z 2 R, position of the smallest

coordinate of the environ-

ment regarding an arbi-

trary origin, where z refers

to either the same axis of

rx or ry;

f1z 2 R, position of the largest

coordinate of the environ-

ment along the same coor-

dinate axis of f0z;

mz 2 R, length of a border which

defines the region that

contains the obstacle set,

where z refers to either the

same axis of rx or ry;

Nbob 2 N, number of bygone obsta-

cles in a territory;

Neob 2 N, number of exterior obsta-

cles in a territory
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x̂½kþ jþ 1jk� ¼ Ax̂½kþ jjk� þ Bû½kþ jjk�; ð3eÞ

j ¼ 0; 1; . . . ;N½k�: ð3fÞ

In Fig 3 we have a representation of the projection PQ of Q onto the position space.

2.1 Time minimization

It is possible to transform a variable horizon problem involving time minimization into a fixed
horizon one with the use of integer variables. With the assumption of a polytopic set Q of

Fig 1. Binary variable use in a trajectory planning problem. To obtain the trajectory, the agent takes the envelope, represented in continuous lines, of

each obstacle that is represented in dashed lines.

https://doi.org/10.1371/journal.pone.0233441.g001
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Fig 2. Complete map for the trajectory planning problem. The agent must attain the target set Q while avoiding obstacles.

https://doi.org/10.1371/journal.pone.0233441.g002
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terminal constraints,

Q ¼ fxjDmx � Hmg ð4Þ

in which Dm 2 RNQ�4 andHm 2 RNQ .

To perform the time minimization task, the terminal constraint in Eq (3d) can be rewritten

by making use of auxiliary binary variables b[j] which are determined as b[j] = 1 if N[k] = j and

b[j] = 0 otherwise. The following constraints impose, for some j such that b[j] = 1 and in inter-

play with the cost function to be redefined in Eq 7, that the agent must be within Q, where Ns
is a fixed maximum horizon that must be larger than than the optimal N[k]:

dmi x̂½kþ jþ 1jk� � hmi þMtð1 � b̂½kþ jþ 1jk�Þ; 0 � j � Ns � 1 ð5Þ

with dmi and hmi corresponding respectively to i-th line of matrix Dm and to the i-th component

of vectorHm.

To ensure that the binary variable b assumes the unitary value only once over the horizon

Ns, the following constraint is defined:

XNs � 1

j¼0

b̂½kþ jþ 1jk� ¼ 1 ð6Þ

Fig 3. Example of a trajectory planning environment. The agent is initially in r0 in a trajectory planning problem,

and in this case, x0 = [1 0 6 0]T and Q could be defined by 8m� rx� 10m, 1m� ry� 3m, |vx|�0.01m/s and |vy|�
0.01m/s, for example.

https://doi.org/10.1371/journal.pone.0233441.g003
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As a result, the variable-horizon cost function in Eq (2) can be rewritten by using a binary

variable vector b to ensure the correctness in a fixed horizon approach:

Jðx½k�Þ ¼ min
û ;x̂ ;b̂

XNs � 1

j¼0

½ðjþ 1Þb̂½kþ jþ 1jk� þ g k û½kþ jjk� k1� ð7Þ

where û½kþ jjk� ¼ 0 for j> N[k], i.e. the control is zero for all steps beyond the chosen maxi-

mal horizon �N . This is a consequence of the relaxation of Eqs (3a) and (3c) after N[k] in the

minimization of Eq (2).

In Fig 4 there is a scheme that represents the relaxation of the time minimization binary

variables in a trajectory planning problem. Note that N?[k = 2] = N?[k = 1] − 1, i.e. the optimal

horizon at k = 2 is one unit smaller than the one at k = 1. The constraints in Eq (5) are relaxed

for j> N?[k = 1], once b̂½kþ �N jk� ¼ 1, and for j> N?[k = 2], once b̂½kþ �N � 1jk� ¼ 1. To

accomplish it, the scalarMt must be chosen such thatMt > dmi x̂ � h
m
i , for all admissible x [21].

That is,Mt must be chosen large enough for every x reachable in �N steps, to serve as a barrier

that allows numerical solvers to correctly modulate the domains of action of the continuous

variables through the binary variables b̂½kþ jjk�; 0 � j � Ns � 1. Such variables act as sidings

that separate the action domain of each continuous instance of the problem and allow the

solver to perform global optimization calculations by evaluating multiple local domains at

once. Note also that, for k = 2, the binary variable b̂½kþ �N jk�, which marks the arrival to Q in

the last step of the simulation horizon, is clear, so that Eq (7)� Eq (2) in this problem

instance.

2.2 Obstacle avoidance

The optimization of trajectories in two-dimensional territories, clear of obstacles, presents

an inherently convex search space, but the insertion of an obstacle into the region may

render the problem not convex. Hence, we describe the commonly adopted remodeling that

follows.

As a common requirement in an agent guidance problem, its formulation includes an

obstacle avoidance task. Any polytopic obstacle O can be represented by:

O ¼ fxjSOx � COg ð8Þ

with SO 2 RNf Ns�4
and CO 2 RNf Ns .

Fig 4. Constraint relaxation scheme in a variable horizon problem. For k = 1, the binary variable b̂½kþ �N jk� is set in

the horizonN?[k = 1], when x̂½kþ �N jk� 2 Q. In k = 2, the agent repeats another instance of the same variable horizon

problem, which now sets variable b̂½kþ �N � 1jk�, as x̂½kþ �N � 1jk� 2 Q for N?[k = 2].

https://doi.org/10.1371/journal.pone.0233441.g004
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We avoid collisions against obstacles by imposing that, at each time step, the position of the

agent is outside of at least one face of each obstacle. This is done through the binary variable

bOf ;j, which sets if the agent is outside face f of obstacle O at time step k + j.
As we need x½k�=2O � R4; 8k 2 N, we should have

sOf x̂½kþ jjk� � c
O
f þ ðb

O
f ;j � 1ÞMo; 1 � j � Ns ð9aÞ

XNf

f¼1

bOf ;j � 1 ð9bÞ

where sOf and cOf correspond both to the f-th line of matrix SO and to the f-th element of vector

CO, respectively.

Obstacle avoidance in a trajectory planning problem can be attained by using the strategy

of Alg 1. Initially we load the simulation parameters, and while the agent state x[k] does not

attain Q, based on Ns and the positions of the obstacle set Rob, we assemble the matrices A and

B that contain the constraints of the problem, plan the trajectory by solving a traditional MIP

problem, and finally evaluate and update the system state.

Alg 1. Closed-loop receding horizon maneuvering with Obstacle Avoidance.
Input: x½k�;Rob;Ns;Q
Output: x[k + 1]
1: Load Simulation Parameters
2: while x½k�=2Q do
3: [A, B] Assemble Problem Matrices(Rob, Ns)
4: u[k] Solve MIP Problem(A, B)
5: x[k + 1] A x[k]+ B u[k]
6: k  k + 1
7: end while

In Fig 5 there is a flowchart of the main variables produced throughout the different steps

of the traditional obstacle avoidance algorithm. The regular data flow is represented by the

loop over state x[k] until the next state x½k þ 1� � Q.

However, as each obstacle partitions the search space into Nf disjoint regions, the overall

performance in environments with tens of obstacles is severely deteriorated with regard to the

initial obstacle-free case.

2.3 Inter-sample avoidance

In addition to guaranteeing obstacle avoidance in the sampled time steps, inter-sample avoid-

ance is achieved by applying the avoidance constraints from step j + 1 at the preceding

Fig 5. Data flowchart of the closed-loop receding horizon maneuvering. The agent solves the optimization problem to avoid the obstacle set Rob and

applies the first element u[k] of the control sequence u[k + i], 0� i� Ns − 1.

https://doi.org/10.1371/journal.pone.0233441.g005
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timestep j, as proposed by [43]. This imposes additional constraints to the problem, but

employs no additional binary variables, as Eq (10) shows.

sOf x̂½kþ jjk� � cOf þ ðb
O
f ;jþ1
� 1ÞMo; 0 � j � Ns � 1 ð10Þ

2.4 Considering fuel expense

In order to cope with the one-norm of the control variables in Eq (7), which penalizes

fuel expense, we add a set of auxiliary variables � which are constrained [44]. As a result, in the

optimization we obtain a compromise solution between fuel expense and time minimization.

Then, we add the following constraints to the problem:

� �̂x½kþ jjk� � ûx½kþ jjk�; ð11aÞ

� �̂y½kþ jjk� � ûy½kþ jjk�; ð11bÞ

� �̂x½kþ jjk� � � ûx½kþ jjk�; ð11cÞ

� �̂y½kþ jjk� � � ûy½kþ jjk�; ð11dÞ

0 � j � Ns � 1

The previous cost function given by Eq (7), then, reaches its final form in Eq (12)

Jðx½k�Þ ¼ min
�̂ ;x̂ ;b̂

XNs � 1

j¼0

½ðjþ 1Þb̂½kþ jþ 1jk� þ gð�̂x½kþ jjk� þ �̂y½kþ jjk�Þ�; ð12Þ

subject to the constraints in Eqs (3a), (3b), (5), (6), (9), (10) and (11), for 0� j� Ns − 1.

3 Obstacle clustering algorithm

3.1 Graph theory background

In this work, we assume that each obstacle is a static object with known coordinates. Let Rob �
RNf Nob be the the smallest and largest coordinates of the projection of each obstacle of O into

the position space. Let also T be a territory with target set Q in an environment around the

agent that contains Nob obstacles in a given clustering region, with a corresponding maximum

clustering distance dmaxc , chosen by the trajectory planner.

