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Untargeted metabolomics seeks to identify and quantify most metabolites in a biological
system. In general, metabolomics results are represented by numerical matrices
containing data that represent the intensities of the detected variables. These matrices
are subsequently analyzed by methods that seek to extract significant biological
information from the data. In mass spectrometry-based metabolomics, if mass is
detected with sufficient accuracy, below 1 ppm, it is possible to derive mass-difference
networks, which have spectral features as nodes and chemical changes as edges. These
networks have previously been used as means to assist formula annotation and to rank the
importance of chemical transformations. In this work, we propose a novel role for such
networks in untargeted metabolomics data analysis: we demonstrate that their properties
as graphs can also be used as signatures for metabolic profiling and class discrimination.
For several benchmark examples, we computed six graph properties and we found that
the degree profile was consistently the property that allowed for the best performance of
several clustering and classification methods, reaching levels that are competitive with the
performance using intensity data matrices and traditional pretreatment procedures.
Furthermore, we propose two new metrics for the ranking of chemical transformations
derived from network properties, which can be applied to sample comparison or
clustering. These metrics illustrate how the graph properties of mass-difference
networks can highlight the aspects of the information contained in data that are
complementary to the information extracted from intensity-based data analysis.

Keywords: untargeted metabolomics, metabolomics data analysis, mass-difference networks, Fourier transform
mass spectrometry, graph properties

Abbreviations: AUC, area under the curve; FT-ICR-MS, Fourier transform ion-cyclotron resonance mass spectrometry; GCD-
11/GCD11, graphlet correlation distance that includes the 11 nonredundant orbits of up to four-node graphlets; GD, grapevine
dataset; GDc2, grapevine dataset retaining features that occur globally at least twice in at least one class; GDg2, grapevine dataset
retaining features that occur globally at least twice in the dataset; HCA, agglomerative hierarchical clustering analysis; HD,
human dataset; HILIC, hydrophilic interaction chromatography; IDT, intensity-based data pretreatment; MDBI, mass-dif-
ference-based building blocks impact; MDBs, mass-difference-based building blocks; MDiNs, mass-difference networks; MS,
mass spectrometry; PLS, projection in latent structures (least squares); PLS-DA, projection in latent structures—discriminant
analysis; RF, random forest; sMDiN, sample mass-difference network; WMDBI, weighted mass-difference-based building
blocks impact; YD, yeast dataset.
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INTRODUCTION

The analysis of the metabolome’s complexity requires analytical
methods with high resolution and sensitivity. Mass spectrometry
(MS) is a common technique used in metabolomics that allows
thousands of metabolites to be detected in a single run. MS-based
metabolomics data require several steps of preprocessing that
may comprise normalization, transformations, and scaling. These
steps aim to highlight the biologically important information in
the signal intensities within the data while reducing the impact of
undesired variation (van den Berg et al, 2006). For instance,
normalization has the goal to eliminate sample variation due to
different sources of bias such as sample dilution, sample handling
and storage, and heterogeneity of biological tissues analyzed
(Katajamaa and Oresic, 2007; Karaman, 2017; Cuevas-Delgado
et al., 2020). The result of preprocessing is a two-dimensional
numerical matrix, with the features representing retention time
and m/z values, formulas, or identified compounds in one
dimension and the samples in the other dimension. The
number of features is usually much higher than the number of
samples, and consequently, many are highly correlated, making
the subsequent statistical analysis challenging (Vinaixa et al,
2012; Gromski et al., 2015). Furthermore, the metabolome is
inherently diverse, consisting of thousands of small molecules
involved in complex processes and spatial and temporal
organization (Schmitt-Kopplin et al., 2019). Even if quality
control measures are taken and metabolism is quenched prior
to extraction, reducing the variation observed in metabolite
abundances, the metabolome is highly dynamic, with
metabolites consistently changing and transforming into each
other (Roessner and Hansen, 2007), depending on both internal
and environmental conditions (Johnson and Gonzalez, 2012;
Worley and Powers, 2013).

In general, untargeted metabolomics’ data analysis focuses on
two-dimensional numerical data matrices derived from intensity
data to obtain a chemical global characterization of a biological
system (Roberts et al., 2012; Bartel et al., 2013) or more often to
seek biological class characterization and discrimination while
highlighting important biological variables. Nevertheless,
metabolomics data can lead to other representations that
highlight other types of information content in the data.

Using extreme mass accuracy (below 1 ppm), together with
the ability to resolve isotope ratios, an elemental composition
formula can often be assigned to the detected mass features based
on possible formulas computed from specific rules for heuristic
filtering such as the seven golden rules (Kind and Fiehn, 2007).
These formulas can be used to infer metabolite relationships and
networks because metabolites can be interconverted through
known chemical reactions associated with defined mass
differences (Breitling et al., 2006; Moritz et al., 2017). This is
the concept behind mass-difference networks (MDIiNs),
originally developed by Breitling and coworkers (Breitling
et al., 2006). These networks use mass values as the nodes of a
network. Then, a list of defined mass differences, each
representing the occurrence of a chemical transformation, is
used to establish edges in the network (Figure 1) (Tziotis
et al, 2011; Schmitt-Kopplin et al, 2019). These mass
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FIGURE 1 | The concept of mass-difference networks (MDINs). In this
four-node example, neutral mass values (in Da) obtained from a mass
spectrometry analysis are represented as nodes, connected with mass
differences associated with particular mass-difference-based building
blocks (MDBs). Am, mass difference (in Da).

differences have been called mass-difference-based building
blocks (MDBs) (Moritz et al, 2017). For example, a
methylation (absolute change of CH, after substitution of -H,
hydrogen atom, by a -CH; group) would be represented by a
mass-difference of 14.01565 Da (Breitling et al., 2006; Tziotis
et al, 2011). MDBs can be chosen a priori by considering a
predefined set of common chemical or biochemical reactions or
by the most common mass differences found in a mass spectrum,
where a specific chemical transformation can be assigned
(Kunenkov et al, 2009; Moritz et al, 2017). Ultrahigh-
resolution data allow the construction of nonrandom and
informative ab initio networks akin to metabolic networks
(Breitling et al, 2006) to represent the system’s chemical
diversity. MDBs are only based on mass differences, and when
compared to metabolic networks, they can consider possible
spontaneous nonenzymatic reactions. Moreover, they are not
influenced or skewed by previous knowledge on metabolic
pathways that are still very incomplete in many less studied
biological systems with largely unknown metabolomes (Breitling
et al., 2006; Moritz et al., 2017), such as plant metabolomes (Lee
et al., 2020).

MDiNs are one of the major types of experimental networks
used for metabolomics data analysis (Amara et al., 2022) and have
been primarily used for molecular formula assignment and
annotation (Tziotis et al., 2011; Moritz et al, 2017) or the
depiction of a system’s chemical diversity (Tziotis et al., 2011).
Because each edge has a corresponding absolute change of
metabolite formulas (addition or subtraction), the formula
assignment of an entire network component can be made from
a single reliably annotated node through formula propagation
(Breitling et al., 2006; Tziotis et al, 2011; Moritz et al, 2017;
Amara et al,, 2022). As a few examples, MDiNs have been used in
this way in studies on mouse cecal samples (Walker et al., 2014),
yeast (Liu et al., 2016), and mouse adipose tissue and human blood
plasma (Laber et al., 2021), among others (Moritz et al., 2015;
Willkommen et al., 2018). Furthermore, other methods similar to
MDiNs that use mass differences for formula annotation have been
developed (Weber and Viant, 2010; Morreel et al., 2014).
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Despite being originally aimed at high-resolution
metabolomics data obtained in instruments such as FT-ICR or
Orbitraps, MDiN-based molecular formula assignment was used
for lower resolution LC-MS data if the right steps were taken,
such as starting formula propagation from high-confidence
annotated metabolites (Forcisi et al., 2015).

