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The automatic segmentation method of MRI brain tumors uses computer technology to segment and label tumor areas and
normal tissues, which plays an important role in assisting doctors in the clinical diagnosis and treatment of brain tumors. This
paper proposed a multiresolution fusion MRI brain tumor segmentation algorithm based on improved inception U-Net named
MRF-IUNet (multiresolution fusion inception U-Net). By replacing the original convolution modules in U-Net with the
inception modules, the width and depth of the network are increased. The inception module connects convolution kernels of
different sizes in parallel to obtain receptive fields of different sizes, which can extract features of different scales. In order to
reduce the loss of detailed information during the downsampling process, atrous convolutions are introduced in the inception
module to expand the receptive field. The multiresolution feature fusion modules are connected between the encoder and
decoder of the proposed network to fuse the semantic features learned by the deeper layers and the spatial detail features
learned by the early layers, which improves the recognition and segmentation of local detail features by the network and
effectively improves the segmentation accuracy. The experimental results on the BraTS (the Multimodal Brain Tumor
Segmentation Challenge) dataset show that the Dice similarity coefficient (DSC) obtained by the method in this paper is 0.94
for the enhanced tumor area, 0.83 for the whole tumor area, and 0.93 for the tumor core area. The segmentation accuracy has
been improved.

1. Introduction

Glioma is the most common primary central nervous system
tumor and has a high fatality rate. Therefore, gliomas are the
key objects of brain tumor segmentation. According to the
degree of tumor malignancy, it can be divided into high-
grade glioma (HGG) and low-grade glioma (LGG) [1]. The
growth rate of LGG is slow, and the patients have better sur-
vival prognosis. HGG patients have high mortality and poor
survival prognosis. Magnetic resonance imaging (MRI) is an
important auxiliary technology in the diagnosis and treatment
of brain tumors. It can provide brain images with high soft tis-
sue contrast, no bone artifacts, and no damage [2]. Brain tumor
MRI has a variety of sequences, including T1-weighted (T1),

contrast enhanced T1-weighted (T1c), T2-weighted (T2), and
fluid attenuated inversion recovery (FLAIR) [3]. Doctors often
combine multiple MRI sequences to obtain more detailed and
comprehensive information about brain tumors.

With the rapid development of deep learning technol-
ogy, the method based on deep learning has made remark-
able achievements in the field of computer vision, and it is
also widely used in the field of semantic segmentation of
medical images [4]. The structure of brain tissue is very
complex, the boundaries of brain tumors are fuzzy, and the
size, shape, and location of tumors are very different [5].
These factors increase the complexity and difficulty of brain
tumor segmentation. The multilayer network structures
such as convolution layer, pool layer, and full connection
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layer in convolution neural network (CNN) can learn and
extract the multilevel features of brain tumor images and
can achieve pixel-level classification of brain tumor images
[6]. Compared with manual segmentation and traditional
segmentation methods, the brain tumor segmentation algo-
rithm based on CNN has higher efficiency and segmentation
accuracy [7]. In 2015, Long et al. [8] changed the original full
connection layers of CNN into convolution layer and pro-
posed the full connection network (FCN), a pixel level image
semantic segmentation network. FCN restores the reduced
feature maps to the original image size by upsampling,
thereby achieving end-to-end image segmentation. Ronne-
berger et al. [9] proposed the architecture U-Net for biomed-
ical images, which consists of a contracting path to capture
context information and an expansive path to enable accu-
rate localization, and the corresponding feature maps of
the contraction path and the expansion path are fused
through skip connections. U-Net has achieved good results
in the field of medical image segmentation, but the original
U-Net is relatively simple, and the network layers are not
deep enough, which cannot achieve more accurate results
when dealing with the complex brain tumor segmentation
task [10]. However, if the depth of the network is increased
directly by simple stacking, a large number of parameters
will be added, and the network is prone to overfitting and
gradient disappearance. At the same time, the continuous
downsampling operations in the U-Net reduce the feature
resolution, and some of the detailed information is lost,
resulting in inaccurate segmentation results [11].

