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ABSTRACT Emerging SARS-CoV-2 variants of concern that overcome natural and vac-
cine-induced immunity threaten to exacerbate the COVID-19 pandemic. Increasing evi-
dence suggests that neutralizing antibody (NAb) responses are a primary mechanism of
protection against infection. However, little is known about the extent and mechanisms
by which natural immunity acquired during the early COVID-19 pandemic confers cross-
neutralization of emerging variants. In this study, we investigated cross-neutralization of
the B.1.1.7 and B.1.351 SARS-CoV-2 variants in a well-characterized cohort of early pan-
demic convalescent subjects. We observed modestly decreased cross-neutralization of
B.1.1.7 but a substantial 4.8-fold reduction in cross-neutralization of B.1.351. Correlates of
cross-neutralization included receptor binding domain (RBD) and N-terminal domain
(NTD) binding antibodies, homologous NAb titers, and membrane-directed T cell
responses. These data shed light on the cross-neutralization of emerging variants by
early pandemic convalescent immune responses.

IMPORTANCE Widespread immunity to SARS-CoV-2 will be necessary to end the
COVID-19 pandemic. NAb responses are a critical component of immunity that can
be stimulated by natural infection as well as vaccines. However, SARS-CoV-2 variants
are emerging that contain mutations in the spike gene that promote evasion from
NAb responses. These variants may therefore delay control of the COVID-19 pan-
demic. We studied whether NAb responses from early COVID-19 convalescent
patients are effective against the two SARS-CoV-2 variants, B.1.1.7 and B.1.351. We
observed that the B.1.351 variant demonstrates significantly reduced susceptibility to
early pandemic NAb responses. We additionally characterized virological, immuno-
logical, and clinical features that correlate with cross-neutralization. These studies
increase our understanding of emerging SARS-CoV-2 variants.
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The COVID-19 pandemic has resulted in more than 110 million infections and 2.5
million deaths worldwide (1). Accumulating evidence suggests that both natural (2,

3) and vaccine-induced (4–7) immunity strongly protects from SARS-CoV-2. However,
the emergence of novel SARS-CoV-2 variants with diverse mutations threatens to
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attenuate the magnitude of these mechanisms of immunity (8). Adoptive transfer (9)
and vaccine studies (10) in rhesus macaques suggest that neutralizing antibody (NAb)
responses are a critical correlate of protection against SARS-CoV-2 infection. Therefore,
the extent to and mechanisms by which early pandemic convalescent-phase sera
cross-neutralize emerging variants is an important area of investigation.

The first major SARS-CoV-2 mutation to be extensively characterized was D614G,
which began to emerge in April 2020. Epidemiological and virological studies suggest
that D614G exhibits increased replicative capacity (11–13) while also conferring
increased cross-neutralization by vaccine-induced mouse and monkey antibody
responses as well as convalescent human responses (14). Subsequently, reports began
to emerge in the United Kingdom in December 2020 regarding the B.1.1.7 variant that
contains 8 spike mutations in addition to D614G (15). As-yet unpublished reports sug-
gest that the N501Y mutation located in the receptor binding domain (RBD) may
increase its affinity to the angiotensin-converting enzyme 2 (ACE2) receptor (16), while
the D69-to-70 deletion in the N-terminal domain (NTD) may increase SARS-CoV-2 infec-
tivity (17). Clinically, the B.1.1.7 variant is associated with increased viral loads (18). In
addition, reports began to emerge in South Africa in December 2020 regarding the
B.1.351 variant that contains 9 spike mutations in addition to D614G. These involve
clusters of mutations in the RBD and NTD, including the K417N and E484K mutations
that promote neutralization resistance (19–21). Other B.1.1.7 and B.1.351 spike muta-
tions are presently of uncertain significance.