Then, T can be mapped into an undirected graph G ¼ ðO;OÞ, where the order of the

graph is jOj ¼ Nob and |O| indicates the number of obstacle pairs that maintain a distance

d � dmaxc . As an example, two nodesO1 andO2 corresponding to obstacles O1 and O2 in O
with points p1 2 O1 and p2 2 O2 will be connected if

d ¼ min
p12O1 ;p22O2

ðk rdðp1Þ � rdðp2Þ k2Þ � d
max
c ð13Þ

where the function rd(�) returns the position of �.

The fulfilling of Eq (13) for each pair of obstacles is recorded by the adjacency matrix A, a

square matrix formed by Nob lines in which aij = 1 if and only if the vertices (obstacles, in this

case)Oi andOj are connected, and aij = 0, otherwise.
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Definition 1. Let X ¼ ðA _ IÞ for the identity matrix I, where _ is the element-wise OR
operation. Then, if we takeXz for z 2 N, whereXz is the ‡-th power of matrixX ¼ ðxÞij, each ele-
ment ðxrÞij ¼ 1 if and only if there is a path between the obstacles corresponding to nodesOi and
Oj with length l� r [45].

Definition 2. Let C ¼ ðcÞij, in which cij ¼ ðx
Nd � 1Þij, where Nd is the number of nodes in the

graph. Then cij = 1, 8i, j� n if and only if there is a path fromOi toOj in graph G. C is known as
the connectivity matrix of G.

If lines—or columns, as A and C are symmetrical for undirected graphs—i and j in C are

equal, thenOi andOj will have a path to the same nodes. In this case, they will belong to the

same connected component, or cluster, as we will name it from now on.

Remark 1. To verify if the obstacles corresponding to nodesOi andOj belong to the same clus-
ter, it is enough to compare the i-th and j-th lines (or columns) in C. If they are equal, then the
obstacles belong to the same cluster.

As an example, the terrain that contains a set of Nob = 6 obstacles (Fig 6a), can be repre-

sented by the graph in Fig 6b, which is described both by the adjacency matrix A and the con-

nectivity matrix C in Eq (14).

A ¼

0 0 1 1 0 0

0 0 0 1 0 0

1 0 0 1 0 0

1 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; C ¼

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð14Þ

The resulting clustering procedure is computationally efficient, since in order to obtain the

connected components of O it is enough to assemble A, with a simple set of comparisons

between the obstacle positions, and to obtain C, with only the use of matrix multiplications.

Fig 6. Example of the graph extracting from a spatially located set of obstacles. (a): Spatial obstacle distribution. (b): Graph of the obstacle

interconnection.

https://doi.org/10.1371/journal.pone.0233441.g006
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Alg 2. Copertinence test of two obstacles in the same cluster.
Input: C; i; j
Output: SameCluster
1: if Cði; :Þ ¼ Cðj; :Þ then
2: SameCluster  True
3: else
4: SameCluster  False
5: end if

From Eq (13), the interobstacle distance is obtained as the Hausdorff distance between the

sets defined by the points inside obstacles Oi and Oj.
Here, as Rob contains the stacked coordinates in the x- and y-axis of the lower left-hand side

and the upper right-hand side corners of every non-intersecting obstacle, to determine the

interobstacle distances Δro between every two obstacles, it is enough to make a simple set of

comparisons and operations with the position of the corners of every obstacle pair. It is worth

noting that, as long as the environment does not change and is supposed to be static, Δro can

be computed offline and used throughout the agent movement, once it depends only on the

environment topology. It is also worth remarking that the clustering distance dc is the generali-

zation of dmaxc for multiple obstacles, as next section will highlight.

It is possible to check the copertinence of two obstacles to the same cluster with Alg 2, and

there is a representation of this clustering strategy in Alg 3. Here, Δrao is an array in which

each element Δrao[i] is the value of the distance between the agent and obstacle Oi. The main

idea is to obtain the matrix C, matrix compounded by Nc lines and Nob columns which indi-

cates for the agent position r and the obstacle set position Rob if two obstacles are neighbors in

a given clustering region. The first for loop identifies the innermost clustering region each

obstacle belongs to in order to set the respective clustering distances dc[μ], for each μ-th obsta-

cle. The next two nested for loops build the adjacency matrix A and as there are no loops in G,

we must add A to the identity matrix before raising it to (Nob − 1) − th power, so as to propa-

gate the links that pass through a node and obtain the maximum number of obstacles clustered

together in the environment. Next we obtain the connectivity matrix C and, as we are only

interested in the identification of the connected components of obstacles, we finally set the

connectivity of these as 1.

Alg 3. Obstacle clustering.
Input: r, Rob, Ric, Rsc, dic, dsc, doc, Nob
Output: C
1: Δrao get agent-obstacle distances (r, Rob)
2: for all i � Nob do
3: if Δrao[i]<Ric then
4: dc[i] dic
5: else if Δrao[i]<Rsc then
6: dc[i] dsc
7: else
8: dc[i] doc
9: end if
10: end for
11: Δro get interobstacle distances (Rob)
12: for all i � Nob do
13: for all j � Nob do
14: if Δro[i, j]<min(dc[i], dc[j]) then
15: A½i; j�  1;

16: A½j; i�  1;

17: else
18: A½i; j�  0;

19: A½j; i�  0;
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20: end if
21: end for
22: end for
23: C ðAþ IÞNob � 1

24: for all i � Nob do
25: for all j � Nob do
26: if C½i; j� > 1 then
27: C½i; j�  1

28: end if
29: end for
30: end for

These tools allow us to build a clustering strategy that directly associates the reduction in

the computational effort to the trajectory planning problem in the presence of obstacles,

through a more refined clustering only for closer obstacles. This is the subject of the next

subsection.

3.2 Dynamic obstacle clustering strategy

The approaches proposed by [30, 38] consider the interobstacle relative positions to find con-

vex regions of obstacle free space, which is analogous to considering the interobstacle distances
Δro to perform the clustering procedure, before optimization per se. In the trajectory planning

problem, the computational speedup that these approaches obtain is a consequence of taking

into account, in the avoidance modeling, the clusters themselves instead of the obstacles. As

those potentially consist in a smaller number regarding these, less binary avoidance variables

and constraints will possibly be used, fact which produces a problem that can be solved with

less computational effort.

This work adds to this rationale the relative agent-obstacle position Δrao. The strategy we

adopt segments this distance in regions around the agent, and flexibilizes the effective inter-

obstacle clustering distance dc in each of these regions. For obstacles in a region closer to

the agent, a more subtle clustering with a smaller value of dc is adopted. For more distant

obstacles, a coarser clustering may be used with a greater value of dc, as these obstacles are

not in the immediate future of the agent. In this way, two obstacles can be clustered together

while distant from the agent, but they would possibly separate into distinct clusters if the

agent approaches them along its trajectory. Once less binary avoidance variables and con-

straints would be used compared to the single clustering distance case, a smaller total

computational effort would be necessary, saving computational time to find the desired

trajectory.

To make the exposition easier, here we will consider only polytopic (more specifically, rect-

angular) obstacles with sides parallel to the axes. Nonetheless, it must be remarked that the

technique proposed in the present paper can be extended for any form of polygonal obstacles.

3.2.1 Close obstacles clustering. This section describes the first clustering strategy this

paper proposes. A typical scenario for trajectory planning is shown in Fig 7. Each clustering

region is represented as a circle around the agent with the respective clustering radii Ric, Rsc
and Roc. The clustering distances dic, dsc and doc are depicted at the bottom of the figure.

After obtaining the connectivity matrix C, which describes the interconnections among

close obstacles, the next step is to identify the coordinates of the clusters, as Alg 4 shows. This

is done by boxing the convex hull of the connected components of obstacles in the environ-

ment, according to the value of dc chosen in the clustering algorithm. After that, it is just a mat-

ter of solving the optimization problem by considering cluster avoidance, with coordinates Rκ,
instead of obstacle avoidance, with coordinates Rob, with the constraints proposed in the previ-

ous section.

PLOS ONE Computational load reduction using MIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0233441 June 5, 2020 13 / 45

https://doi.org/10.1371/journal.pone.0233441


Alg 4. Cluster coordinates extraction.
Input: Rob; C;Nc;Nob
Output: Rκ
1: c  1
2: o  1
3: ~C  Extract Connected ComponentsðCÞ
4: while c � Nc do
5: while o � Nob do
6: if ~C½c; o� > 0 then
7: CH  convex hull(c, o)
8: Rκ  bounding box(CH)
9: end if
10: o  o + 1
11: end while
12: c  c + 1
13: end while

The scheme in Fig 8 represents this strategy with three different agent positions. Initially,

the agent estimates a path that goes down the largest cluster, to the east (Fig 8a). However, as

the agent starts moving, some obstacles of this cluster enter into the surroundings-zone
(Fig 8b) and the algorithm splits it up in two smaller clusters, which frees a corridor for the

agent to reach the target (Fig 8c).

We depict the algorithm that represents this strategy in Alg 5. Basically, to the usual prob-

lem of trajectory planning, with instructions shown in black, we include an obstacle clustering

Fig 7. Typical scenario in a trajectory planning problem. The agent is depicted as a blue dot, the obstacles in green and the target set Rf as a blue
square.

https://doi.org/10.1371/journal.pone.0233441.g007
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phase, shown in blue. Initially, we load the simulation parameters, i.e. obstacle positions, clus-

tering distances, and so on, and obtain the Adjacency and Connectivity matrices A and C. In

possession of C, it is straightforward to obtain the cluster configuration Rκ and perform a tradi-

tional trajectory planning to reach the target region PQ.