Another recent application of MDiNs has been the
characterization of biological groups based on their different
prevalence of MDBs/chemical transformations via a mass-
difference enrichment analysis to test MDB over- or under-
representation in the edges connected to a set of nodes of
interest compared to their overall prevalence in the MDiIN
(Moritz et al.,, 2017, 2019). The potential of this methodology
has been highlighted in the characterization of different biological
systems (Moritz et al., 2015, 2017; Clancy et al., 2018; Kaling et al.,
2018; Laber et al,, 2021). An in-depth review of MDiNs and all
types of networks used in metabolomics has recently been
published (Amara et al., 2022).

In this work, we apply the concept of MDiNs to characterize
biological systems by using them as the starting point for class
profiling and discrimination, as an alternative to starting from
two-dimensional intensity data matrices. For this purpose, we
focus on the properties of MDiNs as graphs, building a different
MDiN for each sample in a dataset (sample MDiNs or sMDiNs),
as the basis for class discrimination and feature importance
assignment. Our fundamental assumption is that the set of
detected metabolites and their possible chemical connections
are a characteristic of each sample in a study. As a
consequence, the graph properties of MDiNs must also be a
characteristic. SMDiNs are built based on the occurrence of
spectral  features,  disregarding intensity  information
prominently used in common data analysis workflows, taking
advantage that the former is less prone to variation. Graph
analysis methods fulfill the same role as the data
pretreatments applied to two-dimensional numerical data
matrices. However, instead of focusing on maximizing the
contribution of significant information in the signal intensities,
these methods can focus on different aspects of the network such
as node centrality, network topology, and edge properties, and
thus, they may provide different and complementary results and
insights. Furthermore, feature importance assignment from
sMDIiNs can be based on this network characterization with
the potential to be very versatile.

To demonstrate the use of sMDiNs for class characterization
and discrimination, we performed an empirical comparison of
the performance of unsupervised and supervised analysis
methods applied to profiles associated with the graph metrics
of each sMDIiN. The performance of these methods is compared
with the performance obtained with the same datasets by
applying a  traditional intensity-based  pretreatment,
representing the typical metabolomics data analysis
preprocessing pipelines. We conclude that sMDIiNs keep
essential information for class discrimination and do not
degrade the performance of statistical methods, especially
when node centrality analysis was applied, for both low and
high sample number per class, and two-class and multiclass
datasets. Furthermore, we show how further feature
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importance assignment, such as weighted MDB impact, can
provide extra insights regarding our data and can complement
the discrimination analysis. On the basis of this work, we believe
that network analysis methods have the potential to extract
complementary meaningful information from ultrahigh-
resolution metabolomics datasets.

MATERIALS AND METHODS

Datasets

Five data matrices were built from experimental untargeted
metabolomics data with different numbers of features and
missing-value abundance. These matrices (datasets) were based
on three ultrahigh-resolution metabolomics studies: two obtained
from Fourier transform ion-cyclotron resonance mass
spectrometry (FT-ICR-MS) instruments, with different mass
accuracy, resolution, and sensitivity, and one obtained from an
Orbitrap  instrument  after  hydrophilic  interaction
chromatography (HILIC).

The “grapevine dataset” (GD) was built from published data
related to a study of the metabolome differences observed in Vitis
varieties susceptible or resistant to oomycete/fungal infections
(Maia et al., 2020a) and openly available at a public repository
(Maia et al., 2020b). Metabolomics data from three biological
replicates of 11 different grapevine genotypes were collected by
direct infusion in a 7T-Apex FT-ICR-MS, operating in negative
electrospray ionization mode (Maia et al., 2020a). Data alignment
was performed using the metabolinks Python package (Ferreira
and Traquete, 2021), as previously described (Traquete et al,
2021). From this matrix, two datasets were created by different
filters: dataset GDg2 by only retaining features that occur globally
atleast twice in the 33 samples and dataset GDc2 by only retaining
features that occur at least twice in at least one Vitis variety (class)
were retained. Furthermore, the GD types matrix was generated
for the assessment of the performance of supervised methods in
two-class problems by changing the dataset class labels in GDc2
according to whether grapevine is from Vitis vinifera or wild Vitis
(non-vinifera) species.

The “yeast dataset” (YD) was built from data related to a study
to discriminate single-gene deletion yeast mutants (mostly
affecting genes coding enzymes involved in methylglyoxal
metabolism) with FT-ICR-MS (Luz, 2021; Sousa Silva et al,,
2021) and openly available at a public repository (Luz et al,
2021). In brief, metabolomics data from three biological replicates
of five different yeast isogenic strains were collected by direct
infusion in a 7T Solarix XR FT-ICR-MS (Luz, 2021; Sousa Silva
etal,, 2021) - wild type (WT) and AGLO1, AGLO2, AGRE3, and
AENOI. Data alignment was performed with MetaboScape
4.0 software (Britker Daltonics, Germany), following the
procedure previously described (Traquete et al., 2021). From
the resulting “bucket table” (representing the neutral masses of
the detected metabolites), formulas were assigned with
annotation from the Human Metabolome (HMDB) (Wishart
et al.,, 2018) and Yeast Metabolome (YMDB) (Ramirez-Gaona
et al, 2017) databases and then with MetaboScape’s
SmartFormula  algorithm  (considering the following
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TABLE 1 | General characteristics of the different benchmark datasets.

Dataset Samples Features Classes
GDg2 33 3,629 11
GDc2 33 3,026 11
GD types 33 3,026 2
YD 15 1,893 5
HD 249 12,869 2

parameters: m/z tolerance narrow 0.1 and wide 1.0 ppm and
mSigma narrow 10 and wide 100; elements considered: C, H, N,
O, S, and P with the “Auto Upper Formula” option with at least
one carbon and one hydrogen; elemental ratios allowed: H/C,
0.2-3.1; O/C, 0.0-1.5; N/C, 0.0-1.3; S/C, 0.0-0.8; P/C, 0.0-0.3;
and P/O, 0.0-0.34). The Senior and Lewis MetaboScape filter and
the heuristic element count probability were applied. When the
same formula was assigned to two different bucket labels, these
were joined together. Data matrix YD was constructed by
retaining features that occurred in at least two samples.

The “human dataset” (HD) was constructed from data
obtained from a study of the preoperative metabolic signatures
related with prostate cancer recurrence or remission after a
radical prostatectomy, obtained in an Orbitrap instrument
(Clendinen et al, 2019) and publicly available at the NIH
Common Fund’s National Metabolomics Data Repository
website, the Metabolomics Workbench, with project ID
PR000724 (study ID: ST001082). Metabolomics data from
80 patients’ blood serum were collected before radical
prostatectomy and analyzed using HILIC coupled to a Thermo
Q Exactive HF hybrid Orbitrap operating in positive electrospray
ionization (ESI+) mode (Clendinen et al., 2019). Data alignment
was performed with the Progenesis QI software package
(Nonlinear ~ Dynamics, Waters Corp., Milford, MA,
United States) (Clendinen et al., 2019). Data consist of
135 MS spectra samples from patients in prostate cancer
remission and 114 samples from patients with prostate cancer
recurrence (“no recurrence” versus “recurrence”). From these
samples, an average of five blank samples was subtracted, with
negative values being coded as missing values. Features that
appeared in only one sample were excluded. Multiple features
with the same m/z value (but different retention times) were
treated as having the same mass value.

An overview of the five datasets (GDg2, GDc2, GD types, YD,
and HD) characteristics is described in Table 1. A preliminary
assessment of the extent of class proximity in the datasets and
therefore the degree of difficulty for the statistical downstream
analysis methods is presented as principal component analysis
score plots in Supplementary Figure S1.