Published and as-yet unpublished reports are emerging regarding the cross-neu-
tralizing potential of clinically relevant monoclonal antibodies and vaccine-induced
responses. mRNA-1273 (21, 22) and BNT162b2 (21, 23) vaccine-induced sera showed
efficient cross-neutralization of B.1.1.7. In contrast, mRNA-1273 (21, 22) and BNT162b2
(21, 24) vaccine-induced sera showed ;3- to 8-fold reductions in cross-neutralization
of B.1.351. The REGN-COV2 antibody cocktail showed a ;10-fold reduction in cross-
neutralization of B.1.351 in one unpublished report (25). In another unpublished report,
REGN-COV2 retained cross-neutralization of B.1.351, while LY-CoV555 showed a .100-
fold reduction in 50% inhibitory concentration (IC50) (21).

Additional emerging reports suggest 1- to 4-fold and 3- to 30-fold reductions in the
neutralization of B.1.1.7 and B.1.351, respectively, by early COVID-19 pandemic conva-
lescent-phase sera (21, 26, 27). However, overall, little is known about the extent and
mechanisms by which natural immunity acquired during the early COVID-19 pandemic
confers cross-neutralization of emerging variants. In the present study, we examined
these questions in a well-characterized cohort of early COVID-19 pandemic convales-
cent subjects.

RESULTS
Early COVID-19 pandemic convalescent cohort and prepandemic controls. We

identified 21 patients admitted to Beth Israel Deaconess Medical Center (BIDMC;
Boston, MA, USA) between April and June of 2020 for symptoms related to COVID-19
(Table 1). All patients had a documented positive SARS-CoV-2 nasopharyngeal nucleic
acid amplification test at admission. Ages ranged from 33 to 94 (median age 68), and
there were 11 females and 10 males. Comorbidity numbers ranged from 0 to 5 (me-
dian, 3). Hospital stay ranged from 2 to 34 days (median stay, 15 days). Twenty out of
twenty-one patients developed severe COVID-19 by World Health Organization criteria
(peripheral oxygen saturation [SpO2], 94%), and among these, 10 patients required
intubation. Serum and peripheral blood mononuclear cells (PBMCs) were obtained
within 2 days of discharge and after resolution or near resolution of presenting symp-
toms. We additionally obtained serum and PBMCs from 8 archival adult prepandemic
controls.

Characterization of an early pandemic cohort with Wuhan strain sequences.
We initially characterized our convalescent COVID-19 cohort using early pandemic
(Wuhan strain) detection reagents. We first characterized binding antibody responses
by enzyme-linked immunosorbent assay (ELISA) using strain-specific RBD coating
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antigens from SARS-CoV-2 as well as the common endemic coronaviruses HKU1, OC43,
and 229E. We observed robust SARS-CoV-2 binding responses in all COVID-19 individu-
als except participant 14, a 90-year-old man with multiple comorbidities (Fig. 1A). In
contrast, all endemic coronaviruses demonstrated similar RBD IgG ELISA titers between
prepandemic and convalescent COVID-19 subjects (Fig. 1B).

In order to gain greater epitope specificity among binding antibody responses, we
next used a multiplexed electrochemiluminescence assay (ECLA; Meso Scale Discovery)
to measure responses to full-length SARS-CoV-2 spike, RBD, NTD, and nucleocapsid. All
COVID-19 patients demonstrated reactivity greater than prepandemic controls to full-
length spike (Fig. 1C). Reponses to RBD and NTD were comparable in frequency, with
only participant 14 showing signal similar to prepandemic controls (Fig. 1C). Moreover,
most patients also demonstrated binding antibody responses to nucleocapsid (Fig.
1C). Overall, this antibody binding epitope distribution was comparable to previous
studies of convalescent individuals (28). RBD IgG responses measured by ELISA and
ECLA were strongly correlated (Fig. 1D), and therefore, going forward, we used multi-
plexed ECLA binding data in our analyses.