Alg 5. Closed-loop receding horizon maneuvering with Close Obstacles Clustering

Algorithm.
Input: x[k], Rob, Rf
Output: x[k + 1]
1: Load Simulation Parameters
2: while x½k�=2Q do
3: Rk  Cluster Obstacles in Neighborhood(r[k], Rob, dc, Ric, Rsc,
Roc)
4: [A, B] Assemble Problem Matrices(Rk, Ns)
5: u[k] Solve MIP Problem(A, B)
6: x[k + 1] A x[k]+ B u[k]
7: k  k + 1
8: end while

In Fig 9 there is a flowchart of the main variable data types produced throughout the differ-

ent steps of the Close Obstacles Clustering algorithm. To the regular flow of an obstacle avoid-

ance algorithm, represented by the feedback on state x[k], we prepend the Clustering step,

represented by the green box, which produces the coordinates of the cluster configuration Rκ
from the obstacle positions Rob. Notice that the complete underlying clustering logic described

along this section in Alg 2, 3, 4 and 5 is here implicit, and that in Fig 9 both the iterations of

the upper minor Clustering loop as the lower major update loop repeat until x½kþ 1� 2 Q.

This clustering component deals only with the current positions of the agent and the obsta-

cles, i.e. it affects the present situation of the system.

4 Complementary strategies for reducing the number of obstacles

In this section we propose additional strategies to reduce the number of obstacles along the

trajectory planning problem. Specifically, both position history as forward movement predic-

tions can help speedup the trajectory planning process.

4.1 Bygone obstacles rebuttal strategy

After optimization, a trajectory between the initial position r[k] and the target set is found. If

all the predicted positions of the agent are closer to PQ than a given obstacle whose projection

into the position space is given by Ob, then such obstacle may be replaced by a single constraint

Fig 8. Scheme of the close obstacles clustering strategy. (a): Obstacles are grouped in 7 clusters. (b): Obstacles are grouped in 9 clusters. (c): Obstacles

are grouped in 8 clusters.

https://doi.org/10.1371/journal.pone.0233441.g008
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independent of the obstacle avoidance binary variables, which may then be removed from the

optimization problem from k + 1 onwards. In such a case, we first determine a straight-line

perpendicular to the segment �pf connecting point p in Ob and point f 2 PQ that produces the

minimum distance between Ob and PQ, and then we translate this straight-line to pass at the

point p. The half-plane defined by this line that contains the current position is guaranteed to

contain all predicted positions by construction and defines the hard constraint that can replace

the bygone obstacle in the subsequent trajectory, and ensures that the agent does not collide

with it.

Therefore, we can replace the obstacle of projection Ob itself (and its binary avoidance vari-

ables bOf ;k) by hard constraints

sObx½k þ jþ 1jk� � cOb ; 0 � j � Ns � 1 ð15Þ

that ensure the agent will be confined to a region away from the obstacle. Here, sOb contains

the coefficients of the straight-line perpendicular to �pf and cOb contains the constant terms

that ensure that the perpendicular line passes at the point p that is closest to PQ.

The illustrative example in Fig 10 represents the inherent concept to this strategy. Each fig-

ure depicts in continuous lines concomitantly both the current and the succeeding positions of

the agent and the scheme exhibits the situation after all the movement updates in each step.

In Fig 11 there is a mixed representation of this approach with the Close obstacles Cluster-

ing strategy in three different agent positions, as the agent approaches the target. For clarity

purposes, we omit both the clustering regions and the clustering distances.

It is important to note that this approach only considers an obstacle as bygone if the pre-

dicted agent-target distances are smaller than the obstacle-target ones in all future steps. This

policy works then by reducing the search space through the gradual removal of obstacles at the

edges of the environment.

Alg 6. Bygone Obstacles Rebuttal.
Input: Rob;Nob;PQ; r½k�; . . . ; r½kþ Ns � 1�

Output: Rob
1: for each o � Nob do
2: Ob  Get Coordinates(Rob, o)
3: if max½distðr½k�;PQÞ; . . . ; distðr½kþ Ns � 1�;PQÞ� < distðOb;PQÞ then
4: ðp; f Þ  minp2Ob ;f2PQ

k p � f k2

5: Determine a Straight � line Perpendicular to �pf
6: coefficients  Translate This Line to Pass at p
7: Add Hard Constraint(coefficients)

Fig 9. Data flowchart of the closed-loop receding horizon maneuvering with close obstacles clustering algorithm.

https://doi.org/10.1371/journal.pone.0233441.g009
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8: Rob  Remove (Rob, o)
9: Nob  Nob − 1
10: o  o − 1
11: end if
12: end for

We represent the algorithm that underlies this strategy in Alg 6, where distðr½k�;PQÞ

returns the euclidean distance between r[k] and PQ. In case of an obstacle rebuttal, the coordi-

nates of its projection are removed from Rob and both Nob and omust be decremented, so that

the number of obstacles and the subsequent stacked obstacle are correctly evaluated in the

next iteration. The inclusion of this algorithm in the planning process is highlighted in blue in

Alg 7. Through the assurance that the agent has moved away from the obstacle and will do so

Fig 10. Bygone obstacle rebuttal concept. (a): All the predicted positions of the trajectory lie closer to PQ than the obstacle itself. (b): The straight-line

perpendicular to the line that produces the minimum distance between Rf andOb is represented in black and the hard constraint that replaces the

bygone obstacle in the subsequent trajectory is depicted as a red arrow.

https://doi.org/10.1371/journal.pone.0233441.g010

Fig 11. Scheme of the bygone obstacles rebuttal strategy. The projection of each bygone obstacle into the position space is represented in gray and its

corresponding active hard constraint is drawn as a red arrow. In each figure, there are respectively: (a): 3 bygone obstacles. (b): 6 bygone obstacles. (c):

16 bygone obstacles.

https://doi.org/10.1371/journal.pone.0233441.g011
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in all the predicted trajectory, it is possible to rebut bygone obstacles while ensuring the exis-

tence of a feasible solution to the optimization problem at the next sample times.

Alg 7. Closed-loop receding horizon maneuvering with Bygone Obstacles Rebuttal

Strategy.
Input: x[k], Rob, Rf
Output: x[k + 1]
1: Load Simulation Parameters
2: while x½k�=2Q do
3: Rob  Rebut Bygone Obstacles(Rob, Rf, k)
4: Rk  Cluster Obstacles in Neighborhood(r[k], Rob, dc, Ric, Rsc,
Roc)
5: [A, B] Assemble Problem Matrices(Rk, Ns)
6: u[k] Solve MIP Problem(A, B)
7: x[k + 1] A x[k]+ B u[k]
8: k  k + 1
9: end while

The flowchart in Fig 12 represents the data produced throughout the main steps of the

Bygone obstacles rebuttal algorithm. To the previous Clustering algorithm of Fig 9 we prepend

a bygone obstacle rebuttal step, represented in blue, which removes the bygone obstacles and

adds the respective hard constraints to the problem to be solved thenceforth.

This strategy replaces the initial Nf+ 1mixed-integer avoidance constraints of each bygone

obstacle with only one hard constraint, and allows for removal Ns Nf binary variables for each

bygone obstacle that is replaced by a simple inequality.

4.2 Exterior obstacles contempt strategy

Once the agent obtains a path to the target PQ, if all the predicted positions of the agent lay on

the same side of some obstacle whose projection into the position space is given by Oe, then

such obstacle may be replaced by the hard constraint corresponding to this very side. The

example in Fig 13 illustrates this idea.

It is worth emphasizing that, while in Eq (9) f ranges from 1 to Nf, in the case of the exterior

obstacle of Eq (16), ~f assumes a single value, which is that of the constraint that is always

Fig 12. Data flowchart of the closed-loop receding horizon maneuvering with bygone obstacles rebuttal algorithm.

https://doi.org/10.1371/journal.pone.0233441.g012
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obeyed along the horizon.

bOe~f
x½kþ jjk� � cOe~f

; 8j 2 f1; 2; . . . ;Nsg ð16Þ

A simple check upon the correspondence of the values that the binary avoidance variables

assume for a given obstacle side along the complete prediction horizon would represent a suffi-
cient condition for identifying an obstacle as exterior. However, there are cases in which an

obstacle can be exterior and not have all binary variables fixed True to a certain side through-

out the whole prediction horizon, due to the redundancy resulting from the overlap of valid

regions in the presence of a polygonal obstacle.

For example, at k = k0+ 1 in Fig 13a, if the solver sets the variable of the valid region to the

left-hand side of the obstacle instead of the one above it, the obstacle would not be identified as

exterior at k = k0+ 2 in Fig 13b. In such a case, there are obstacles that could be removed at a

certain instant, but would not. In fact, we do not rely only on the binaries to verify the obstacle

contempt condition, but in fact we calculate whether the condition of the constraint is

respected for each cluster by the predicted positions of the agent at every instant. The choice of

which constraint to adopt in the case of the overlap of more than one valid region becomes

then a design decision. Thus, as the agent circumvents a cluster and proceeds in its path to the

target, the obstacles inside it become exterior and a single hard constraint is added replacing

the whole cluster.

In Fig 14 there is a mixed representation of this approach with the Close Obstacles Cluster-

ing strategy in three different agent positions.

Alg 8. Exterior Obstacles Identification.
Input: U, Rκ, Nc, Ns
Output: ext, current
1: current[1: Ns] Get Trajectory Prediction(U)
2: max_rx  max(Load rx Coordinates(current))
3: max_ry  max(Load ry Coordinates(current))

Fig 13. Exterior obstacle contempt concept. (a): After the first step, all predicted positions represented in gray lie above the upper face of the obstacle.