In order to improve network performance, it is necessary
to increase the depth of the network, but to avoid the prob-
lems of parameter redundancy and gradient disappearance.
The inception modules were adopted in the GoogLeNet
[12], which also makes GoogLeNet achieve the best perfor-
mance in the ImageNet Large-Scale Visual Recognition
Challenge 2014 (ILSVRC14). The inception module con-
nects the pooling layer and multiple convolution kernels in
parallel to construct a dense component to approximate
the optimal local sparse structure. Inception modules
increase the width of the network, improves the utilization
of computing resources within the network, and improves
network performance. DeepLab [13] uses atrous convolu-
tions in the network. It can expand the receptive field with-
out adding additional parameters, which can reduce the
downsampling operators and prevent the loss of detailed
information. At the same time, ASPP module is proposed
in DeepLab [14]. ASPP module parallelizes atrous convolu-
tions with different rates, which can integrate the features
of objects at different scales. Many studies have shown that
the early convolution layers can extract more spatial context
information like edges, corners, and textures, which is con-
ducive to the fine segmentation and location of the target.
Deeper layers extract more abstract semantic features, which
are of great significance for target object recognition, but
lack strong spatial information [8, 15]. In U-Net, the corre-
sponding resolution features of the encoder and the decoder
are stitched together through skip connections, which can
retain the spatial context information of the low-level layers.
In this paper, we propose an encoder-decoder architecture

based on U-Net, which fuses the multiresolution features
of the network to better combine the spatial context features
and the abstract semantic features [16]. More details are as
follows:

(1) We replace the original convolution modules in U-
Net with inception modules, which can increase both
the depth and width of the network [17]. The parallel
structure of the convolution kernels of the inception
module makes it have different receptive fields and
can better capture multiscale features

(2) The continuous downsampling operation reduces
the feature resolution and also leads to the loss of
image details, so we add atrous convolutions to the
model, which can expand the receptive fields without
downscaling the image, and will not add extra
parameters

(3) The spatial detail features extracted by the low-level
layers play an important role in the fine segmenta-
tion of the image. In this paper, the features with dif-
ferent resolutions in the encoder are upsampled to
obtain the same resolution, and then, these feature
maps are spliced and finally fused with the corre-
sponding feature maps in the decoder

2. Related Work

In recent years, the methods based on CNNs have made sig-
nificant progress in image semantic segmentation. There are
many excellent network architectures with their own charac-
teristics [18, 19]. Full convolution network- (FCN-) based
methods can realize pixel-level classification of images and
are widely used in the field of image segmentation.

The encoder-decoder structure is a commonly used net-
work structure in image semantic segmentation, which can
accept input images of any size and can achieve end-to-
end semantic segmentation [20]. U-Net is a commonly used
encoder-decoder architecture; it has a relatively simple
architecture and is very suitable for medical image segmen-
tation. The encoder of U-Net gradually reduces the feature
resolution and increases the receptive field through down-
sampling, to further extract high-level semantic information.
The decoder recovers the spatial context information and
achieve precise localization through upsampling operators,
which combines the high-resolution features from the con-
tracting path. Some researchers have introduced residual
connections [21] and dense connections in the ResNet [22]
and DenseNet [23] into U-Net and constructed improved
network architectures ResUNet and DenseUNet [24, 25],
which have improved segmentation accuracy compared with
U-Net. In addition, the attention mechanism is introduced
into U-Net to form the Attention U-Net. Before the corre-
sponding features of the encoder are combined with the
upsampled output, an attention module is added to readjust
the weight of different features, so that the segmentation tar-
get can obtain greater attention weight, which is helpful to
improve the segmentation accuracy [26].
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In the convolutional neural network, the feature resolu-
tion is reduced by the downsampling operation, and part
of the detailed information will be lost in the process. Yu
and Koltun proposed DeepLab network, which enlarges the
receptive field and captures multiscale contextual informa-
tion by atrous convolution with different rates [27]. The
atrous space pyramid pooling module (ASPP) is also used
in the DeepLab network to capture multiscale features by
paralleling multiple atrous convolutions with different rates.
However, when the dilation rate of the atrous convolution
gradually increases, the proportion of effective feature
weights in the atrous convolution will decrease. Therefore,
in the DeepLabv3 [28], an improved ASPP module is pro-
posed. By adding global pooling, global information was
integrated to obtain better segmentation results. Dee-
pLabv3+ [29] uses an encoding-decoding architecture, the
encoder can obtain rich semantic information, and the
decoder restores fine object information and uses deep sep-
arable convolution, which effectively reduces the number
of parameters. In order to improve the network perfor-
mance, it usually chooses to increase the depth and com-
plexity of the network, but simply deepening the network
will increase the number of parameters, which will not only
increase the amount of calculation but also easily lead to
over fitting. Szegedy et al. [30] proposed the inception mod-
ule, which clusters the sparse matrix into dense matrix to
approximate the optimal local sparse structure, which can
effectively improve the computational performance. The
parallel structure of convolutions with different sizes can
also better capture multiscale features.