We next assessed NAb responses in an assay employing a recombinant lentiviral
pseudovirus expressing the Wuhan SARS-CoV-2 spike sequence and HEK293T target
cells ectopically expressing the human ACE2 receptor (HEK293T-hACE2). We
observed responses above prepandemic controls among all but one convalescent
COVID-19 subjects (Fig. 2A). The frequency and magnitude of NAb responses were
consistent with recent large cohort studies of convalescent individuals (29, 30). NAb
responses correlated most strongly with both RBD and NTD binding antibody
responses (Fig. 2B). A significant but less robust correlation between NAb responses
and nucleocapsid binding antibody responses was unsurprising given that this anti-
gen is presumably not a target for NAbs and likely serves as a marker of antibody
responses (Fig. 2B).

TABLE 1 Early pandemic convalescent COVID-19 inpatient cohort clinical dataa

Patient
no.

Age
(yrs) Gender Major comorbidity(ies)

Admission
duration
(no. of days)

Location of
peak oxygen
requirement

1 70 M Degenerative joint disease 6 Nasal cannula
2 59 F Hypertension, diabetes mellitus, deep vein thrombosis 5 Nasal cannula
3 69 F Obesity, hypertension, diabetes mellitus, obstructive sleep apnea,

rheumatoid arthritis
34 Intubated

4 59 F Obesity, hypertension 4 Nasal cannula
5 68 F Pulmonary embolus, sarcoidosis on prednisone, hypothyroidism,

stroke
25 Intubated

6 39 M None 20 Intubated
7 68 M Diabetes mellitus 32 Intubated
8 82 M Stroke, cognitive impairment, seizure 14 Nasal cannula
9 80 F Hypertension, breast cancer on hormonal therapy, cognitive

impairment
6 Room air

10 77 M Hypertension, diabetes mellitus, cognitive impairment 33 Intubated
11 50 F Obesity, diabetes mellitus 25 Intubated
12 73 M Hypertension, diabetes mellitus, cognitive impairment 12 Nasal cannula
13 81 M Hypertension, diabetes mellitus 25 Intubated
14 90 M Arrhythmia, chronic obstruction pulmonary disease, chronic kidney

disease, cognitive impairment
15 Nasal cannula

15 66 F Reactive airway disease 34 Intubated
16 57 F Hypertension, diabetes mellitus, muscular dystrophy 11 Nasal cannula
17 33 F Obesity, reactive airway disease 5 Nasal cannula
18 94 F Hypertension, arrhythmia 2 Nasal cannula
19 84 M Hypertension, diabetes mellitus, Parkinson disease 9 Nasal cannula
20 54 F Obesity, hypertension, diabetes mellitus, obstructive

transplant on multimodal immunosuppression
32 Intubated

21 57 M Hypertension, diabetes mellitus, coronary artery disease, renal
transplant on multimodal immunosuppression

32 Intubated

aEarly pandemic convalescent COVID-19 inpatient (n=21) data, including age, gender, major comorbidities, admission duration, and peak oxygen requirement.
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To characterize T cell responses, we performed interferon gamma (IFN-g) enzyme-
linked immune absorbent spot (ELISPOT) assays with the convalescent COVID-19
cohort and prepandemic controls. We focused on the 9 structural and accessory pro-
teins that account for approximately 75% of the CD4 and CD8 T cell responses to
SARS-CoV-2 infection (31). We observed ELISPOT responses among all convalescent
patients, primarily against the SARS-CoV-2 spike, membrane, and nucleocapsid pro-
teins (Fig. 3A). This pattern of immunodominance was consistent with a previous
report that assessed T cell responses by flow cytometry (31). Moreover, similar to prior
reports (31–33), aggregate T cell responses correlated with spike RBD and NTD binding
(Fig. 3B) as well as NAb (Fig. 3C) responses. We observed a trend toward correlation
between aggregate T cell responses and nucleocapsid binding antibodies (P=0.067,
R=0.43; two-sided Spearman rank correlation test).