Intensity-Based Data Pretreatment

As a benchmark comparison for the different network methods
applied to sample MDiNs, an intensity-based data pretreatment
(IDT) was applied independently to all datasets. Missing values
were imputed either by replacing them with one-fifth of the
minimum of nonmissing values in each sample (1/5 min) or by
random forest (RF) missing-value imputation (Stekhoven and
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Features/sample (range) Samples/class

658 (367-1002) 3
547 (338-919) 3
547 (338-919) 15 Vitis vinifera, 18 wild Vitis
646 (559-705) 3

7936 (7057-8475) 114 “Recurrence,” 135 “no Recurrence”

Bithlmann, 2012). The number of trees in RF was set to 50, and
the number of similar features used for prediction was 100. These
imputation methods were chosen because RF imputation has
been found to outperform most other imputation strategies in
most different cases of prevalence and types of missing values for
metabolomics data, except when values are mostly missed not at
random, which is the situation where features are absent or below
the detection limit in a sample. In the latter case, limit of
detection-related procedures, such as 1/5 min, can outperform
RF imputation (Wei et al., 2018; Kokla et al., 2019). After missing-
value imputation, the GD and YD datasets were normalized by
the reference feature leucine enkephalin (for ESI-data, m/z
554.262022) whereas the HD dataset was normalized by
probabilistic quotient normalization (Dieterle et al, 2006)
using the mean of all samples as the reference. Data were then
transformed by the generalized logarithmic transformation and
Pareto scaled.

In all of the results of this study obtained with the IDT-treated
datasets, we report only the best value of the downstream
performance methods obtained with the IDT using either one
of the two of the missing-value imputation procedures.

Mass-Difference Network Generation

MDiNs were generated for each benchmark dataset using the
MetaNetter 2.0 plugin (Burgess et al., 2017) of Cytoscape 3.8.1
(Shannon et al., 2003). Each network was built using all neutral
masses of the mass peaks of each aligned dataset as nodes. Edges
are defined as the mass-difference between two mass values
caused by a chemical transformation, MDBs. The list of
15 MDBs used to build each network was defined a priori,
and it is indicated in Table 2. Edges were established in each
benchmark dataset by MetaNetter 2.0 with an accepted deviation
of 1 ppm. The MDBs were chosen to represent some of the most
common and ubiquitous small reactions in biological systems
(both enzymatic and nonenzymatic). Representative MDBs were
searched using the BRENDA enzyme database (Jeske et al., 2019).
The choice of the set of MDBs is crucial because the structure of
the network directly depends on these and can be highly specific
to the biological problem presented. As this work focuses on the
general viability of the methodology, only a very restricted set of
MDBs expected to occur in almost every biological system was
used. To this end, only MDBs representing changes of less than
80Da in a metabolite, while still maintaining metabolite
neutrality, were considered. For example, phosphorylation is
represented by the MDB PO;H and corresponds to the
addition of a ~PO3>~ group plus 2 H' (to maintain neutrality)
while replacing an H atom. All common elements in metabolites

Frontiers in Molecular Biosciences | www.frontiersin.org

July 2022 | Volume 9 | Article 917911


https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Traquete et al.

TABLE 2 | List of MDBs used to build the MDiNs.

Graph Properties of MDiNs

Elemental transformations (MDBs) A Mass (Da) Reaction type examples
O(-NH) 0.984016 Deamination

NHz (-O) 1.031634 Transamination

Ho 2.015650 Hydrogenation/Dehydrogenation
CH, 14.015650 Methylation

O 16.994915 Oxygenation/Hydroxylation

H.O 18.010565 Condensation/Dehydration/Cyclization
NCH 27.010899 Transfer of a formidoyl group
CO 27.994915 Formylation

CHOH 29.002740 Hydroxymethylation

S 31.972071 Transfer of a —=SH group

CoH0 42.010565 Acetylation

CONH 43.005814 Transfer of a carbamoy! group
CO, 43.989829 Carboxylation/Decarboxylation
CHCOOH* 58.005479 Carboxymethylation
CCH3CO0OH* 72.021129 Carboxyethylation

SOz 79.956815 Sulfation

PO3sH 79.966331 Phosphorylation

The mass variation (A Mass, in Da) corresponds to specific changes in the elemental composition of a metabolite and is associated with certain types of reactions. MDBs marked with *

were exclusively used for the YD dataset.

(C,H, O, N, S, and P) are represented in at least one of the selected
MDBs. For the YD dataset, two extra MDBs were considered,
representing either direct or indirect reaction mechanisms
associated with glycation, leading to carboxymethylation and
carboxyethylation (Table 2) (Requena et al., 1997; Shoji et al.,
2010). The node and edge number, percentage of connected
nodes, and size, radius, and diameter of the biggest
component were calculated for each dataset’s MDiN.

Sample MDiNs for each sample in each benchmark dataset
were built by subgraphing the dataset MDiN with only the
nodes characteristic of that sample. This is equivalent to
building the sMDiNs for each sample from scratch because
establishing an MDB edge only depends on the masses of the
two nodes linked and no other edge or node. Nodes with
degree 0 (establishing no connections and, therefore,
uninformative) were excluded.

Graph Metrics for Sample Mass-Difference
Networks

The generated sample MDiNs were analyzed using six different

metrics. For each combination of dataset and metric, a data

matrix could be derived for profiling each sample with that

particular graph metric. These data matrices are amenable to

be analyzed by conventional statistical methods in a fashion

identical to the methods employed with intensity-based data.
Three node centrality metrics were used:

e Degree: the number of connections with neighboring nodes.
e Betweenness centrality.
o (s, tlv)

Bet trali de v)= — 1
etweenness centrality (node v) S)ZZV (s 0) (1)

e Closeness centrality.

n-1 n-1
X n-1
N-1 " d(uv)

2

Closeness centrality (node v)=

In Eqs. 1 and 2, V is the set of all nodes, o (s, t) is the number
of shortest paths between node s and t, o (s, t|v) is the number of
those paths that pass through v (with v different from s or t), n is
the number of nodes that can reach node v, N is the number of
nodes in the graph, and d (u, v) is the distance of the shortest path
between node v and node u (Hagberg et al., 2008).

The resulting data matrices maintained the m/z peaks
(network nodes) as features, with their values in each sample
being the respective value of the centrality metric in the
corresponding sMDiN.

Two metrics focused on quantifying the influence of each
MDB in the construction of the sMDiNs were also employed: the
MDB impact (MDBI) and weighted MDB impact (WMDBI).
These metrics were inspired by a similar concept introduced by
Moritz and coworkers to identify metabolome differences and
over-representation of reactions between two gray poplar
genotypes (Moritz et al., 2017). MDBI is the fraction of edges
attributed to each MDB of the total number of edges. Using these
fractions as features in each sample greatly reduces the number of
features from 1000s to 15 to describe the sMDIiNs. In weighted
MDBI, each edge is weighted by the sum of the importance of the
nodes it links. The importance of these nodes was estimated by
their gini importance in the RF models based on the degree
profiles, described earlier.

The last analysis method was the graphlet correlation distance,
which includes the 11 nonredundant orbits of up to four-node
graphlets (GCD-11) to express the network topology (Yaveroglu
etal., 2014). Graphlets are small and nonisomorphic subgraphs of
a network. Each of these subgraphs can have multiple
automorphic orbits if the nodes in the graphlet are not in the
same relative position (Milenkovi¢ and Przulj, 2008). In this
method, a matrix for an sMDIN is built by counting the number
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of times that each node of the network is in each of the 11 orbits.
The Spearman correlation between the columns (11 orbits) of the
matrix makes an 11 x 11 symmetric matrix called the graphlet
correlation matrix signature of the network topology (Yaveroglu
et al,, 2014; Tantardini et al., 2019). Here, the method was
adapted, and a data matrix was built using 60 correlations
between different orbits as the features for each sample of the
benchmark datasets. Thus, the number of features is greatly
reduced from the original data matrix.