3. Methods

3.1. Inception Module. The network used in this paper is an
encoder-decoder architecture based on U-Net. Generally,
the first way to improve the network performance is to build
a deeper network, but simply increasing the depth of the net-
work will bring a large number of parameters, which will
easily lead to over fitting, and the deepening of the network
layers will also increase the computational complexity. In
order to solve this problem, we need to make the neural net-
work structure sparse, but the computational efficiency of
computer processing nonuniform sparse data is low. There-
fore, it is necessary to design a module that can not only
improve the computational performance but also make the
network structure sparse. The structure of inception module
is to approximate the optimal local sparse structure by clus-
tering the sparse matrix into dense submatrices. Therefore,
this paper uses the inception modules instead of the original
convolution modules. The structure of the inception module
is a parallel connection of multiple convolution kernels of
different sizes, which is more conducive to capturing multi-
scale features. The inception module has three branches in
parallel, one of which is 1 × 1 convolution, and the other
two branches are a 3 × 3 convolution and two stacked 3 × 3
convolutions. In order to reduce the number of parameters,
the 1 × 1 convolution is used to reduce the number of feature
channels, and a BN layer is added after each convolution
kernel. To speed up network training and prevent vanishing

gradients, a residual connection is added to the inception
module [31]. The U-Net uses downsampling to reduce the
resolution of the feature maps four times, which can increase
the receptive field without using a larger convolution kernel.
However, in the process of downsampling and upsampling,
part of the detailed information of the image will be lost.
Therefore, in order to reduce the downsampling operation,
prevent the loss of image detail information, and ensure that
sufficient global context information can be obtained, the
last downsampling of the encoder is rounded off in the pro-
posed network in this paper, and two inception modules
fused with atrous convolutions (A-inception module) are
used to obtain different receptive fields by changing the dila-
tion rates of atrous convolutions. The specific module struc-
ture is shown in Figures 1 and 2.

3.2. Multiresolution Fusion Module. In the original U-Net,
the feature maps of the encoder are cropped and fused with
the feature maps of the decoder, so that some image detail
features can be recovered in the upsampling process. In
order to obtain more accurate segmentation, it is necessary
to make full use of the spatial detail information. In this
paper, a multiresolution feature fusion module (MRF) is
constructed between encoder and decoder, which uses richer
spatial context information for accurate feature location in
the upsampling stage. The module upsamples the low-
resolution feature maps in the encoder to obtain the same
resolution and then splits these feature maps together. The
splicing feature maps are combined with the corresponding
feature maps of the decoder through a 3 × 3 convolution.
The specific structure is shown in Figure 3.

3.3. Network Structure. This paper builds an improved brain
tumor segmentation architecture named MRF-IUNet. This
architecture uses five inception modules in the encoding
stage, each module has three different branches in parallel,
and multiple branches have different sizes of receptive fields,
which can capture multiscale features. For brain tumor
images with large differences in tumor size, obtaining multi-
scale features is beneficial to improve the segmentation per-
formance and the robustness of network. At the same time, a
residual connection is added to each inception module,
which is more conducive to the training and convergence
of the network. The first three inception modules of the
encoder use standard convolution with convolution kernels
of 1 × 1 and 3 × 3. The A-inception block1 and A-
inception block2 use a 1 × 1 convolution kernel and 3 × 3
atrous convolutions with different dilation rates. The specific
structure is shown in Figure 4. The dilation rates rate1, rate2,
and rate3 in A-inception block1 and A-inception block2 are
2, 2, 4 and 4, 4, 8, respectively, by increasing the dilation rate
of atrous convolution, a larger receptive field can be
obtained, which is conducive to obtaining more global con-
text information. In the encoding stage, three downsampling
modules are used, and each downsampling module uses 2
× 2 max pooling with stride 2 and the 3 × 3 convolution
with stride 2 and splices the outputs of the two as the down-
sampling output.
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The decoding stage also uses five inception modules to
form a symmetrical structure with the encoder. The first
two modules use A-inception modules that incorporate
atrous convolutions, named A-inception block3 and A-
inception block4. The dilation rates of the atrous convolu-
tions used are 2, 2, 4 and 4, 4. 8. The latter three inception
modules use standard convolutions with convolution kernel
of 3 × 3 and 1 × 1. In the decoding stage, the feature map
needs to be gradually restored to the same size as the original
input image. This architecture uses an upsampling method
of bilinear interpolation.