FIG 1 SARS-CoV-2 and endemic coronavirus binding antibody responses among early pandemic convalescent COVID-19
inpatients and prepandemic controls. (A) SARS-CoV-2 spike RBD IgG ELISA titers. (B) HKU1, OC43, and 229E spike RBD IgG ELISA
titers. (C) Full-length spike, spike RBD, and spike NTD IgG ECLA signals. (D) Spearman correlation between SARS-CoV-2 spike RBD
IgG ELISA titer and ECLA signal. Bars represent geometric means. Dotted lines represent limits of detection (LOD) for ELISA and
lower limits of detection (LLOD) for ECLA. Convalescent COVID-19 inpatient and prepandemic subjects were compared by Mann-
Whitney test.
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NAb responses to emerging SARS-CoV-2 variants in early pandemic sera. In
order to assess NAb responses to emerging SARS-CoV-2 variants by early pandemic
sera, we next constructed pseudoviruses containing the B.1.1.7 and B.1.351 spike
sequences for neutralization assays. We additionally constructed a pseudovirus con-
taining only D614G since this spike variant is now ubiquitous and was previously
shown to exhibit increased cross-neutralization by early pandemic convalescent-phase
serum (11, 12, 14). Indeed, we observed a modest though nonsignificant increase in
the neutralization geometric mean titer (GMT) of D614G among 17/20 subjects with
detectable Wuhan NAb titers (average, 1.5-fold increase; range, 0.8 to 2.8; Fig. 4A).

In contrast, B.1.1.7 showed a modest though nonsignificant decrease in pseudovirus
neutralization among 13/20 subjects with detectable Wuhan NAb titers (average, 1.5-
fold decrease; range, 0.5 to 2.9; Fig. 4A). Notably, B.1.351 showed a significant reduc-
tion in pseudovirus neutralization among 19/20 subjects with detectable Wuhan NAb
titers (average, 4.8-fold decrease; range, 0.4 to 14.8; Fig. 4A). Reductions in B.1.351
cross-neutralization were generally uniform, and the 2/20 patients with newly unde-
tectable B.1.351 NAb titers had low baseline Wuhan titers (Fig. 4B). Notably, individuals
with Wuhan NAb titers as high as 295 developed undetectable B.1.351 cross-neutraliza-
tion titers.

Correlates of emerging SARS-CoV-2 variant cross-neutralization. Given the
number of clinical and immunological variables in our study, we next used unbiased
bioinformatics approaches to analyze our results. We first performed unsupervised
hierarchical clustering of patients and all of our continuous clinical, immunological,
and virological variables (Fig. 5A). Hospital duration showed a strong association with
intubation in our cohort. Average stays were 8.1 and 28.6 days among nonintubated
and intubated individuals, respectively (P=4.4� 1029; Student's t test). We therefore
used this continuous variable as a surrogate for disease severity in our computational

FIG 2 SARS-CoV2 pseudovirus neutralization among early pandemic convalescent COVID-19 inpatients and
correlations with binding antibody titers. (A) Pseudovirus neutralization titers among early pandemic
convalescent COVID-19 inpatients and prepandemic controls. (B) Spearman correlations between spike full-
length, RBD, NTD, and nucleocapsid IgG ECLA signals and pseudovirus neutralization titers. Bars represent
geometric means. Dotted lines represent LOD. Convalescent COVID-19 inpatients and prepandemic controls
were compared by Mann-Whitney test.
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analyses. We observed that individuals with strong SARS-CoV-2-specific humoral and
cellular responses formed a large cluster. Interestingly, this cluster also contained hos-
pital duration, was associated with intubation (P=0.03; Fisher’s exact test), and segre-
gated into distinct groups of humoral or cellular immune responses (Fig. 5A).

To gain insights into the correlates of both Wuhan strain neutralization and variant
cross-neutralization by early pandemic sera, we assembled a correlogram incorporat-
ing the same variables used in our heat map (Fig. 5B). Unsupervised hierarchical clus-
tering revealed a group of highly correlated features that exclusively included binding
and NAb responses to SARS-CoV-2. Other than NAb responses to Wuhan, D614G, and
B.1.1.7, NAb responses to B.1.351 showed the strongest correlations with Wuhan full-
length spike, RBD, and NTD IgG binding antibody responses. These data suggest that
baseline Wuhan spike binding and NAb responses may be the most important corre-
lates of B.1.351 cross-neutralization. Moreover, several of the SARS-CoV-2 antibody
responses correlated with disease severity as well as with ELISPOT responses.
Interestingly, among cellular responses, we observed that membrane-specific
responses exhibit the strongest correlations with binding and NAb responses. Finally,
we observed that antibody responses to the RBD of pre-COVID-19 endemic coronavi-
ruses showed no correlation with SARS-CoV-2 immune responses in our study.