(b): It is possible to replace this exterior obstacle in the subsequent trajectory by the hard constraint which corresponds to the red arrow that is drawn

from the side ofOe that is collateral to the entire trajectory.

https://doi.org/10.1371/journal.pone.0233441.g013
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4: min_rx  min(Load rx Coordinates(current))
5: min_ry  min(Load ry Coordinates(current))
6: c  1
7: while c � Nc do
8: isLefthand, isBelow, isRighthand, isAbove  False
9: if max_rx < Get Left − hand Side Coordinate(Rκ, c) then
10: isLefthandSide  True
11: else if max_ry < Get Lower Coordinate(Rκ, c) then
12: isBelow  True
13: else if −min_rx < −Get Right − handSide Coordinate(Rκ, c) then
14: isRighthandSide  True
15: else if −min_ry < −Get Upper Coordinate(Rκ, c) then
16: isAbove  True
17: end if
18: ext[c] isLefthandSide _ isBelow _ isRighthandSide _ isAbove
19: c  c + 1
20: end while

Alg 9. Exterior Obstacles Contempt.
Input: Rob, Nob, Rκ, Nc, ext, current
Output: Rob, Nob
1: c  1
2: while c � Nc do
3: if ext[c] then
4: coefficients  Get Active Exterior Constraint(c, Rκ, current)
5: Add Hard Constraint(coefficients)
6: o  1
7: while o � Nob do
8: if Is Obstacle Inside Cluster(o, c, Rob, Rc) then
9: Rob  Remove (Rob, o)
10: Nob  Nob − 1
11: o  o − 1
12: end if
13: o  o + 1
14: end while
15: end if
16: c  c + 1
17: end while

The pseudocode that identifies exterior obstacles is represented in Alg 8. It consists basically

in the comparison of the sides of each cluster, that were previously identified in the clustering

step, with the most extreme predicted trajectory coordinates, either at the left-hand side,

below, at the right-hand side or above, where _ is the boolean OR operator. Here, ext is an

Fig 14. Scheme of the exterior obstacles clustering strategy. The exterior obstacles are drawn in yellow and the respective hard constraints are

represented by red arrows. (a): 7 clusters are identified, 2 of which contain 3 obstacles that become exterior. (b): 3 clusters which contain the 8

remaining obstacles are identified as exterior. (c): Simulation ends with the 16 obstacles replaced by 10 hard constraints.

https://doi.org/10.1371/journal.pone.0233441.g014
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array of boolean variables, in which ext[c] = True if cluster c is exterior. Then, to replace the

exterior obstacle it is enough to add the hard constraint that corresponds to the new exterior

cluster in the planning problem to be solved thenceforth, with the proper contempt of the

obstacles that belong to this cluster from the obstacle set, as Alg 9 shows. Here, function Get
Active Exterior Constraint() returns the coefficients of the exterior constraint that replaces the

exterior obstacle.

Alg 10. Closed-loop receding horizon maneuvering with Exterior Obstacles Contempt

Algorithm.
Input: x[k], Rob, Rf
Output: x[k + 1]
1: Load Simulation Parameters
2: while x½k�=2Q do
3: Rob  Rebut Bygone Obstacles(Rob, Rf, k)
4: Rk  Cluster Obstacles in Neighborhood(r[k], Rob, dc, Ric, Rsc,
Roc)
5: [A, B] Assemble Problem Matrices(Rk, Ns)
6: u[k] Solve MIP Problem(A, B)
7: Rob  Contempt Exterior Obstacles(Rob, u[k], . . ., u[k + Ns − 1])
8: x[k + 1] A x[k]+ B u[k]
9: k  k + 1
10: end while

We represent the pseudocode of this strategy in Alg 10, with the contempt of exterior obsta-

cles highlighted in blue, while the flowchart in Fig 15 represents the data produced throughout

the main steps of the Exterior obstacles contempt algorithm.

Once a cluster is identified as exterior, this strategy replaces the initial Nf+ 1mixed-integer
avoidance constraints of each exterior cluster with only one hard constraint for the whole clus-

ter, and allows for removal Ns Nf binary variables for each cluster that is replaced by a simple

inequality.

Fig 15. Data flowchart of the closed-loop receding horizon maneuvering with exterior obstacles contempt algorithm. To the previous Bygone

obstacles rebuttal algorithm of Fig 12, we append an exterior obstacle contempt step, represented in blue, which replaces the exterior obstacles by the

respective hard constraints to the problem to be solved from then on.

https://doi.org/10.1371/journal.pone.0233441.g015
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4.3 Iterative clustering distance tuning

To decrease the number of binary variables in the optimization problem, the Close obstacles

clustering strategy may entail the elimination of spaces initially available for navigation. This,

in turn, might lead to an infeasible optimization problem, even when in the absence of cluster-

ing a feasible trajectory could be determined. In this section we will describe a scheme that cir-

cumvents this problem and allows to obtain a feasible trajectory to the final region, when one

exists.

To the previous cluster avoidance algorithm in Alg 10 we append an iterative deepening

search in the clustering avoidance subproblems, with a non-increasing clustering distance

highlighted in blue. In Alg 11, if we initialize the clustering distance dc with a value large

enough, the problem could be infeasible. As a result, the if condition of line 7 would hold value

True, dc would be reduced according to the expression in Eq (17) and the continue statement

of line 9 would break the loop execution. As the clustering distance is held as a global variable,

in the next loop iteration, the algorithm would make its prediction with the updated value, and

the execution would continue until the algorithm was able to find a feasible path to the target

set. On the other hand, if the value of dc did not produce initially an infeasible problem, then a

trajectory to the final region would have already been found.

dc  srdc: ð17Þ

Here, 0< sr< 1 is taken as a shrinking rate for dc. Small values of sr imply a high cutback

on dc and a smaller number of clustering attempts until the strategy finds a viable path to Q,

potentially in a configuration with many clusters in the environment. On the other hand, high

values of sr entail a gradual reduction on dc and allow the attainment of a cluster configuration

that is closer to the minimal number of clusters, possibly at the expense of a greater number of

infeasible solution trials.

Alg 11. Closed-loop receding horizon maneuvering with the Iterative Clustering Dis-

tance Tuning Algorithm.
Input: x[k], Rob, Rf
Output: x[k + 1]
1: Load Simulation Parameters
2: while x½k�=2Q do
3: Rob  Rebut Bygone Obstacles(Rob, Rf, k)
4: Rk  Cluster Obstacles in Neighborhood(r[k], Rob, dc, Ric, Rsc,
Roc)
5: [A, B] Assemble Problem Matrices(Rk, Ns)
6: u[k] Solve MIP Problem(A, B)
7: if Is Problem Infeasible(u[k]) then
8: dc  Shrink Clustering Distance(dc)
9: continue
10: end if
11: Rob  Contempt Exterior Obstacles(Rob, u[k], . . ., u[k + Ns − 1])
12: x[k + 1] A x[k]+ B u[k]
13: k  k + 1
14: end while

The flowchart in Fig 16 represents the data produced throughout the main steps of the Iter-

ative clustering algorithm. To the previous Exterior clustering flowchart of Fig 15 we add the

continue statement, represented in blue, which decreases the clustering distance in the avoid-

ance subproblem to be solved thenceforth.
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5 Simulation scenarios

The agent model is that of a particle [14, 34, 37] moving in a plane with axes rx and ry orthogo-

nal to each other, and we define the position vector as rT = [rx ry]. The inputs are the accelera-

tions ax and ay, which result in velocities vx and vy aligned respectively with the rx and ry axes.

In state-space, the continuous-time model is _x ¼ Acx þ Bcu, with state vector xT = [rx vx ry vy]
and control vector uT = [ax ay]. Then, matrices Ac and Bc are given by Eqs (18) and (19).

Ac ¼

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð18Þ

Bc ¼

0 0

1 0

0 0

0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð19Þ

The plant model must be discretized to be used as the internal controller model, since the

MPC controller is implemented in discrete-time. Then, by Zero-Order Hold discretization

Fig 16. Data flowchart of the closed-loop receding horizon maneuvering with iterative clustering distance tuning algorithm.

https://doi.org/10.1371/journal.pone.0233441.g016
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[46] we obtain a model of the form x[k + 1] = A x[k]+ B u[k]. For a sample period of 0.8 time

units, the matrices A and B are then given by Eqs (20) and (21).

Here we assume the units are:m for length and s for time.

A ¼

1 0:8 0 0

0 1 0 0

0 0 1 0:8

0 0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð20Þ

B ¼

0:32 0

0:8 0

0 0:32

0 0:8

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð21Þ

The following parameters are adopted in the controller settings of the agent:

1. constraints over velocities and accelerations: −10m/s� vx, vy� 10m/s and −3m/s2� ax,
ay� 3m/s2

2. maximal horizon: Ns = 18

3. constraints over terminal velocities: −5 × 10−3m/s� vx, vy� 5 × 10−3m/s

4. weight of the sum of the absolute values of the accelerations: γ = 1

The weight γ was chosen to adjust a compromise between fuel expense and time minimiza-

tion, so that the choice of γmakes both contributions comparable in the cost function.

The initial state and terminal set that we use here are summarized in Table 1 for each clus-

tering strategy. The agent starts at rest and is required to reach the terminal set with low speed.

Representative maps are shown in Fig 17a, with the blue dot representing the initial condition

of the Unclustered, Clustering, Bygone and Exterior strategies and the red dot for the initial

position of the Iterative strategy, while in Fig 17b we represent the random map used. In the

Iterative strategy simulations, the agent was brought closer to the central obstacles to increase

the chances of obtaining initially an infeasible problem.