Clustering Methods (Unsupervised
Analysis)

The discriminatory power based on the differences between
sMDiNs was assessed by comparing the effects of the
performance of clustering and classification methods on the
data matrices obtained from the network analysis methods on
sMDiNs and on the intensity-based pretreated data. Two typical
types of unsupervised methods were applied: agglomerative
hierarchical clustering (HCA) and K-means clustering.
Clustering performance was assessed by the methods’ ability in
correctly clustering samples belonging to the same class. These
classes, as defined by wild Vitis versus Vitis vinifera plants in GD
types, by samples from patients with cancer recurrence versus
remission in HD, and by the replicates in the remaining datasets,
are the “ground truth” of correct clusters and allow the use of
ground-truth-related metrics of clustering performance.

Agglomerative hierarchical clustering analysis with unweighted
pair group method with arithmetic mean (UPGMA) linkage method
and Euclidean distance was performed on each IDT-treated dataset
and the matrices obtained from each sMDIN network analysis
metric. Three metrics were used to express clustering
performance. The “correct clustering” percentage is defined as the
percentage of the classes whose samples all clustered together before
clustering with other samples or already-formed clusters in the
agglomerative procedure. The “discrimination distance” is defined
based on the average of “class discrimination distance.” For each
class, if it is “correctly clustered” (defined as in the metric before), the
discrimination distance is the distance between the node that
includes all samples of the class and the next closest node
(including those samples) in the agglomerative procedure,
normalized by the maximum distance of any pair of nodes in the
clustering; if not, it is 0. The “correct first cluster” percentage is
defined as the percentage of samples whose first time that they
clustered was only with sample(s) from its own class.

K-means clustering analysis was applied using the Euclidean
distance. The cluster number was equal to the total number of
classes in each dataset (11 in GD, 5 in YD, and 2 in GD types and
HD). Owing to the randomness of the initial centroid
assignments (Andreopoulos et al,, 2009), the algorithm was
iterated 20 times and the result with the least inertia was
retained. Clustering performance was also assessed by three
metrics: discrimination distance and correct clustering
percentage (class-based metrics) were computed by
considering the distances between cluster centroids. For
K-means, a “correct clustering” is defined as the cluster
containing all and only the samples of a single class (total

Graph Properties of MDiNs

homogeneity and completeness). As a stricter condition
imposed in HCA for correct clustering, a lower correct
clustering percentage is expected. The third metric focused
on the samples was the Rand Index, defined by the
proportion of sample pairs that are correctly clustered or
correctly not clustered, adjusted for the expected proportion
with samples randomly clustered. For the two-class datasets
(GD types and HD) that have a larger number of samples per
class, only the correct first cluster percentage and Rand Index
were considered. This choice is justified by the higher likelihood
that clustering percentage and discrimination distance will be
close to zero because a single sample behaving as an outlier can
make all other samples of a class being considered not correctly
clustered.

Classifier Methods (Supervised Analysis)
Random Forest and projection in latent structures-discriminant
analysis (PLS-DA) were chosen as classifiers for the comparison
between the IDT and several sMDIiN graph properties. The
classes for prediction were defined as identical to the ground-
truth groups of the clustering analysis. The performance of the
classifiers was assessed by their predictive accuracy. GD types
accuracy was evaluated by fivefold stratified cross-validation. The
HD dataset was evaluated on a test set resulting from a 70%/30%
random train/test split due to its large sample size. The other
datasets, considering their classification targets, have a low
number of samples per class, and consequently, accuracy was
evaluated by internal stratified threefold cross-validation (Lee
et al., 2018).

For each classifier, 20 iterations of different cross-validation
folds were performed. To avoid data leakage, for models based
on the IDT, for each cross-validation fold and each iteration,
the train and test data were treated independently by the same
transformation pipeline. For the treatment that included RF
missing-value imputation, the training and test sets were
filtered to only include features appearing in at least two
samples of the training set. Features of the test set
occurring in only one sample were imputed by one-fifth of
the minimum, instead of RF imputation. Features that did not
appear in the test set were added to this one with the minimum
value appearing in the training set. In the case of WMDBI, as it
requires previous node degree importance assignment, these
were computed from RF models using only the training set of
that iteration/fold combination. The remaining sMDiNs
metrics are a characteristic of each sMDIN, so these
procedures to avoid data leakage do not need to be applied.
Except for the HD dataset, the results presented are the average
results of the 20 iterations.

After the optimization of the number of trees to 100, RF
classifiers built with the scikit-learn
RandomForestClassifier object constructor, leaving other
parameters as their default values. The gini importance of
each feature was calculated for each model (Louppe et al,
2013). For the two-class classification problems (GD types and
HD), receiver operating characteristic (ROC) curves were
computed for the IDT transformed data and for every
sMDIiN analysis with fivefold stratified cross-validation.

were
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TABLE 3 | General characteristics of the mass-difference networks built from the different datasets.

Dataset MDiNs Nodes Edges Size of largest component Connected nodes (%) Diameter Radius
GDg2 3,629 1,005 183 32.43 27 14
GDc2 3,026 718 145 29.31 31 16
GD types 3,026 718 145 35.60 31 16
YD 1,893 914 291 37.35 30 15
HD 12,867 31,008 7,631 74.94 63 32

Diameter and radiius are calculated for the largest network component.

PLS-DA classifiers were built using the PLS2-NIPALS
algorithm implemented in PLSRegression of scikit-learn
(Pedregosa et al.,, 2011). The numbers of components chosen
were 10 for the GD and HD datasets and 6 for the YD and GD
types datasets after optimization based on maximizing Q?, that is,
minimizing the predictive residual sum of squares (computed
from internal stratified cross-validation). For the matrices
obtained from MDBI and WMDBI sMDIiN analysis, four and
six components were used, respectively. The data matrices
obtained from the network analysis of sMDiNs were auto-
scaled during the development of the PLS-DA models,
whereas IDT-treated data were already scaled. For multiclass
problems, one-hot encoding was used to encode class
membership and the decision rule for class prediction was
employed to assign to samples the class corresponding to the
maximum value in ypred of the PLS output. For two-class
problems, class membership was coded as 0 or 1, with
0.5 threshold for decision. For both classifier methods,
permutation tests (with 500 iterations each) were performed to
further assess model significance.

Implementation

Data pretreatments, analysis of the sMDiNs, clustering methods,
and classifiers were implemented in Python language version
3.9.7 using the following packages: pandas version 1.4.1
(McKinney, 2010), numpy version 1.20.3 (Harris et al., 2020),
scikit-learn version 1.0.1 (Pedregosa et al, 2011), networkx
version 2.6.3 (Hagberg et al, 2008), scipy version 1.7.3
(Virtanen et al., 2020), matplotlib version 3.5.0 (Hunter, 2007),
seaborn version 0.11.2 (Waskom et al., 2020), and metabolinks
version 0.71 (Ferreira and Traquete, 2021). The code that
supports this study is available at the repository https://github.
com/ftraquete/paper_sMDIiN.

RESULTS

Mass-Difference Network Construction and

Analysis

One MDIN was built from each benchmark dataset using the
MDBs indicated in Table 2. sMDiNs were derived by
subgraphing the dataset MDiNs with only the features
appearing in each sample. Sample MDiNs were analyzed by
six different network analysis methods, and for comparison,
the datasets were also treated by the intensity-based data
pretreatment (IDT).

The characteristics of the MDiNs derived from the five
benchmark datasets are shown in Table 3 and a full MDiN
built from the YD dataset, with a close-up on its most populated
area, is depicted in Figure 2. A representation of the largest
components of the MDiNs of the remaining datasets is shown in
Supplementary Figure S2.