DISCUSSION

Little is known about the extent and mechanisms by which natural immunity
acquired during the early COVID-19 pandemic confers cross-neutralization of emerging
variants. In the present study, we examined these questions in a well-characterized
cohort of early COVID-19 pandemic convalescent subjects. We observed modest reduc-
tions in cross-neutralization of B.1.1.7 and significant reductions in cross-neutralization
of B.1.351. Correlates of cross-neutralization included RBD and NTD binding and spike
NAb responses as well as membrane glycoprotein-directed T cell responses. These

FIG 3 SARS-CoV-2 T cell responses and correlations with antibody responses among early pandemic convalescent COVID-19
inpatients and prepandemic controls. (A) IFN-g ELISPOT responses to selected structural and accessory SARS-CoV-2 antigens. (B and
C) Spearman correlations between aggregate IFN-g ELISPOT responses and RBD and NTD binding (B) and pseudovirus Nab responses
(C). Bars represent geometric means. Dotted lines represent LOD. Convalescent COVID-19 inpatient and prepandemic and subjects
were compared by Mann-Whitney test. *, P, 0.05; **, P, 0.01.
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data shed light on cross-neutralization of emerging variants by early pandemic
immune responses.

Given the recent emergence of B.1.1.7 and B.1.351, the cross-neutralization of these
variants by early pandemic sera has yet to be firmly established. An initial study (21)
employed a vesicular stomatitis virus pseudovirus assay with Vero cells and a combina-
tion of nonsevere and severe COVID-19 convalescent-phase sera to report 2.7- to 3.8-
fold reductions in cross-neutralization of B.1.1.7 and 11- to 33-fold reductions in cross-
neutralization of B.351. A second unpublished report (26) using authentic virus with
Vero-hACE2-TMPRSS2 cells and mild COVID-19 convalescent-phase sera found a 4.5-
fold reduction in cross-neutralization of B.1.351. A third study using authentic virus
with Vero cells and severe COVID-19 sera at various stages of convalescence reported
2.1- to 4.8-fold reductions in cross-neutralization of B.351. We used a lentiviral pseudo-
virus assay with HEK293T-hACE2 cells and a relatively homogeneous group of conva-
lescent-phase sera following hospitalization for severe COVID-19 to report a 4.8-fold
average reduction in cross-neutralization of B.351. Variability in the degree of cross-
neutralization among recent studies and our data may be explained by differences in
neutralization assays as well as clinical heterogeneity among study populations,
though further studies are needed to establish consistent trends. Nonetheless, these
data collectively suggest significant reductions but not complete effacement of B.1.351
neutralization by early pandemic convalescent-phase sera. Finally, mRNA-1273 (18, 19)
and BNT162b2 (18, 21) vaccine-induced sera showed ;3-8-fold reductions in cross-
neutralization of B.1.351.

Our correlates analysis suggests that the most important predictor of Wuhan, as
well as variant neutralization, may be high levels of both RBD and NTD baseline bind-
ing antibody responses. These findings both affirm the critical role of the RBD in NAb
responses and corroborate a growing literature highlighting the importance of the
NTD as a target (28, 34–36). Moreover, binding and NAb responses were associated
with hospital duration and intubation, corroborating a now large literature linking dis-
ease severity with increased adaptive immune responses (28, 37–41). Consistent with
previous reports, binding and NAb responses correlated with T cells responses (31–33).
Interestingly, we observed that membrane-specific ELISPOT responses showed the
strongest correlation with antibody responses. This might be explained by the finding
that the spike- and nucleocapsid-specific T cell pools contain a significant proportion
of cross-reactive T cell responses derived from prepandemic coronavirus infections (42,
43), although further studies with larger numbers of patients are necessary to clarify
this phenomenon.