The encoder and decoder are connected by the ASPP
module. According to the atrous space pyramid module pro-
posed in DeepLabv3, a 1 × 1 convolution and three 3 × 3
atrous convolutions are connected in parallel, the batch nor-
malization layer (BN) [32] is added after the convolution
layer. Global pooling is added to integrate more global con-
text information. The ASPP module connected multiple
atrous convolutions with different rates in parallel, thus
obtaining receptive fields of different sizes, which can extract
more multiscale features. In the [28], when output − stride

= 16 (output-stride is the ratio of the scale of the input
image to the output feature map), the dilation rates of the
three atrous convolutions used by ASPP are 6, 12, and 18,
respectively. In this paper, output − stride = 8; through
experimental comparison, when the dilation rates are 12,
18, 24, respectively, the segmentation performance of the
network is the best. The specific ASPP module structure is
shown in Figure 5.

The loss function used in this paper is a linear combina-
tion of the cross entropy loss function and the Dice loss
function, which can alleviate the problem caused by the
imbalance of the samples. The cross entropy loss function
and Dice loss function are defined as follows:

LossBCE = −
1
N
〠
N

i

yi∙log pið Þ + 1 − yið Þ∙log 1 − pið Þ½ �,

LossDice = 1 −
2 ×∑N

i piyi
∑N

i pi +∑N
i yi

:

ð1Þ

Calculate the set N of all samples, where yi is the hot
coding (0 or 1) of the ith sample label, and pi is the predicted
probability of the ith sample label.

In this paper, the adaptive moment estimation (Adam)
[33] algorithm is used as the gradient optimization algo-
rithm in the back propagation process. The Adam algorithm
is an exponentially weighted moving average of small batch
stochastic gradients based on the RMSProp algorithm. The
advantages of Adam algorithm are simple implementation,
high computational efficiency, and low memory require-
ments, and it is suitable for large-scale data and parameter
optimization problems.

4. Experimental Results and Analysis

In this paper, we used the Pytorch framework to build the
brain tumor segmentation network models. The experimental
environment is Intel Xeon Silver 4116 CPU@ 2.10GHz, GPU
NVIDIA GeForce RTX2080Ti. 20% of the data in the training
set needs to be used as a validation set for initial evaluation of
model performance and tuning of hyperparameters, and the
rest is used for model training. The hyperparameters batch
size, learning rate, and momentum of experimental training
are set to 16, 0.0003, and 0.9, respectively.

4.1. Experimental Data and Preprocessing. The experimental
data used in this paper is the BraTS dataset. BraTS 2018
training dataset is used as the training dataset for this exper-
iment, including the data of 210 HGG patients and 75 LGG
patients. Each case contains four MRI sequence images of
T1, T2, T1C, and FLAIR and ground truth. The test dataset
of the experiment uses the BraTS 2019 training dataset. The
original size of each modal MR image is 240mm × 240mm
× 155mm. The ground truth segmentation labels are tumor
segmentation regions manually annotated by multiple
experts, including four types of labels: normal tissue (label
0), necrosis and nonenhancing tumor (label 1), edema (label
2), and enhancing tumor (label 4).
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Figure 1: The structure of inception module.

3 × 3 conv
rate 1

1 × 1
conv

1 × 1
conv

1 × 1
conv

Input

1 × 1
conv

Output
+

3 × 3 conv
rate 2

3 × 3 conv
rate 3

Figure 2: The structure of A-inception module.
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Because the distribution of MRI brain tumor image data is
quite different, and the uneven distribution of data will
increase the difficulty of network training, which is not
conducive to themodel learning the distribution rules between
different tumor categories, therefore, it is necessary to stan-
dardize the image to limit the intensity distribution of the
image to a certain range [34]. Since the background informa-
tion in the original image occupies a large proportion, the
problem of data imbalance will occur, so it is necessary to crop
the redundant background of the image. Slice the cropped
three-dimensional image to obtain two-dimensional image
data with the size of 160 × 160. The training dataset needs to
discard the slices without lesions to alleviate the category
imbalance and combine the slices of each MRI sequence into
4-channel samples as input.

4.2. Evaluation Indicators. In order to objectively evaluate
the effect and feasibility of the segmentation algorithm, it is
necessary to use evaluation indicators to quantify the predic-
tion results. The intersection of union (IOU), dice similarity

coefficient (DSC) and positive predictive value (PPV) are
used to evaluate the segmentation performance of the model
[35]. IOU represents the overlap rate between the predicted
value and the ground truth, and the DSC represents the sim-
ilarity between the predicted value and the ground truth.
They are commonly used evaluation indicators in the medi-
cal image segmentation. Their expressions are as follows:

IOU = TP
FP + TP + FN

,

DSC =
2TP

FP + 2TP + FN
:

ð2Þ

PPV represents the proportion of true positive samples
among all samples predicted to be positive samples by the
experiment. The calculation method is as follows:

PPV =
TP

TP + FP
, ð3Þ

where TP, FP, and FN represent true positive, false positive,
and false negative, respectively. TP represents the correctly
segmented positive samples, FP represents the incorrectly
segmented negative samples, and FN represents the incor-
rectly segmented positive samples. The value range of the
evaluation indicator is 0-1. The closer the value is to 1, the
better the segmentation result.