Table 1. Experiments input data.

Strategy x0 Q dc Rc Ns T[s]

Unclustered [0.5 0 0.5 0]T |vx|, |vy|�5 × 10−3 m/s, 18� rx, ry� 20 – – 18 0.8

Close obstacles [0.5 0 0.5 0]T |vx|, |vy|�5 × 10−3 m/s, 18� rx, ry� 20 [1.5 2.5 3.5]T [4 81]T 18 0.8

Bygone obstacles [0.5 0 0.5 0]T |vx|, |vy|�5 × 10−3 m/s, 18� rx, ry� 20 [1.5 2.5 3.5]T [4 81]T 18 0.8

Exterior obstacles [0.5 0 0.5 0]T |vx|, |vy|�5 × 10−3 m/s, 18� rx, ry� 20 [1.5 2.5 3.5]T [4 81]T 18 0.8

Iterative [0.5 0 3.5 0]T |vx|, |vy|�5 × 10−3 m/s, 18� rx, ry� 20 [3 6 9]T [4 81]T 18 0.8

Iterative (random) [0.5 0 3.5 0]T |vx|, |vy|�5 × 10−3 m/s, 18� rx, ry� 20 [3 6 9]T [4 81]T 18 0.8

Initial State x0, Terminal Set Q, Clustering Distance dc, Clustering Radius Rc, Number of Steps Ns and Sampling Period T for experiments of the Unclustered,

Clustering, Bygone, Exterior and Iterative strategies

https://doi.org/10.1371/journal.pone.0233441.t001
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In order to engender a reference to the performance of the algorithms that this work pro-

poses, we employ a version of the problem with the obstacle avoidance constraints relaxed, as a

benchmark to the simulation times. Such version, denominated as Relaxed from now on, is

achieved by changing to 0 the right-side of Eq (9b), what allows, as a valid solution state, none

of the avoidance variables to be activated at every time step.

Also recall that, as a simplification, we approximate each obstacle by its rectangular enve-

lope with sides parallel to the axes. If necessary, [34] provides a more general formulation.

Finally, the CPLEX toolbox from IBM ILOG was used for solving the MILP problem in Matlab

environment.

5.1 Random obstacles generation

Consider the uniformly distributed variables bx, by, hx, hy, where bx and by are both limited

between 0 and 1 and represent relative coordinates of the obstacle center, hx and hy are both

limited between 0.04 and 1.25 and represent respectively the width and height of the obstacle.

Consider also L = [Lx Ly]T, in which Lx and Ly are both 20 and correspond to the dimensions

of the environment.

Let f0x, f0y, f1x, f1y, Bx, By,mx andmy be 8 real numbers, where f0x = f0y = 0 and f1x = f1y = 20

describe respectively the smallest and largest coordinate values in the x and y axes within the

region that contains them in the environment, Bx and By are both limited between 0 and 20

and identify the coordinates of the center of an obstacle andmx andmy account for the border

around the environment which defines the territory that contains the random obstacle set,

wheremx =my = 0.

Fig 17. Maps used for trajectory planning. (a) Map used for the Unclustered, Clustering, Bygone, Exterior and Iterative strategies. (b) Random Map

used for the Iterative strategy.

https://doi.org/10.1371/journal.pone.0233441.g017
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Then, an obstacle in the environment with sides parallel to the axes and center in [Bx By]T

can be randomly generated according to the expression in Eq (22),

Rob ¼ ½Rx0 Ry0 Rx1 Ry1�
T
¼ Bx �

w
2

By �
h
2

Bx þ
w
2

By þ
h
2

� �T

; ð22Þ

where B = (f0 −m)+ (f1 − f0+ 2m)b, in which B 2 {Bx, By}, b 2 {bx, by},m 2 {mx,my}, f0 2 {f0x,
f0y} and f1 2 {f1x, f1y}.

For the generation of uniformly distributed pseudorandom numbers, we used the rand

function in Matlab environment.

6 Results

6.1 Unclustered scenario

For comparison purposes, we obtained the average time to calculate the complete trajectory

that results from the obstacle avoidance procedure in an unclustered scenario, as [34] pro-

poses. For the Unclustered, Clustering, Bygone, Exterior and Iterative strategies in maps of Fig

17a and 17b we obtained each of these times as an average of 30 simulations. The resulting

path for the Unclustered strategy is represented in Fig 18a, with a zoom of the curve drawn

among the obstacles in Fig 18b.

The average simulation times along each iteration of Alg 1 are monotonically decreasing, as

Fig 19 shows with the respective standard deviation. For the unclustered scenario, the average

total simulation time, i.e. the average of the summation of all optimization times from k = 0, 1,

. . ., N[k] until reaching the target set at N[k], is tu� 61.65 s.

Fig 18. Trajectory of the unclustered strategy. (a): Complete trajectory. (b): Central Obstacles Zoom.

https://doi.org/10.1371/journal.pone.0233441.g018
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6.2 Close obstacles clustering strategy

Algorithm 5 was applied for the results in this subsection. In Fig 20, we can observe the evolu-

tion of the clustering strategy as the agent moves towards the goal area. Each figure represents

in continuous lines concomitantly both the current and the succeeding positions of the agent

and each scheme exhibits the situation after all the movement updates in each step.

Algorithm 3 initially groups the obstacles into 12 clusters, which are depicted in Fig 20a.

After the turn to the right-hand side in Fig 20c, the north cluster enters the inner-zone and is

split up into 2 clusters (Fig 20d). Once there are still some obstacles of the cluster to the south

of the agent in the inner-zone, the algorithm considers dic as the active clustering distance and

does not merge the clusters to the south and to the southwest of the territory, totaling 13 clus-

ters in step 8.

In Fig 20e, the clusters to the south and to the southwest of the agent are lumped together,

and the same also happens to the clusters to the north and to the northwest of the territory in

the following steps (Fig 20f and 20g). Once there is no significant change in the environment,

the initially planned trajectory is strictly followed, with

Fig 19. Average elapsed time and standard deviation of the simulations in the unclustered scenario.

https://doi.org/10.1371/journal.pone.0233441.g019
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Fig 20. Trajectory of the close obstacles clustering strategy in the map of Fig 17a. (a) Step 1. (b) Step 4. (c) Step 7.

(d) Step 8. (e) Step 9. (f) Step 11. (g) Step 12. (h) Step 14.

https://doi.org/10.1371/journal.pone.0233441.g020
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J?½kþ 1� ¼ Ĵ ½kþ 1jk� ¼ J?½k� � gk û½kjk� k1 � 1, where Ĵ ½kþ 1jk� is the predicted solution

cost for time k + 1 given k, J?[k + 1] is the optimal cost at time k + 1 and k û½kjk� k1 is the ℓ1-

norm of the control effort applied at time step k.

In this approach, the obstacle set is used only as input of the clustering procedure, without

any update to its components. This means that the computational load remains approximately

fixed throughout the maneuver, except for the natural clustering variations due to the change

in the relative position between the agent and the obstacles. This is evident in the representa-

tion of the number of obstacles Nob at the right of every plot in Fig 20a–20h.

With the Clustering strategy, Fig 21a shows the average time spent on each algorithm itera-

tion. The clustering procedure has as main consequence, regarding the computational times

along each algorithm iteration, an expressive cutback when compared to the ones of the

Unclustered case in Fig 19. By clustering two close obstacles, we remove the need for addi-

tional branches made by the branch-and-bound algorithm along the path of an agent that cir-

cumvents these obstacles.

The average clustering time along the whole trajectory of the agent is tK;k � 0:18 s. The

average total simulation time, i.e. the average of the summation of the times of all optimiza-

tions realized until the target set was reached is tc� 3.79 s. The Clustering strategy has an aver-

age speedup of 16.26 regarding the Unclustered strategy.

6.3 Bygone obstacles rebuttal strategy

In Fig 22 we have the clustering strategy with the rebuttal of bygone obstacles as the agent

moves towards the goal area, i.e. running Alg 7.

In the beginning, the trajectory of Fig 22a is the same as the one of Fig 20a, once this strat-

egy only removes obstacles that are already distancing from the agent and will do so thence-

forth. This approach gradually replaces these obstacles by simple convex constraints once the

agent is predicted to always move away from them, as the drop in Nob to the right-hand side of

Fig 22b–22h shows, with respectively Np
ob ¼ 3; 9; 15; 29; 43, 45 and 50 bygone obstacles, repre-

sented in grey in each figure. The evolution of the classification of Nob can be seen in Fig 23a.

The decrease of the computational load taken as input of the clustering procedure can be

seen both in the representation of Nob, at the right-hand side of every plot along Fig 22a–22h,

as in the obstacle classification in Fig 23a for all the simulation steps.

The average time spent on each algorithm iteration is shown in Fig 21b. Along all steps of

the trajectory, the average time necessary to identify the bygone obstacles is tB;b � 0:01 s and

the average clustering time is tK;b � 0:08 s. With the Bygone obstacles rebuttal strategy, the

average total simulation time, i.e. the average of the summation of all the optimization times

until the target set was reached is tb� 3.14 s, with an average nominal speedup of Sb� 19.64

with regard to the Unclustered strategy.

6.4 Exterior obstacles contempt strategy

In Fig 24a, the Exterior obstacles clustering strategy (Alg 10) initially identifies Ne
ob ¼ 13 exte-

rior obstacles. We represent them in green-yellowish color in the timestep the algorithm iden-

tifies them and in yellow color in the subsequent steps.