The MDiNs had similar overall characteristics. Only
approximately one-third to half of the nodes established
connections. The networks were, therefore, somewhat sparse,
although HD sMDiNs were denser because of the high number of
features (Table 1). Unconnected nodes were uninformative for
posterior network analysis, and they were excluded. A main and
larger component was usually present. This component had a
center with a zone(s) composed of nodes with a higher degree,
which acted as main hubs, as shown in Figure 2. The high
diameter and radius (half of the diameter) showed that the
networks were highly spread out from those hubs. The
network topology with a low number of nodes with high
degree and a high number of nodes with low degree (where
the degree distribution approximates a power law) was expected
because this was a characteristic of many different biological
systems, including metabolic networks (Barabasi and Oltvai,
2004). sMDiNs had this same overall topology on a smaller
scale. The MDBs that contributed the most to the edges in the
MDiNs of all datasets were CH, (methylation), H,
(hydrogenation), and O (oxygenation and hydroxylation)
(Supplementary Table S1), which are, as expected, some of
the most prevalent chemical reactions in biological systems.

To assess the viability of using sSMDiNs as the information
basis for class discrimination, the performances of two clustering
methods (HCA and K-means) and two classifiers (RF and PLS-
DA) trained on data obtained from the application of different
network analysis and with data obtained with IDT were
compared. The benchmark datasets included three examples of
low sample number per class and more than two classes (GDg2,
GDc2, and YD) and two-class problems with a high number of
samples per class (GD types and HD) and also obtained in
different high-resolution instruments in order to empirically
test the use of sMDIiNs against an array of different types of
metabolomics data, easier or harder to discriminate.

Unsupervised Methods —Hierarchical and

K-Means Clustering
The results of clustering are shown in Figure 3. Performance was
assessed by the ability to cluster the samples of the same class
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FIGURE 2 | Mass-difference network built from the YD dataset. The inset is a close-up of the selected rectangle in the populated area of the largest network
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node degree. Network representations were made with Cytoscape 3.8.1 (Shannon et al., 2003).
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together (defining ground-truth clusters), that is, by the correct
clustering percentage, discrimination distance, correct first
cluster percentage (for HCA only), and the Rand Index
adjusted for randomness (for K-means only). As an HCA
example, resulting dendrograms from IDT-treated data and
degree, MDBI and weighted MDBI sMDIN network analyses
of the GDc2 dataset are shown in Supplementary Figure S3.

The clustering results applied to the data from the degree
analysis tended to outperform all other graph metrics
employed. Degree profiles also often performed very similar
to IDT. Considering correct clustering (Figures 3A, D), both
clustering methods often achieved the highest values with data
generated from the degree analysis, except for GDc2 for HCA,
where it trailed behind IDT. For YD, the perfect clustering
obtained with IDT was also achieved with the degree analysis.
Discrimination distance (Figures 3B, E), a measure to
represent the robustness of clustering discrimination
performance to outliers (Traquete et al., 2021), followed the
same trend with high proximity between IDT and degree
analysis of sMDiNs, with only a considerable lead of the
degree analysis on the K-means clustering analysis of YD.
The results of these three datasets were qualitatively the same
for the correct first clustering percentage for HCA and for the
Rand Index for K-means that offer finer granularity
(Figures 3C, F).

For HCA, in the case of GD types and HD datasets, we could
observe that the IDT pretreatment slightly outperformed degree
and closeness analysis. However, for K-means clustering, the
Rand Index plummeted (in comparison to the correct first cluster
percentage) for all methods. Thus, despite the better performance
of IDT, K-means clustering for these two larger datasets with two
groups cannot cluster well the samples into the two expected
clusters.

Focusing on the other node-centric network methods,
closeness centrality led to results only slightly below or equal
to those of degree analysis, slightly outperforming it on occasion,
whereas betweenness centrality resulted in considerable worse
performance. Considering all node-centric analyses employed,
degree stands out as the best and the less computationally
expensive to calculate.

Considering global network characteristics, both MDBI and
GCD-11 resulted in subpar clustering discrimination in
comparison to the degree profiles, although, in general, MDBI
leads to better results compared to GCD-11. A reason for this
might be the aggressive truncation of features to 15 (or 17 for YD)
in MDBI and 60 in GCD-11 that might not be enough to
discriminate the 30+ samples of GD data. Nevertheless, the
fact that GCD-11, which focuses on network topology
(60 features), performs poorly in comparison to MDBI
(15 features) indicates that the overall topology of the sMDiNs
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FIGURE 3 | Effect of IDT and sMDIN graph property analysis on clustering performance. (A) Correct clustering in HCA; (B) discrimination distance in HCA; (C)
correct first clustering in HCA; (D) correct clustering in K-means clustering; (E) discrimination distance in K-means clustering; (F) adjusted Rand Index in K-means
clustering. Methods are as follows: intensity-based data pretreatment (IDT); network analysis: degree analysis (degree), betweenness centrality analysis (betweenness),
closeness centrality analysis (closeness), MDB impact (MDBI), weighted MDB impact (WMDBI), and GCD-11 topology analysis (GCD11).

might not be sufficiently distinctive for group discrimination. In
contrast, WMDBI, a modified MDB impact metric that weights
the edges based on the importance of the nodes it links,
performed considerably better than MDBI and often similar to
degree or closeness. It is worth noticing that the importance of the
nodes was estimated by their gini importance in a RF (supervised)
model based on the data of the degree analysis. We followed the
assumption that the most important nodes from the degree
analysis will be those that are more characteristic of the
different classes. Thus, the edges of these nodes will also be
more important and will then be given a higher weight. Degree
profiles led to the best results, showing that they contain
significant information for profiling. Clustering based on
WMDBI is thus not the result of a purely unsupervised
analysis, which might explain the very good performance.
Despite the encouraging results with clustering, supervised
methods are expected to be more appropriate to assess the
relative merits of WMDBL

The dendrograms for dataset GDc2 (Supplementary Figure S3)
illustrate these trends. Degree analysis and IDT-treated data led to an
almost recovery of ground-truth sample groups, which was not
observed in the dendrograms obtained from MDBI and weighted
MDBI. However, the four dendrograms present similarities at higher
level clustering such as the proximity between CS and RL samples,
which indicates a higher level structure in the data maintained
between the different network methods and IDT. Degree and IDT
dendrograms present even more similarities such as the grouping of
CAN, RIP, LAB, and SYL samples.

These results suggest that using sMDiNs as a basis for
clustering is possible because they retain the important

discriminatory information to allow for group discrimination.
Furthermore, degree (node-centric) analysis of the sMDiNs
sometimes even slightly outperformed the intensity-based
pretreatments, being the best of the six graph properties
compared here.

Supervised Statistical Analysis—Random
Forest and Projection in Latent Structures

Discriminant Analysis Classifiers

We compared the predictive performance of different classifiers
applied to the benchmark datasets, considering the classes as
target labels. GD types and HD illustrated the use of sMDiNs as a
basis for class discrimination with two-class problems, a common
scenario in metabolomics data analysis, and the remaining
examples were multiclass. Performance was assessed by the
model’s predictive accuracy. The classifiers chosen were RF
and projection in latent structures—discriminant analysis (PLS-
DA) due to their popularity in metabolomics data analysis. These
classifiers were applied to data matrices obtained from IDT and
the six network analysis methods. Average accuracy results are
shown in Figure 4. For the HD dataset, owing to its large sample
size, results shown are based on the model’s prediction accuracy
on a test set (30% of samples).

The RF and PLS-DA classifier performance results were
similar, with sometimes PLS-DA models leading to noticeable
better accuracies (GDg2 or HD), and followed trends alike those
observed in clustering analysis. Classifiers developed for node
centrality sSMDiN methods performed better than those for global
network characteristics (MDBI or GCD-11). RF classifiers from
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FIGURE 4 | Classification performance of models developed from IDT-treated data or SMDIN graph property methods. (A) Performance of random forest (RF)
models; (B) performance of projection in latent structures—discriminant analysis (PLS-DA). For all datasets except HD, accuracy was estimated by 20 iterations of internal
three- or fivefold stratified cross-validation, with the error bars representing the accuracy standard deviation. For the HD dataset, accuracy was estimated on a test set
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topology analysis (GCD11).

betweenness centrality profiles had comparable performances to
the other centrality measures, but the corresponding PLS-DA
classifiers show a sharp drop in performance (usually 0.2 to
0.3 lower). Degree profiles are just slightly better than
closeness profiles in general, while having sometimes
marginally lower accuracies than closeness centrality.