FIG 4 Cross-neutralizing antibody responses to emerging SARS-CoV-2 variants among early pandemic
convalescent-phase sera. (A) Grouped comparison of SARS-CoV-2 Wuhan, B.1.1.7, and B.1.351 strain
pseudovirus NAb titers. (B) Pairwise comparison of SARS-CoV-2 Wuhan and B.1.351 strain pseudovirus
NAb titers. Bars represent geometric means. Dotted lines represent LOD. Multigroup comparisons
were performed by Kruskal-Wallis test. Paired comparison was performed by Mann-Whitney test. ns,
not significant.
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FIG 5 Correlates of emerging variant cross-neutralization by early pandemic convalescent-phase sera.
(A) Heat map with unsupervised hierarchical clustering of clinical, virological, and immunological

(Continued on next page)
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We reported that IgG derived from convalescent rhesus macaques previously
challenged with Washington (USA-WA1) strain SARS-CoV-2 can confer protection from
homologous challenge after adoptive transfer into naive monkeys (9). Using a dose
escalation scheme and logistic regression analysis, we estimated that a homologous
NAb titer of approximately 50 protected from infection. In addition to the 2 patients
with baseline Wuhan NAb titers who showed newly undetectable B.1.351 cross-neu-
tralization titers, an additional two subjects showed B.1.351 cross-neutralization titers
below this threshold (Fig. 4B). Although our prior protection data were obtained in rhe-
sus macaques lacking SARS-CoV-2-specific T cells and challenged with Washington
strain, these data suggest that a fraction of early pandemic convalescent individuals
may exhibit subprotective B.1.351 cross-neutralization titers.

In summary, we report the cross-neutralization of emerging SARS-CoV-2 variants of
concern by early pandemic sera. Our data support significant reductions but not com-
plete effacement of B.1.351 cross-neutralization, and we report that RBD and NTD
binding and spike NAb responses, as well as membrane-directed T cell responses, are
correlates of cross-neutralization. These data expand our understanding of emerging
SARS-CoV-2 variants that threaten to exacerbate the COVID-19 pandemic.

MATERIALS ANDMETHODS
Patient enrollment. Participants were enrolled under the Beth Israel Deaconess Medical Center (BIDMC)

COVID-19 Tissue and Data Repository (IRB 2020P00361) between April and June 2020. Eligible participants
were 18years or older and able to provide informed consent or have a legal authorized representative con-
sent on their behalf. All electronic health records (EHRs) were reviewed by an infectious diseases physician.
Comorbidities and admission absolute lymphocyte counts (ALCs) were determined on the basis of admitting
physician notes, and all other reported clinical details were determined from the EHR as appropriate. We iden-
tified eight archival prepandemic adult subjects from unrelated studies in our laboratory as controls.

Enzyme-linked immunosorbent assay. ELISA plates (Thermo Fisher) were coated with spike recep-
tor binding domain (RBD) protein and stored overnight at 4°C. All ELISA proteins were synthesized at
the Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology
(MIT), and Harvard. Plates were then blocked, and serially diluted serum samples were added to each
well. Following sample incubation, plates were washed with Dulbecco’s phosphate-buffered saline
(DPBS)-Tween, and horseradish peroxidase (HRP)-conjugated goat anti-human immunoglobulin second-
ary antibodies of the indicated isotype specificity were added (IgG [Invitrogen], IgA [Bethyl], and IgM
[Invitrogen]). Plates were washed, developed with KPL TMB peroxidase, the reaction was halted with
KPL TMB stop solution, and absorbance was recorded using a VersaMax microplate reader.

