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Abstract 
Background: Parkinson’s disease (PD) is characterized by its 
progression of motor-related symptoms such as tremors, rigidity, 
slowness of movement, and difficulty with walking and balance. 
Comorbid conditions in PD individuals include insulin resistance (IR) 
and narcolepsy-like sleep patterns. The intersecting sleep symptoms 
of both conditions include excessive daytime sleepiness, 
hallucinations, insomnia, and falling into REM sleep more quickly than 
an average person. Understanding of the biological basis and 
relationship of these comorbid disorders with PD may help with early 
detection and intervention strategies to improve quality of life. 
Methods: In this study, an integrative genomics and systems biology 
approach was used to analyze gene expression patterns associated 
with PD, IR, and narcolepsy in order to identify genes and pathways 
that may shed light on how these disorders are interrelated. A 
correlation analysis with known genes associated with these disorders 
(LRRK2, HLA-DQB1, and HCRT) was used to query microarray data 
corresponding to brain regions known to be involved in PD and 
narcolepsy. This includes the hypothalamus, dorsal thalamus, pons, 
and subcoeruleus nucleus. Risk factor genes for PD, IR, and 
narcolepsy were also incorporated into the analysis. 
Results: The PD and narcolepsy signaling networks are connected 
through insulin and immune system pathways. Important genes and 
pathways that link PD, narcolepsy, and IR are CACNA1C, CAMK1D, 
BHLHE41, HMGB1, and AGE-RAGE. 
Conclusions: We have identified the genetic signatures that link PD 
with its comorbid disorders, narcolepsy and insulin resistance, from 
the convergence and intersection of dopaminergic, insulin, and 
immune system related signaling pathways. These findings may aid in 
the design of early intervention strategies and treatment regimes for 
non-motor symptoms in PD patients as well as individuals with 
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Introduction
Parkinson’s disease (PD) is characterized by its progression 
of motor-related symptoms such as tremors, rigidity, slowness 
of movement, and difficulty with walking and balance1–3. The  
motor difficulties associated with PD are attributed to the loss 
of dopaminergic neurons in the substantia nigra1,4. There are  
also non-dopamine lesions that are involved in PD that include 
the caudal group of intralaminar nuclei (located in dorsal tha-
lamus), and subcoeruleus nuclei1,2. The main genetic cause of 
PD is attributed to mutation of the LRRK2 (leucine-rich repeat  
kinase 2) gene5,6.

There is also a significantly increased risk of PD among 
patients with a history of diabetes and PD associated motor  
symptoms and cognitive decline are accelerated in individuals 
with diabetes7,8). Results from numerous studies investigating  
the connection between diabetes and PD indicate that there 
is an overlap in disease mechanisms and pathways particu-
larly in the context of the accumulation of misfolded proteins2,9, 
defects in mitochondrial function leading to oxidative stress10,11,  
immune system activation resulting in inflammation12–14, reduced 
synaptic plasticity, and a decrease in dopamine levels15,16. 
Dopamine signaling is also linked to circadian rhythm and  
sleep17. Studies demonstrate that dopamine levels cycle in a cir-
cadian manner in the retina, olfactory bulb, striatum, midbrain, 
and hypothalamus17–20. Disrupted sleep patterns and circadian 
rhythm are also associated with many neuropsychiatric and  
neurodegenerative illnesses including LRRK2-PD and it is  
often more disturbing than the motor symptoms21–23.

Most PD patients have daytime sleep attacks and REM sleep 
disorder that resemble narcolepsy associated sleep symp-
toms such as excessive daytime drowsiness, sleep paralysis,  
hallucinations24, and in some cases episodes of cataplexy25.  
People with narcolepsy frequently enter REM sleep rapidly, 
within 15 minutes of falling asleep and the muscle weakness 
or dream activity of REM sleep can occur during wakefulness  
or be absent during sleep26. Alleles of the HLA-DQB1 (major 
histocompatibility complex, class II, DQ beta 1) gene are asso-
ciated with a predisposition to narcolepsy27, PD28, and Type I  
diabetes29.