One can see that the exterior obstacle contempt strategy complements the effects of the

bygone obstacle rebuttal one. The obstacles that belong to exterior clusters are promptly

removed after the first step, and while the agent circumvents both the central and northwest-

ern clusters, some obstacles of these clusters become bygone obstacles before they are treated as

exterior ones. See the obstacles in the lower-half of the central cluster and to the left-hand side
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Fig 21. Average simulation times with standard deviation. (a): Clustering strategy in the map of Fig 17a. (b): Bygone obstacles clustering strategy in

the map of Fig 17a. (c): Exterior obstacles clustering strategy in the map of Fig 17a. (d): Iterative clustering strategy in the map of Fig 17a. (e):

Unclustered strategy in the map of Fig 17b. (f): Iterative clustering strategy in the map of Fig 17b.

https://doi.org/10.1371/journal.pone.0233441.g021
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Fig 22. Trajectory of the bygone obstacles clustering strategy in the map of Fig 17a. (a) Step 1. (b) Step 3. (c) Step 5.

(d) Step 7. (e) Step 8. (f) Step 9. (g) Step 11. (h) Step 14.

https://doi.org/10.1371/journal.pone.0233441.g022
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of the north-west cluster in Fig 24f–24g. As the agent surpasses both clusters, the predicted

(future) trajectory stands at the same side of them and turns every remaining obstacle in both

clusters into exterior ones. This causes the drop of Nob observed in k = 9 from Fig 24g on. The

maneuver ends with Ne
ob ¼ 32 exterior obstacles and Np

ob ¼ 18 bygone obstacles in Fig 24h, and

the evolution of the classification of Nob can be seen in Fig 23b.

Along all steps of the trajectory, the average time required to identify the exterior obstacles

is tE;e � 0:00 s, the average identification time of bygone obstacles is tB;e � 0:00 s and the

average clustering time is tK;e � 0:05 s. With the exterior obstacles clustering strategy, the

average total simulation time, i.e. the average of the summation of all the optimization times

until the target set was reached is te� 1.61 s, with an average nominal speedup of Se� 38.33

with respect to the Unclustered strategy.

Fig 23. Obstacle classification for the bygone, exterior and iterative obstacle clustering strategies. (a) Bygone Obstacles Rebuttal strategy. (b)

Exterior Obstacles Contempt strategy. (c) Iterative Clustering Distance Tuning strategy (d) Iterative Clustering Distance Tuning strategy in the random

obstacles scenario.

https://doi.org/10.1371/journal.pone.0233441.g023
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Fig 24. Trajectory of the exterior obstacles contempt strategy in the map of Fig 17a. (a) Step 1. (b) Step 2. (c) Step 4.

(d) Step 5. (e) Step 7. (f) Step 8. (g) Step 9. (h) Step 14.

https://doi.org/10.1371/journal.pone.0233441.g024
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6.5 Iterative clustering distance tuning

The results for the Iterative Clustering Distance Tuning Strategy in Alg 11 can be seen in Fig

25. The agent initial state is set as x0 = [0.5 0 3.5 0]T (i.e. the agent is brought closer to the obsta-

cle set) and the first guess for the clustering distance is increased to dc0 ¼ ½3 6 9�
T
, to ensure

the agent is initially surrounded by a cluster. The shrinking rate is taken as sr = 0.75.

Initially, the algorithm groups the obstacles into a cluster configuration that covers the

entire territory, which is not shown in Fig 25. Since no movement is possible, as a single cluster

surrounds the agent and prevents it from choosing a viable action, the algorithm shrinks the

clustering parameters. However, a second infeasible problem arises, which demands another

reclustering procedure.

The result is the maneuver of Fig 25a, with the agent moving south to leave the avoidance

area of the largest cluster. As the agent begins to circumvent it, after Fig 25b, its central-south

obstacles enter into the surrounings-zone. The agent makes a less sharp curve with the new

open area between the clusters and the trajectory ends with Np
ob ¼ 1 and Ne

ob ¼ 49.

The average times needed along the first and the second reclustering steps, which comprise
the time CPLEX needed to conclude that the problem is infeasible, are tR;i;1 � tR;i;2 � 0:01 s.
Along all steps of the trajectory, the average time required to identify exterior obstacles is

tE;i � 0:00 s, the average identification time of bygone obstacles is tB;i � 0:00 s and the aver-

age clustering time is tK;i � 0:05 s.
With the Iterative clustering distance tuning strategy, the average total simulation time, i.e.

the average of the summation of all optimization times until the target set was reached is ti�
1.03 s, with an average speedup of Si� 59.53 with regard to the results of the Unclustered

strategy.

6.6 Iterative clustering distance tuning in the random obstacle scenario

We used the Close, Bygone, Exterior and the Iterative Clustering strategies in another environ-

ment, with obstacles randomly generated according to Eq (22) for Ns = 18 steps, [f0, f1] = [0,

20] andm = 0. Now there are 50 small uniformly-distributed obstacles in the environment and

Fig 26 contains the results. The shrinking rate is kept as sr = 0.75.

The algorithm adjusts the initial clustering distance 4 times, what takes respectively tR;r;1 �
tR;r;2 � tR;r;3 � 0:00 s and tR;r;4 � 0:01 s in each reclustering operation, which includes the

time CPLEX needed to deduce that the problem is infeasible, until the 50 obstacles are

arranged in Fig 26a into 7 clusters for dc� [0.95 1.90 2.85]T.

With the Iterative clustering distance tuning strategy, the average total simulation time, i.e.
the average of the summation of all simulation times until the agent reaches the target set is tr
� 2.63 s, with an average speedup of Sr� 13.43 in relation to the results of the Unclustered

strategy in the random scenario. A comparison of the trajectory that these strategies obtained

can be seen in Fig 27 and is discussed in detail in the Discussion section.

7 Discussion

7.1 Obstacle classification

The obstacle composition for the cases studied in this work can be seen in Fig 23. The main

tendency we can observe is that the more elaborate the strategy, the faster the substitution of

binary variables of obstacle avoidance. While the Bygone obstacle clustering strategy in Fig 23a

replaces all binary avoidance constraints in k = 14, the addition of the Exterior clustering strat-

egy achieves the same in k = 10 and the adoption of the Iterative tuning heuristics
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Fig 25. Trajectory of the iterative clustering distance tuning strategy in the map of Fig 17a. (a) Step 1. (b) Step 2.

(c) Step 3. (d) Step 4. (e) Step 5. (f) Step 6. (g) Step 7. (h) Step 14.

https://doi.org/10.1371/journal.pone.0233441.g025
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Fig 26. Trajectory of the iterative clustering distance tuning strategy in the map of Fig 17b. (a) Step 1. (b) Step 2.

(c) Step 4. (d) Step 5. (e) Step 6. (f) Step 7. (g) Step 8. (h) Step 15.

https://doi.org/10.1371/journal.pone.0233441.g026
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accomplishes it in k = 7. These strategies cooperate in the substitution of binary avoidance var-

iables, and the preponderance of any of them over the others is intrinsically related both to the

clustering distances adopted and the obstacle topology in the environment, as well as the order

in which they are carried out. However, one practical limitation of these algorithms is the need

for full knowledge of the obstacle environment topology upon which they will operate.

Fig 27. Trajectory comparison in the map of Fig 17a for the unclustered, clustering, bygone, exterior and iterative strategies. The proximity in

respect to the euclidean distance with the Unclustered path is given in decreasing order by the Clustering, Bygone, Exterior and Iterative strategies.

https://doi.org/10.1371/journal.pone.0233441.g027
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7.2 Evolution of the cost function and its prediction

In Fig 28 there is a representation of the cost function evolution, in continuous lines, and its

prediction, in dashed lines, along all the simulations presented here.

Along all the steps of the Close, Bygone, Exterior and Unclustered strategies, the cost func-

tion J?[k] corresponds exactly to the prediction Ĵ ½kþ 1jk�made in the previous step, as the

dashed horizontal extensions in the value of Ĵ ½kþ 1jk� show. However, in the Iterative strategy,

both for k = 3 in Fig 28d and for k = 6 in Fig 28f, when an obstacle occupies an inner clustering

region, the clustering algorithm frees previously clustered space that becomes available for the

agent movement, which makes the value of the cost function be less than the prediction previ-

ously made.

Such fact was observed here only in the Iterative clustering strategy, but it is worth noting

that it is a consequence of the distribution of the dc values in the clustering regions around the

agent. With a fine parameter tuning, the Close strategy itself would identify the same

phenomenon.

7.3 Trajectory comparison

In Fig 27 we can compare the trajectories that each strategy obtains in the map of Fig 17a.

While the Unclustered strategy optimizes a trajectory that overcomes the obstacles that com-

pose the central cluster through an internal path, the beginning of the Clustering, Clustering

+ Bygone and Clustering + Bygone + Exterior strategies is exactly the same, moving north to

circumvent it.

After surpassing the central cluster at time t = k0+ 8, the trajectories slightly separate them-

selves until they rejoin at the lower left corner of Q, in t = k0+ 14. In this case, the Exterior
strategy takes a path that prioritizes the vertical displacement to the detriment of the horizontal

one, whereas the Bygone and the Clustering strategies take paths more similar to a straight line

toward the target.

The Iterative clustering strategy in black, on the other hand, chooses the first available path

freed in the iterative deepening search among the obstacles. Thereby, the trajectory of the

agent overcomes the central cluster underneath.