The RF accuracies of IDT-based models are lower than those
of PLS-DA, except for the GD types dataset. Degree profile RF
classifiers outperformed IDT RF classifiers for GD, YD (achieving
perfect prediction), and HD. In fact, for GD types and GDc2, most
models based on network metrics outperformed those based on
IDT-treated data. For PLS-DA, however, IDT and degree analysis
led to more similar accuracies, being nearly identical for most
datasets. Interestingly, only the PLS-DA model built from
closeness centrality achieved perfect accuracy for GD types.

ROC curves computed for RF models of GD types and HD
datasets showed the good performance of the network analysis,
with degree slightly outperforming the IDT for GD types and IDT
having slightly higher area under the curve (AUC) than the
degree analysis (Supplementary Figure S4).

RF models built from WMDBI and MDBI outperformed the
corresponding PLS-DA models. Among these, WMDBI almost
always outperformed MDBI, showing the improved performance
that is gained by weighting the edges according to their
importance for class discrimination (assessed by the RF model

based on the node degree profiles). This also shows the potential
of articulating multiple sMDiN metrics that look at different data
aspects to improve our findings showcasing the versatility of this
analysis. Furthermore, despite underperforming IDT-based and
node centrality-based models, the decent performance achieved
using WMDBI with only 15 or 17 features revealed that
discriminatory information is being compiled into these
features. Because sMDIiNs have discriminatory information
and these results showed that this information content is
embedded in WMDBI analysis, we believe that it is viable to
use this metric as a means to perform feature importance analysis
to rank chemical transformations for the purpose of using their
importance profile in sample discrimination.

Permutation tests were made to assess the significance of the
accuracy of the models (Supplementary Table S2). In all cases,
p-values were equal or below 0.05.

The main conclusion is that sMDiNs can successfully be used
as a basis for class discrimination not impairing and sometimes
improving the performance of clustering or PLS-DA model
classification and improving the classification by RF for all
benchmark datasets. This was observed for hard problems as
in the GD datasets (multiclass, low number of samples per class),
easy problems as in YD, and two-class problems such as GD types
and HD datasets. Therefore, there is useful and discriminatory
information carried over and highlighted in sMDiNs, which
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TABLE 4 | MDB gini importance for the RF model developed from the MDBI and
WMDBI values for the YD dataset.

Rank MDB impact Weighted MDB impact
MDB Gini importance MDB Gini importance
1 POsH 0.080861 POgH 0.074093
2 CO, 0.078512 NCH 0.071493
3 CO 0.075893 Ho 0.069716
4 (0] 0.071955 CO 0.069039
5 CH, 0.069898 CCH3COOH 0.066709
6 S 0.068733 CHa 0.065887
7 Ho 0.067228 (0] 0.065582
8 NHz(-O) 0.067118 CONH 0.065106
9 CCH3;COOH 0.065289 S 0.063815
10 NCH 0.057191 CHCOOH 0.062894
11 CONH 0.054210 NH3(-0) 0.061970
12 SOz 0.053020 H.O 0.057914
13 CHCOOH 0.049574 CO, 0.054781
14 C2H20 0.047399 O(NH) 0.052759
15 O(-NH) 0.038924 CoH0 0.048037
16 H.O 0.037026 SO3 0.040224
17 CHOH 0.017169 CHOH 0.009983

makes its use in this context viable when compared to the
workflows that start with two-dimensional numerical intensity
matrices.

Example of Feature Importance Assignment
From sMDiNs

We next aimed to establish if the information extracted from
sMDiNs might complement the type of information drawn using
the traditional data analysis workflow. To this end, we assessed
the use of MDBI and WMDBI to assign importance to the MDBs.
These two metrics characterize each sMDIN based on the edges
established by each of the MDBs and should then represent the
prominence of the different types of reactions represented by
them in the sample. Assessing which MDBs are more important
for class discrimination might point to chemical transformations
that are over- or under-represented in a subset of classes in the
dataset. This concept is similar to the one used by Moritz and
coworkers to identify and characterize differences of two gray
poplar genotypes, although approached with a different
methodology (Moritz et al., 2017). For example, if oxidizing
compounds or enzymes are more present or expressed in a
biological system when compared to others, the presence of
more metabolites whose difference corresponds to an
oxidation reaction (O or H,) is expected. For simplicity, so
that the differences in the classes may be easily observable, the
YD dataset was used as an example due to the smaller number of
samples and classes. The importance of each of the MDBs
estimated by their gini importance (Louppe et al., 2013) for
building the RF models is shown in Table 4 and cluster maps
of the data with decreasing rank of MDB importance are depicted
in Figure 5.

The MDB with the greatest impact for class classification in
both metrics is “POsH,” which represents metabolite
phosphorylation and dephosphorylation (Table 4). Thus, this

Graph Properties of MDiNs

MDB seems fundamental to class discrimination. It has higher
values in the WT strain, intermediate in AGRE3 and AGLO2, and
lower in AENOI and AGLOL1 for both methods (Figure 5). Other
MDBs follow the same pattern, such as CH, (methylation) and
CO (formylation) also ranking high. On the other hand, with the
least important MDBs for both methods (CHOH or O(-NH) for
example), there is no stratification of values per class and a lack of
consistency among samples of the same class. MDB impacts can
be interpreted as reactions being over- or under-represented in
some strains, that is, for example, phosphorylation-related
reactions being under-represented in the yeast mutant strains
from the WT, especially in AENO1 and AGLO1. In contrast, the
prevalence of reactions represented by the least important MDBs
was not altered significantly by the single-gene deletions. This
helps the characterization of the strains and may be used to guide
future studies, for example, in this case, to justify the under-
representation of phosphorylation reaction in the single-gene
deletion mutants. The use of this approach in metabolomics data
analysis can become useful in two-class problems where
differential representation can be more easily observable.

The “carboxymethylation” and “carboxyethylation” MDBs
were added specifically for the YD dataset because they are
related to protein and phospholipid glycation, specific for
phosphatidylethanolamines (Requena et al, 1997; Sousa Silva
et al, 2013). Glycation is a post-translational modification
resulting from the reaction of methylglyoxal with arginine and
lysine residues (Sousa Silva et al., 2013). Despite glycation being
mainly associated with proteins, carboxymethylated and
carboxyethylated phospholipids, considered advanced glycation
end-products, have been detected in vivo, with two main
formation mechanisms proposed: direct transformation after
reaction with glyoxal and methylglyoxal (carboxymethyl and
ethyl, respectively) or indirectly after a set of different reactions
(Requena et al., 1997; Shoji et al., 2010). It is expected that these
MDBs should be more prevalent in the yeast strains with single-
gene deletions, namely, AGLO1 and AGRE3, and in a lesser extent
in AGLO2, as the deleted enzymes are directly involved in
methylglyoxal catabolism, an anti-glycation mechanism defense
(Sousa Silva et al, 2013). Although small differences can be
observed between strains, neither of these MDBs ranked very
high in importance. These results confirmed that when grown
under normal culture conditions (without exposure to glycation),
these mutants do not present a glycation phenotype (Gomes et al.,
2006). This analysis shows the possible and untraditional types of
information that can be highlighted using sMDiNs as a basis for
data analysis. As a general note, node-centric and local
characteristics analysis will probably shed information on
individual or a set of nodes (m/z peaks), whereas global analysis
will focus on the general and overall characteristics of the system.