Multiplexed electrochemiluminescence assay. ECLA plates (Meso Scale Discovery; SARS-CoV-2
panel 2 [IgG] kit) were incubated with blocking buffer for 30 min followed by serum diluted at 1:25,000
and 1:125,000 for 2 h. Plates were then washed and incubated with secondary antibody (Sulfo-Tag anti-
human IgG antibody) for 1 h. Plates were washed again and incubated in read buffer, and luminescence
was detected on a Meso Sector S 600 microplate reader. Plates were run with manufacturer-provided
serially diluted stock controls. Serum dilution was selected when luminescence data were contained
with the linear range of the standard curve, which was used to calculate arbitrary units per milliliter.
Lower limits of detection were calculated by fitting 2.5 standard deviations above the zero calibrator to
the standard curve for each individual plate.

Pseudovirus neutralization assay. A lentiviral pseudovirus expressing a luciferase reporter gene
was generated as previously described (10). Briefly, packaging plasmid psPAX2 (AIDS Resource and
Reagent Program), luciferase reporter plasmid pLenti-CMV Puro-Luc (Addgene), and spike protein
expressing pcDNA3.1-SARS CoV-2 SDCT sequences for the Wuhan, D614G, B.1.1.7, and B.1.351 strains
were cotransfected into HEK293T cells by Lipofectamine 2000 (Thermo Fisher). Supernatant was col-
lected 48 h posttransfection. HEK293T-hACE2 cells were seeded in 96-well plates at a density of
1.75� 104 cells per well overnight. Threefold serial dilutions of heat-inactivated serum samples were
prepared and mixed with 50ml of pseudovirus. The mixture was incubated at 37°C for 1 h before adding
to HEK293T-hACE2 cells. Forty-eight hours after infection, cells were lysed in Steady-Glo luciferase assay
(Promega). SARS-CoV-2 neutralization titers were defined as the sample dilution at which a 50% reduc-
tion in relative light unit was observed relative to the average of the virus control wells.

IFN-cenzyme-linked immune absorbent spot assay.White membrane plates (Millipore) were coated
at 4°C overnight with 10mg/ml anti-human IFN-g (Mabtech). Peptides spanning the entire nonreplicase

FIG 5 Legend (Continued)
variables as well as patients. (B) Correlogram with unsupervised hierarchical clustering of the same
clinical, virological, and immunological variables as in panel A. Red shading depicts positive correlations,
blue shading depicts negative correlations, intensity of the shading represents magnitude of the
Spearman R statistic, and size of the shading represents significance. *, P, 0.05; **, P, 0.01; ***,
P, 0.001. All data include a Benjamini-Hochberg correction for multiple comparisons.
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SARS-CoV-2 genome were synthesized as 15mers overlapping by 11 residues, and peptides were organized
into individual antigen pools for PBMC stimulation (JPT Peptide Technologies). Next, rested PBMCs were
plated in duplicate at 2� 105 with peptide pools corresponding to individual SARS-CoV-2 proteins at 2mg/
ml for 18h at 37°C. Development was achieved by addition of biotin (Mabtech), anti-biotin (Vector Labs),
and chromogen (Pierce). Background subtraction was performed using a matched 0.4% dimethyl sulfoxide
(DMSO) control well.

Statistical methods. Pairwise comparisons of ELISA, ECLA, 50% neutralizing titer (NT50), and ELISPOT
clinical data were performed by Mann-Whitney test. Multigroup comparisons were performed by
Kruskal-Wallis test. These tests, as well as pairwise Spearman correlations, were performed using
GraphPad Prism 8 software. The heatmap was generated using the pheatmap package in R, scaled by
variable values, and clustered both by patient and by variable using default scaling and hierarchical clus-
tering settings. For the correlogram, pairwise Spearman rank coefficients were calculated using the
psych package v2.0.12 in R using the corr.test function with default settings and the adjust argument
set to “fdr” to calculate adjusted P values using Benjamini-Hochberg correction for multiple compari-
sons. The resulting correlation matrix was visualized as a correlogram using the corrplot package in R.
Spearman rank coefficients were ordered via hierarchical clustering by setting the order argument to
“hclust” in the corrplot function.
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