In Fig 27, the comparison of the paths the Clustering, Bygone, Exterior and Iterative strate-

gies obtained against the one optimized by the Unclustered strategy alone shows that the more

comprehensive the changes in the original planning problem, the more the final trajectory

potentially diverges from the optimal path. In such case, there is an increment of approxi-

mately 2.8%, 2.8%, 2.8% and 21.2% in the the value of the cost function with the adoption of

these strategies.

In Fig 29 we have a comparison of the trajectories that the Iterative and the Unclustered

strategies optimize in the random scenario of Fig 17b. The Iterative strategy obtains the noz-

zle-shaped trajectory shown in black, which shows that the path produced can substantially

differ from the optimal one, as a consequence of the different constraints that make up the

problem. Here, there is an increment of approximately 30.7% in the value of the cost function

with the adoption of the clustering strategies.

We will see in the next subsection what are the outcomes of the adjustments made in the

original planning problem, specially regarding the optimization times.

7.4 Computational time

The strategies proposed in this paper have two main effects in the agent trajectory. The first

one is their impact on the resulting trajectories, as discussed in the last subsection. The second
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Fig 28. Evolution of the cost function and its prediction for the clustering, bygone, exterior and iterative strategies. (a): Clustering

strategy in the map of Fig 17a. (b): Bygone obstacles clustering strategy in the map of Fig 17a. (c): Exterior obstacles clustering strategy in the

map of Fig 17a. (d): Iterative clustering strategy in the map of Fig 17a. (e): Unclustered strategy in the map of Fig 17b. (f): Iterative clustering

strategy in the map of Fig 17b.

https://doi.org/10.1371/journal.pone.0233441.g028
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consequence is the decrease in the optimization times, the main drawback in a Mixed Integer

problem and the primary advantage of our approach.

We summarize in Table 2 the resulting computational times of the presented strategies on

the map of Fig 17a. For every strategy we represent both the nominal time of the CPLEX opti-

mization—in the second column—as well as the Total time necessary to obtain the complete

trajectory—in the seventh one. The latter includes all operations performed during the solu-

tion of the computational problem with the only exception of loading it initially into main

memory. Additionally, we also identify the aggregated time, i.e. the time of the operations per-

formed along all time steps from the initial position until the agent reaches the target set, that

Fig 29. Trajectory comparison in the map of Fig 17b for the unclustered and iterative strategies. While the optimal path found by the

Unclustered strategy approaches a straight-line among the obstacles, the path that the Iterative strategy obtains initially moves

northwards to escape the northwestern cluster.

https://doi.org/10.1371/journal.pone.0233441.g029
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each strategy spends to obtain not only the Clustering configuration, but also the Bygone and

Exterior constraints and the overall time spent on Infeasible iterations.

The trajectory of the Relaxed strategy is a straight-line from the initial agent position to the

target set. In this case, the agent behaves as if there is no obstacle to be avoided. Naturally, it is

not possible to attain a faster approach. Despite not being drawn in Figs 27 and 29, its solution

time can be used as a benchmark to obtain the lower-bound on the optimization times.

From the data in Table 2, the main inference is that the extra time spent in the techniques

we propose is negligible when compared to the total simulation time. The CPLEX optimization

time falls progressively as more elaborate clustering strategies are used because the effect of

each new component adds up incrementally to the previous ones.

The Effective speedup column measures the typical behavior of each strategy in practical sit-

uations. It is no use to guarantee speedup only in the problem solving phase, the so-called

Nominal speedup here, if we add overhead in other steps, transferring computational load to

stages not monitored and previous to the main computation. It is necessary to decrease the

total solution time, and from Table 2 we can see that the Nominal speedup propagates to other

solving phases, which renders an Effective reduction in the computing times of approximately

52, 148, 446 and 996 times for the Close, Bygone, Exterior and Iterative strategies, respectively.

All the strategies presented here offer both substantial Nominal and Effective speedups

regarding the Unclustered scenario. Besides that, the Exterior and Iterative strategies also offer

simulation times in the same order of magnitude than the lower-bound offered by the Relaxed

strategy, which shows the effectiveness of the techniques proposed.

The same results for the Unclustered and Iterative Strategies in the Random environment

of Fig 17b are shown in Table 3. Finally, the times spent on reclustering steps in the Iterative

strategy are represented in Table 4. represented in Table 4.

Table 2. Average computational times and speedup for the map of Fig 17a.

Fig 17a Average time [s] Speedup

Strategies: CPLEX Clustering Byg. Constr. Ext. Constr. Infeasib. Total Nominal Effective

Unclustered 61.653 – – – – 2708.2 1 1

Clustering 3.792 0.179 – – – 51.835 16.260 52.246

Bygone 3.139 0.077 0.007 – – 18.189 19.643 148.892

Exterior 1.609 0.048 0.002 0.002 – 6.066 38.327 446.441

Iterative 1.036 0.046 0.000 0.002 0.012 2.718 59.527 996.321

Relaxed 0.736 0.043 0.005 0.000 – 1.160 – –

Average times spent in the CPLEX optimization and the aggregated time to obtain the Clustering configuration, the Bygone Constraints, the Exterior Constraints, the

overall time spent of Infeasible iterations and the Total simulation time.

https://doi.org/10.1371/journal.pone.0233441.t002

Table 3. Average computational times and speedup for the map of Fig 17b.

Fig 17b Average time [s] Speedup

Strategies: CPLEX Clustering Byg. Constr. Ext. Constr. Infeasib. Total Nominal Effective

Unclustered 35.274 – – – – 2676.8 1 1

Iterative 2.627 0.074 0.000 0.002 0.013 5.796 13.429 461.804

Relaxed 0.713 0.051 0.006 0.000 – 1.051 – –

Average times spent in the CPLEX optimization and the aggregated time to obtain the Clustering configuration, the Bygone Constraints, the Exterior Constraints, the

overall time spent of Infeasible iterations and the Total simulation time.

https://doi.org/10.1371/journal.pone.0233441.t003
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8 Conclusion

In this work we proposed a combination of approaches that guaranteed performance improve-

ment through the reduction of the computational load in large scale trajectory planning meth-

ods with obstacle avoidance techniques. While traditional methods find the globally optimal

path via a complete search in the solution space, the technique we proposed pruned areas that

belonged to the constrained domain, which eased the exponential burden related to obstacle

avoidance. This improvement dealt directly with the computation of the complete path of an

agent, i.e. without the definition of any waypoint, which could have resulted in faster computa-

tional times. Through a deferred decision-based technique, we tackled the computationally

heavier problems only if necessary, reducing the solution search time.

We proposed an algorithm that takes into account the pertinence of each obstacle, based on

its temporal relevance to the agent guidance problem. This strategy offered computational

speedup based solely on problem modeling, i.e. independent of the computer architecture or

the variable encoding chosen, which naturally opened space for further improvements on sub-

sequent research.

With the clustering of obstacles, the number of regions to be avoided can be reduced offline

and has the theoretical lower limit of one. The reduction in the number of regions to be

avoided entails a lower computational load online. Since the clustering algorithm is cheap and

runs offline, this yields overall better computational times. However, the clusters impact per-

formance in terms of the cost function, as the optimal solution without clustering might not be

feasible anymore. Therefore, one identifies a compromise between optimality and computa-

tional burden. The iterative clustering distance tuning enables to automatically find clustering

distances that are quasi-minimal to obtain feasibility of the optimization problem with

clustering.

The bygone obstacles rebuttal and the exterior obstacles contempt strategies require a previ-

ous solution to the optimization problem, therefore they cannot be run offline before the opti-

mization. On the other hand, these two strategies remove obstacles that do not affect the

optimal trajectory, therefore optimality is maintained.

As future research proposals we can relate: extension tomultiple agents; optimization of the

cluster configuration; development of an obstacle avoidance strategy with anytime algorithm

capacity; use of other techniques, such as complex networks to identify the clusters or meta-

heuristics to generate convex regions to speedup the MIP solving phase; use of different encod-

ings to improve the solver performance with regard to the obstacle avoidance; and the study of

the effect of uncertainty in the model through the use of robust optimization and fuzzy

programming.

Author Contributions

Conceptualization: Vinı́cius Antonio Battagello, Nei Yoshihiro Soma, Rubens Junqueira

Magalhães Afonso.

Table 4. Average time spent on reclustering iterations.

Map: Iteration 1 [s] Iteration 2 [s] Iteration 3 [s] Iteration 4 [s]

Fig 17a 0.005 0.007 – –

Fig 17b 0.002 0.004 0.002 0.005

Average time spent on reclustering iterations.

https://doi.org/10.1371/journal.pone.0233441.t004

PLOS ONE Computational load reduction using MIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0233441 June 5, 2020 42 / 45

https://doi.org/10.1371/journal.pone.0233441.t004
https://doi.org/10.1371/journal.pone.0233441


Data curation: Vinı́cius Antonio Battagello.

Formal analysis: Vinı́cius Antonio Battagello, Nei Yoshihiro Soma, Rubens Junqueira

Magalhães Afonso.

Funding acquisition: Rubens Junqueira Magalhães Afonso.

Investigation: Vinı́cius Antonio Battagello.

Methodology: Vinı́cius Antonio Battagello, Rubens Junqueira Magalhães Afonso.

Resources: Rubens Junqueira Magalhães Afonso.

Supervision: Nei Yoshihiro Soma.

Validation: Vinı́cius Antonio Battagello, Rubens Junqueira Magalhães Afonso.

Writing – original draft: Vinı́cius Antonio Battagello.

Writing – review & editing: Nei Yoshihiro Soma, Rubens Junqueira Magalhães Afonso.