DISCUSSION

The use of MDiNs as a basis for class discrimination and
identification of important features relies on the commonly
accepted concept that the detected metabolites identified with
high-resolution methods are characteristic of a biological system.
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FIGURE 5 | MDBI and WMDBI values for the sMDIiNs of the YD dataset. (A) MDB impact; (B) weighted MDB impact. Values were mean-centered and standard
scaled. MDBs are ordered by decreasing gini importance. Samples are triplicates of yeast strains of the wild-type reference strain (WT) and four single-gene deletion
isogenic mutants of this strain: AGLO1, AGLO2, AGRE3, and AENO1. MDBs are listed in Table 2. Samples were clustered by HCA, with Euclidean distance and Ward
linkage.

Here, the set of spectral features is used to build a mass-difference
network. This representation, where each sample has a different
MDiN, is a basis for downstream data analysis. This approach is
suitable for untargeted metabolomics, although it requires high-
resolution and high-accuracy mass-spectrometry—based data. As
stated, sMDiNs are built ab initio by considering the detected
metabolites as nodes with edges established if the difference in
mass between nodes corresponds to one of the MDBs
representing types of chemical transformations, generating
networks akin to metabolic networks without a priori
information regarding the system. The relevant characteristics
of data here are how each detected feature might relate to other
detected  features. Therefore, unconnected nodes are
uninformative.

Several high-resolution metabolomics datasets were used as
benchmarks to test the hypothesis that data representing profiles
of graph properties can be used for clustering and classification.
As these datasets come from different sources and different
instrumental platforms and workflows and have different
levels of class overlap, number of samples, and classes, they
are real-life scenarios of data quality levels in current high-
resolution metabolomics.

Advantages of Sample Mass-Difference

Networks

This study indicates that using sample MDiNs as a data basis
for class characterization and discrimination, instead of the
usual two-dimensional numerical data matrices, is viable in
metabolomics data analysis and capable of offering and
highlighting complementary information to traditional
workflows. Node-centric network metrics generated profiles
that resulted in similar or better class discrimination in

downstream statistical analysis methods in comparison to
IDT, which represents traditional methods in this study.
The network analyses of the sMDiNs are an alternative to
the data pretreatments of numerical matrices. Perhaps the
greatest advantage of sMDINGs is the versatility that it provides.
Although all traditional pretreatments are alternatives with a
common objective of highlighting relevant biological
information contained within the data intensity values while
reducing the effect of undesired variation (van den Berg et al,,
2006), network analysis of sMDiNs can be oriented to
highlight wildly different aspects of the data such as node
centrality, network topology, edge properties, and metabolite
taxonomy (in case the MDIiNs are also used for formula
assignment). These provide complementary information and
can, therefore, be used in parallel and even articulated
together. As an example, in this study, the degree analysis
of the sMDiNs showed that they contain discriminatory
information for class classification. Then, the importance of
the nodes based on an RF model of these data was used to give
weights to their corresponding edges to improve the MDBI
analysis. With only 15 features, we could use this weighted
MDBI to observe what type of chemical reactions were being
over- or under-represented between the dataset’s classes by
accessing their importance for building classifier models.
Hence, it is possible to obtain multiple types of information
from the metabolites that establish different connections
between classes (degree) and what type of chemical reaction
is differently represented in the classes (WMDBI). So far, we
only scratched the surface testing only six network analysis
methods because this preliminary study was focused on
determining the viability of using sMDiN as a basis for
class discrimination, and thus, a systematic study of
different network analysis methods used was beyond the
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scope of the article. MDiNs might also be useful to compare
samples from different datasets and experiments even in the
absence of proper retention time or m/z alignment or formula
assignment by falling back on comparing the global sMDiN
characteristics such as MDBI that, although less efficient, may
still provide meaningful insight for sample and class
characterization. As discussed later, this versatility comes at
the cost of some additional methodological complexity.

MDIiNs consider all possible reaction interactions between
spectral features based on the set of MDBs used and account for
both enzymatic and nonenzymatic chemical reactions in the
representation of the metabolome and its interactions. Apart
from the a priori choice of MDBs, they are not restricted by prior
knowledge of the different metabolic pathways that make up the
metabolic networks, knowledge of which may still be very
incomplete in less studied biological systems (Moritz et al,
2017). Furthermore, the derivation of an MDiIN does not
require metabolite identification, needed to map a dataset to
metabolic networks. Thus, it can be applied to the study of any
biological system.

The application of sMDiNs in this work discarded the
intensity signals in the data to build the networks. Although
we do not reject the idea of using the intensities as node
information or even to help in building the networks,
discarding these signals has some advantages (Traquete et al.,
2021). This allows us to primarily use the occurrence of spectral
features, which we have shown to be able to discriminate between
biological systems (Traquete et al., 2021). These data should be
less subjected to variability than intensity. For example, Lin and
coworkers found that compound annotation was less variable in
experiments between laboratories than relative quantification of
those metabolites (Lin et al., 2020). Thus, this is useful as it
diminishes inherent variability. Despite relying on the occurrence
of spectral features and thus requiring the presence of a sufficient
number of missing values, the methods based on sMDiNs even
worked for the HD dataset, which had a lower number of missing
values.

Network analysis of each sample’s sMDIN proceeds
independently of the other samples (except for the
WMDBI). It is, therefore, robust to data leakage in
training-testing procedures: the possible introduction of
feature distribution information, a pitfall of the traditional
preprocessing procedures, does not happen with sMDiNs.
Thus, for model validation, the care to apply the
preprocessing pipeline to the train and test sets
independently is not necessary.

Another advantage of sMDINs is that they are already used
for formula assignment (Tziotis et al.,, 2011; Moritz et al,,
2017; Fudyma et al., 2019). Thus, feature annotation and
formula assignment can be efficiently coupled with sMDiN
property analysis, allowing metabolite identification to be
used for data biological interpretation, but it may also
motivate specific network analysis. For example, from the
assigned formulas, compound taxonomy based on elemental
ratios can be annotated (Rivas-Ubach et al., 2018), which, in
turn, can be used to identify metabolite taxa over- or under-
represented in the different classes, similar to what was

Graph Properties of MDiNs

demonstrated for MDBI analysis, but focusing on nodes
instead of edges.

General Applicability and Limitations of

Sample Mass-Difference Networks

In this study, sMDiN application was benchmarked with
examples of datasets obtained in different high-resolution MS
instruments and with different number of samples, classes, and
features, leading to good performances in the application of the
clustering and classifier methods.

The derivation of sMDiNs from spectral data is difficult if
these data are not obtained with high-resolution metabolomics
instruments and methodologies. High resolution is usually
associated with high mass accuracy, an instrumental capability
that is paramount to establish accurate mass differences to
reliably find the connections that correspond to a given MDB
(Breitling et al., 2006; Ruf et al., 2018). In this work, a tolerance of
1ppm for relative mass-difference error was employed.
Moreover, a high number of features are necessary to allow
for enough edges in the sMDiNs, meaning that the network
density must be sufficiently high to characterize each sample. The
usage of sSMDiNs based on the difference in the set of features
detected in each sample is grounded on the idea that every
metabolome will have its own set of metabolites as a key
information source for the discrimination. This specificity is
reflected in the specificity of network properties. Thus, the
differential occurrence of spectral features is essential with the
disparity between missing and nonmissing values becoming
important for MDIN building. sMDiN based analysis might
become unsuitable if data have a very low or very high
number of missing values. High-resolution datasets have
considerable missing-value abundance as opposed to lower
resolution data with lower amounts of missing values due to
broad bins/peaks. Missing values are usually excluded by variable
selection based on threshold of missing-value abundance, and
their importance in discrimination is overlooked and
overshadowed by intensity data. Here, the information content
of missing values is fully used to contrast the different sMDiNs. In
this study, feature selection was mild and resulted from the
application of a feature filtering procedure based on a
reproducibility criterion to exclude features that only appeared
once in the set of all samples, most of which would be
uninformative being the result of noise or variability. For
dataset GDc2, features that did not appear in at least two
samples of the same class were excluded (a stricter criterion).