4.3. Experimental Results. In this paper, a multiresolution
fusion brain tumor segmentation model based on U-Net is
proposed, and the BraTS dataset is used as the experimental
dataset. The segmentation areas of brain tumors include
whole tumor area (WT), tumor core area (TC), and enhanc-
ing tumor area (ET). WT includes enhancing tumor, necro-
sis, and edema area, and TC includes enhancing tumor area
and necrosis; ET only includes enhancing tumor area [36].

Use the training dataset to train the built model, and
then, use the test dataset for segmentation test. In order to
compare the segmentation effect between the proposed
method (MRF-IUNet) and other advanced methods, we
selected U-Net, ResUNet, DenseUNet, and Deeplabv3+ for
comparison and used the same dataset and parameters to
train and test these networks. The segmentation results of
each network and the ground truth (GT) are shown in
Figure 6. U-Net, ResUNet, DenseUNet, and the proposed
method adopt the basic structure of U-Net and use skip

3 × 3 convFeature maps
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up sampling

Feature maps
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Output
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Figure 3: The structure of multiresolution fusion module.
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connections between the encoder and the decoder, so that
the details of segmentation target obtained by the shallow
network are retained. And more details are recovered during

upsampling process of the decoder. From the segmentation
results, it can be seen that these networks are more accurate
in segmenting the details of brain tumor than Deeplabv3+.

Input

1 × 1 conv

3 × 3 conv
rate = 12

3 × 3 conv
rate = 24

3 × 3 conv
rate = 18

Image
pooling 

Output1 × 1
conv

Figure 5: The structure of ASPP module.

U-Net ResUNet DenseUNet

DeepLaby3 + MRF-IUNet GT

U-Net ResUNet DenseUNet

DeepLaby3 + MRF-IUNet GT

Figure 6: Example segmentation results on the BRATS dataset. From left to right and top to bottom are the segmentation results of U-Net,
ResUNet, DenseUNet, DeepLabv3 +, MRF-IUNet (proposed), and ground truth. The whole tumor (WT) class includes all visible labels (a
union of green, yellow, and red labels), the tumor core (TC) class is a union of red and yellow, and the enhancing tumor core (ET) class is
shown in yellow.
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The proposed method has advantages in the extraction of
multiscale features and the segmentation of brain tumor
details. However, according to the comparison of the predic-
tion results with the GT, the proposed method still needs to
improve the segmentation performance of tumor
boundaries.

In this paper, the evaluation indexes such as IOU, DSC,
and PPV are used to evaluate the segmentation results of
each network. The evaluation index values of each network
are shown in Table 1. It can be seen from the table that
the U-Net is more effective for the segmentation of brain
tumors, and the DSC values in the segmentation of the ET
and the TC have reached 0.9. Both ResUNet and DenseUNet
are improved on the U-Net structure, and the DSC values of
the ET and the TC are improved compared with U-Net. The
segmentation performance of DeepLabv3+ on brain tumor
image is the worst among these networks. It can be seen
from the segmentation results that the segmentation of brain
tumor details by DeepLabv3+ is not accurate enough. Com-
pared with the other four networks, the proposed method in
this paper improves the feature extraction modules on the
basis of U-Net and proposes the inception module and A-
inception module, which is beneficial to extract multi-scale
features. At the same time, the multiresolution fusion mod-
ule is proposed, which effectively utilizes the spatial context
information and improves the segmentation accuracy. The
results obtained by the proposed method in each evaluation
index are the best, and the network performance is
improved.

5. Conclusion

This paper proposes a multiresolution fusion network model
based on improved U-Net, which is used for the fine and
automatic segmentation of brain tumors. The original con-
volution modules in U-Net are replaced by the inception
modules and A-inception modules with atrous convolutions,
which increases the width of the network and makes the net-
work more conducive to the extraction of multiscale fea-
tures. At the same time, multiresolution fusion modules
are used between the encoder and the decoder, and more
spatial details are used to segment the details of brain tumors
in the decoding stage. The proposed method is compared
with four networks such as U-Net, ResUNet, DenseUNet,
and DeepLabv3 +. The evaluation index values of the pro-
posed method are better than other methods in WT, TC,
and ET, and the best segmentation performance is obtained.
However, the proposed method still lacks in the segmenta-

tion of some brain tumor boundaries. In the future, we will
continue to improve the accuracy of the boundary segmen-
tation of the network.
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