References
1. Yu C, Feng Y, Liu HX, Ma W, Yang X. Corridor level cooperative trajectory optimization with connected

and automated vehicles Transportation Research Part C: Emerging Technologies; 105; issn: 0968-

090X; https://doi.org/10.1016/j.trc.2019.06.002; pp. 405–421 (2019) Available from: http://www.

sciencedirect.com/science/article/pii/S0968090X18316103

2. Yao J, Ansari N. QoS-Aware Rechargeable UAV Trajectory Optimization for Sensing Service IEEE

International Conference on Communications; (2019) Available from: https://ieeexplore.ieee.org/

document/8761497

3. Tirkolaee EB, Alinaghian M, Hosseinabadi AAR, Sasi MB, Sangaiah AK. An improved ant colony optimi-

zation for the multi-trip Capacitated Arc Routing Problem. Computers Electrical Engineering; issn:

0045-7906. (2018); Available from: https://scholar.google.com/citations?user=-4D9MfAAAAAJ&hl=

fa#d=gs_md_cita-d&u=.

4. Turnbull O, Richards A. Human Control of Air Traffic Trajectory Optimizer. Ieee Trans. Intelligent Trans-

portation Systems. 19, 1091–1099 (2018). Available from: https://ieeexplore.ieee.org/abstract/

document/7959599 https://doi.org/10.1109/TITS.2017.2712637

5. Yu C, Feng Y, Liu HX, Ma W, Yang X. Integrated optimization of traffic signals and vehicle trajectories

at isolated urban intersections Transportation Research Part B: Methodological; 112, pp. 89–112

(2018) Available from: https://scholar.google.com/citations?user=R3zFwpwAAAAJ&hl=en#d=gs_md_

cita-d&u=. https://doi.org/10.1016/j.trb.2018.04.007

6. Tan Z, Lu S, Bao K, Zhang S, Wu C, Yang J, et al. Adaptive Partial Train Speed Trajectory Optimization

Energies; 11; 12, (2018) Available from: https://www.researchgate.net/publication/329205427_

Adaptive_Partial_Train_Speed_Trajectory_Optimization, https://www.mdpi.com/1996-1073/11/12/

3302 https://doi.org/10.3390/en11123302

7. Wu C, Zhang W, Tan Z, Xue F, Yang J. Train Speed Trajectory Optimization With On-Board Energy

Storage Device IEEE Transactions On Intelligent Transportation Systems; pp. 1–11 (2018) Available

from: https://ieeexplore.ieee.org/document/8571186

8. Jin B, Sun P, Xu M, Wang Q. Train Timetable and Trajectory Optimization Using Improved State-space

MILP 37th Chinese Control Conference; Available from: https://www.researchgate.net/publication/

328177990_Train_Timetable_and_Trajectory_Optimization_Using_Improved_State-space_MILP

9. Afonso RJM, Galvão RKH, Kienitz KH. Sense avoidance constraints for conflict resolution between

autonomous vehicles IEEE Intelligent Transportation Systems Magazine; 9:1. pp. 110–122 (2017)

Available from: https://www.researchgate.net/publication/313386477_Sense_Avoidance_Constraints_

for_Conflict_Resolution_between_Autonomous_Vehicles https://doi.org/10.1109/MITS.2016.2605140

10. Fayazi SA, Vahidi A, Luckow A. Optimal scheduling of autonomous vehicle arrivals at intelligent inter-

sections via MILP American Control Conference, pp. 4920–4925, (2017) Available from: https://www.

researchgate.net/publication/318335986_Optimal_scheduling_of_autonomous_vehicle_arrivals_at_

intelligent_intersections_via_MILP

11. Papadimitriou C, Steiglitz K. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall,

(1982) Available from: https://books.google.com.br/books/about/Combinatorial_Optimization.html?id=

u1RmDoJqkF4C&redir_esc=y https://dl.acm.org/citation.cfm?id=31027

PLOS ONE Computational load reduction using MIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0233441 June 5, 2020 43 / 45

https://doi.org/10.1016/j.trc.2019.06.002
http://www.sciencedirect.com/science/article/pii/S0968090X18316103
http://www.sciencedirect.com/science/article/pii/S0968090X18316103
https://ieeexplore.ieee.org/document/8761497
https://ieeexplore.ieee.org/document/8761497
https://scholar.google.com/citations?user=-4D9MfAAAAAJ&hl=fa#d=gs_md_cita-d&u=
https://scholar.google.com/citations?user=-4D9MfAAAAAJ&hl=fa#d=gs_md_cita-d&u=
https://ieeexplore.ieee.org/abstract/document/7959599
https://ieeexplore.ieee.org/abstract/document/7959599
https://doi.org/10.1109/TITS.2017.2712637
https://scholar.google.com/citations?user=R3zFwpwAAAAJ&hl=en#d=gs_md_cita-d&u=
https://scholar.google.com/citations?user=R3zFwpwAAAAJ&hl=en#d=gs_md_cita-d&u=
https://doi.org/10.1016/j.trb.2018.04.007
https://www.researchgate.net/publication/329205427_Adaptive_Partial_Train_Speed_Trajectory_Optimization
https://www.researchgate.net/publication/329205427_Adaptive_Partial_Train_Speed_Trajectory_Optimization
https://www.mdpi.com/1996-1073/11/12/3302
https://www.mdpi.com/1996-1073/11/12/3302
https://doi.org/10.3390/en11123302
https://ieeexplore.ieee.org/document/8571186
https://www.researchgate.net/publication/328177990_Train_Timetable_and_Trajectory_Optimization_Using_Improved_State-space_MILP
https://www.researchgate.net/publication/328177990_Train_Timetable_and_Trajectory_Optimization_Using_Improved_State-space_MILP
https://www.researchgate.net/publication/313386477_Sense_Avoidance_Constraints_for_Conflict_Resolution_between_Autonomous_Vehicles
https://www.researchgate.net/publication/313386477_Sense_Avoidance_Constraints_for_Conflict_Resolution_between_Autonomous_Vehicles
https://doi.org/10.1109/MITS.2016.2605140
https://www.researchgate.net/publication/318335986_Optimal_scheduling_of_autonomous_vehicle_arrivals_at_intelligent_intersections_via_MILP
https://www.researchgate.net/publication/318335986_Optimal_scheduling_of_autonomous_vehicle_arrivals_at_intelligent_intersections_via_MILP
https://www.researchgate.net/publication/318335986_Optimal_scheduling_of_autonomous_vehicle_arrivals_at_intelligent_intersections_via_MILP
https://books.google.com.br/books/about/Combinatorial_Optimization.html?id=u1RmDoJqkF4C&redir_esc=y
https://books.google.com.br/books/about/Combinatorial_Optimization.html?id=u1RmDoJqkF4C&redir_esc=y
https://dl.acm.org/citation.cfm?id=31027
https://doi.org/10.1371/journal.pone.0233441


12. Canny JF. The Complexity of Robot Motion Planning The MIT Press. isbn:0-262-03136-1 (1988) Avail-

able from: https://mitpress.mit.edu/books/complexity-robot-motion-planning

13. Garey M, Johnson D. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H.

Freeman Co. (1990) Available from: https://dl.acm.org/citation.cfm?id=578533

14. Richards A, How JP. Aircraft trajectory planning with collision avoidance using mixed integer linear pro-

gramming. American Control Conference; pp. 1936–1941 (2002) Available from: https://scholar.google.

com/citations?user=pe9bhhAAAAAJ&hl=en#d=gs_md_cita-d&u=.

15. Han Z, Wang D, Liu F, Zhao Z. Multi-AGV path planning with double-path constraints by using an

improved genetic algorithm. Public Library of Science; 12:7, pp. 1–16 (2017) Available from: https://doi.

org/10.1371/journal.pone.0181747

16. Luo H, Liang Z, Zhu M, Hu X, Wang G. Integrated optimization of unmanned aerial vehicle task alloca-

tion and path planning under steady wind. Public Library of Science; 13:3, pp. 1936–1941 (2018) Avail-

able from: https://doi.org/10.1371/journal.pone.0194690

17. Cooper BS, Cowlagi RV. Path-planning with waiting in spatiotemporally-varying threat fields, Public

Library of Science; 13:8, pp. 1–21 (2018) Available from: https://doi.org/10.1371/journal.pone.0202145

18. Wang M, Yang S, Sun Y, Gao J. Human mobility prediction from region functions with taxi trajectories.

Public Library of Science; 12:11, pp. 1–23 (2017) Available from: https://doi.org/10.1371/journal.pone.

0188735

19. Wang S, Li Z. Exploring the mechanism of crashes with automated vehicles using statistical modeling

approaches. Public Library of Science; 14:3, pp. 1–16 (2019) Available from: https://doi.org/10.1371/

journal.pone.0214550

20. Liu X, Wiersma RD. Optimization based trajectory planning for real-time 6DoF robotic patient motion

compensation systems. Public Library of Science; 14:1, pp. 1–16 (2019) Available from: https://doi.org/

10.1371/journal.pone.0210385

21. Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints. Automatica.

35 pp. 407–427 (1999) Available from: https://www.sciencedirect.com/science/article/pii/

S0005109898001782 https://doi.org/10.1016/S0005-1098(98)00178-2

22. IBM ILOG CPLEX Optimizer 16 Dec 2010 [cited 26 August 2019]. Available from: https://www.ibm.com/

analytics/cplex-optimizer

23. Gurobi Optimizer Reference Manual. Gurobi Optimization Inc 16 Oct 2014 [cited 26 August 2019].

Available from: http://www.gurobi.com

24. FICO Xpress Optimization. Xpress-Optimizer Reference Manual 23 Apr 2007 [cited 27 August 2019].

Available from: https://www.fico.com/en/products/fico-xpress-optimization
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