The construction of each sMDIN from direct infusion data is
not able to incorporate differences in isobaric compounds or
functionally different isomers, and each edge in the network
could arise from any of the multiple possible specific reactions.
Chromatographic separation data can, in principle, inform on the
chemical structure behind a given mass value and can help in
curating the network, allowing for the separation of nodes with
the same mass. This cannot, however, be performed in general for
most nodes of the sMDIiNs, and the structural changes in the
networks are not expected to be significant after the incorporation
of retention time information. Even without using a finer network
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structure in our direct benchmark datasets, we were able to
demonstrate that the graph metrics carry enough information
to make clustering or classification procedures successful.

Mass-difference network construction requires the selection of
the error allowed for MDBs, and the choice of an MDBs list to
consider is crucial. MDBs should encompass transformations that
affect at least the most common elements in metabolites (C, H, O,
N, S, and P) and should have some basis on observed chemical
reactions. They can be chosen a priori from a list of predefined
masses or by the most common mass differences present in the
dataset capable of being assigned a specific chemical
transformation (Kunenkov et al, 2009; Moritz et al., 2017).
MDBs may establish edges not corresponding to their
intended chemical transformation but to a set of smaller
reactions that have cumulatively the same elemental changes
and mass differences. For example, transfer of a formyl group
(change of CO) plus hydrogenation (H, change) leads to the same
change of hydroxymethylation (change of CHOH). Furthermore,
specific sets of chemical transformations may be added based on
the biological systems analyzed and the purpose of the
experiment. Thus, the number of MDBs and the tolerance for
the mass-difference error allowed in MDiN construction should
also be set based on the particular datasets and instrumental
capabilities to prevent the sMDIiNs to become too dense (their
topology becomes too similar among the different samples) or too
sparse (where not enough connections are established to
differentiate graph properties). However, the choice of MDBs
for a specific purpose must take into account the possibility of in-
source dissociation of some compounds, leading, for example, to
water loss, which corresponds to a dehydration MDB. In this
work, we chose to restrict to only 15 MDBs (Table 2) as a proof of
concept. The MDBs chosen represent small and ubiquitous
reactions in biological systems that we believe should be
considered in most MDiNs of biological samples. Addition of
other MDBs might be necessary in other untargeted analytical
contexts, such as environmental studies, where a more in-depth
analysis of the chemical complexity is required, considering
previous knowledge of the systems under study and the
experimental objective.

With the parameter-tuning of mass error tolerance and choice
of MDBs, primary MDIiNs, like the ones in this study, can be
derived. Extra steps may be necessary to increase the quality of the
sMDiNs. For example, false positive edges can be established
between two masses whose MDB does not correspond to their
actual differences in elemental compositions. This is more likely
to happen with higher masses, where the combination of possible
formulas within a 1 ppm error margin increases exponentially
(Kind and Fiehn, 2006). This can generate spurious connections
between metabolites. To tackle this issue, the fact that MDiNs
have been used to assign formulas to detected peaks (Breitling
et al., 2006; Moritz et al., 2017), starting from a set of reliable
annotated metabolites (higher confidence formulas) and
propagating them through the network components can be of
use. With this formula assignment, besides adding information to
the network nodes, we can see if discrepancies arise in formula
propagation from different starting nodes in a component, which
can help in flagging possible spurious connections. Furthermore,
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imposing elemental ratio constraints, for example, the number of
oxygen atoms to number of carbon atoms ratio (Kind and Fiehn,
2007), may help in assigning formulas within the allowed regions
of the chemical space, while removing edges that would lead to
formulas outside those regions. There can also be instances where
very similar masses can be linked by the same MDB in the same
“direction” (addition or subtraction) to the same node (as shown
in the inset of Figure 2, where nodes 255.2927 and 255.2925 were
both linked to node 299.2924 by a CO, edge) and would represent
metabolites with the same elemental formula. This could be the
result of errors in the peak selection or alignment stages or
because the mass error tolerance for building the MDiIN was
too high, for example. A possible solution would be to eliminate
the edge with a higher associated error or to reduce error
tolerance. Here, we demonstrate that it is possible for sMDiNs
to be useful for class discrimination with high-quality and
resolution metabolomics datasets with a simplistic application
using a restricted list of MDBs, even without taking measures to
increase sMDiIiN quality, showing the base potential of the
methodology.

The next step is to carefully choose and apply different
network analysis. Careful deliberation by the researcher
regarding the network analysis methods that will be employed
should be made because the information that they provide can be
very specific, whether focused on node characteristics, local
clusters, and edge properties such as MDBI or node properties
like compound taxonomy. Thus, this methodology keeps class
discrimination information while remaining versatile in the types
of information that it can provide, which can be specific to the
intention and information desired from the experimental work.
Nevertheless, for larger datasets such as HD, some network
analyses of a high number of samples might be
computationally prohibitive.

MDiNs lead to a very simple type of feature selection: rejection
of unconnected, uninformative nodes in the MDiN. These tend to
be approximately half to two-thirds of the dataset, resulting in a
hefty filter process. This rejection retains features that (based on
the MDBs selected) connect to at least another detected
metabolite in the dataset. The possible side effect is the
removal of some rarer and unorthodox metabolites that may
exist and be informative. Further feature selection should not be
made because every remaining node has an impact on the full
dataset because it affects the network property values of other
nodes. Thus, there are no counterparts to the types of feature
selection normally used (statistical significance, classifier feature
importance, or number of missing values). Other feature selection
procedures prior to building MDiNs should be carefully applied
as to not exclude too many features as well as to not exclude
informative features with plenty of missing values.

CONCLUSION

The adoption of MDIiNs at a sample level (sMDiNs) in the
metabolomics data analysis framework was envisioned to be a
viable alternative to the analysis of two-dimensional numerical
matrices for biological system characterization and
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discrimination. MDiNs are built using the list of detected features
(m/z peaks) as nodes, establishing edges between nodes if their
difference in mass corresponds to a chosen list of allowed
chemical transformations that can occur in biological systems.
Thus, they depict the chemical diversity of a sample building a
network akin to a metabolic network, without the need for
metabolite identification and mapping to the (usually
incomplete) known metabolic pathways. Sample MDiNs were
built based on the features detected for each sample. Thus,
differences between samples come from the difference in the
set of features detected that dictate the nodes, edges, and other
network properties to be analyzed, contrasting with the use of
signal intensities by the two-dimensional numerical matrices.
Graph property network analysis of the sMDiNs is a novel idea
that we present as an alternative to data pretreatments but with
the added benefit of being able to focus on different
characteristics of the networks.

The four statistical methods employed performed consistently
as well or slightly better with data from the degree analysis of
sMDiNs than with data treated with common intensity-based
pretreatments, showing that discriminatory information is
retained in the sMDiNs. The use of a different network
analysis for important feature assignment was also shown by
highlighting weighted MDBI analysis on yeast data sSMDiNs that
revealed an under-representation of phosphorylation-like
reactions in the single-gene deletion yeast mutants compared
to the WT as an example of the possible versatility of the
methodology.

The procedure to build sMDiNs requires a high number of
features and high-resolution data as well as a balanced missing-
value occurrence. Thus, it is not generalizable to all scenarios for
metabolomics data analysis. It can be efficiently coupled with
formula assignment and feature selection methodologies based
on the MDIiN concept, which offers extra information for class
discrimination and biological interpretation.

On the basis of the demonstrated viability of the procedure as
well as the additional information that can be gained from it, we
propose the use of sMDIiNs as a basis for the analysis of high-
resolution untargeted data in metabolomics.
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