Besides HLA-DQB1, the relationship between PD, nar-
colepsy, and IR may be in part attributed to the hypocretins/ 
orexins which are produced by the HCRT gene30. Hypocretins are  
neurotransmitters that are manufactured by a small number 
of neurons in the hypothalamus31. They act to stimulate target  

neurons and promote wakefulness while suppressing rapid-eye- 
movement (REM) sleep32. Research has shown that there is a  
massive loss of hypocretin neurons in patients of both PD and 
narcolepsy and it is hypothesized that the reduction of hypo-
cretin may be the underlying pathogenesis of the narcoleptic  
symptoms in PD24,32,33. In addition to their role in narcolepsy 
and PD, hypocretins modulate glucose and insulin metabolism33  
and also play a critical role in dopamine regulation34. In this 
study we explore the connection between PD, narcolepsy, and IR  
using an integrative genomics and systems biology approach.

Methods
Genesets and evaluation
Microarray data was collected from the Allen Brain Database 
using the Human Brain Atlas. To obtain the data, a gene search  
for LRRK2, HLA-DQB1, and HCRT was performed. Each of 
these genes were used to query the atlas for correlates to the  
hypothalamus, dorsal thalamus, pons, and subcoeruleus nucleus 
using the dropdown menu for each of the six donor post- 
mortem brains available in the Allen Human Brain Atlas.

Genes whose expression pattern correlated with LRRK2, HLA-
DQB1, and HCRT were collected for analysis. Correlates  
with a range of Pearson r values from 0.6 to 1.0 were consid-
ered in the analysis (Extended data, Workbook 135. The rationale  
was to investigate genes with a similar expression pattern 
in order to identify gene correlates specific and common to  
LRRK2, HLA-DQB1, and HCRT. Risk factor genes and genes 
contributing to PD, narcolepsy, and IR were obtained from  
OMIM, Harmonizome, and GeneWeaver.

Each geneset was evaluated using Gene Ontology (GO) 
enrichment for clustering, pathways, and keywords using the  
Database for Annotation, Visualization and Integrated Discov-
ery (DAVID, version 6.8) and the Gene Ontology databases with 
integrated tools for analysis. Clustering was done in DAVID  
using the default parameters which include medium strin-
gency settings and a kappa similarity value of 3. The Benjamini  
corrected P-value was used to determine enrichment signifi-
cance. The pathway enrichment was performed using KEGG 
and Panther pathways. The pathways were analyzed manually  
and evaluated based on shared themes. For the keyword enrich-
ment, a keyword search of the DAVID functional annota-
tion table output was used to identify genes associated with  
relevant traits related to LRRK2, HLA-DQB1, and HCRT func-
tion. The keywords considered were ‘sleep’, ‘circadian’, ‘parkin-
son’, ‘locomotion’, ‘dopamine’, ‘behavior’, ‘learning’, ‘memory’, 
and ‘transcription factor’. Geneset overlap was assessed using  
Venny 2.0, an online program that compares lists of items to 
determine the common and unique genes between LRRK2, 
HLA-DQB1, and HCRT within and among each brain region  
(hypothalamus, dorsal thalamus, pons, and subcoeruleus nucleus).

Network analysis
The String database (version 11.0) was used to build a pro-
tein-protein interaction network (ppi for LRRK2, HLA-DQB1,  
HCRT and CAMK1D which was identified in this study as the 
only common risk factor gene associated with PD, narcolepsy 
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and IR (Results section: “Functional analysis of PD, narcolepsy  
and IR risk factor and related genes”). The network was con-
structed based on experimentally validated interactions using 
the medium confidence score of 0.4. The combined scores for  
the interactions are computed by combining the probabilities 
from the different evidence channels and corrected for the prob-
ability of randomly observing an interaction. First and 2nd 
shell interactions are included in the network. The network was  
exported from STRING and analyzed in Cytoscape (version 3.7). 
Network bottlenecks and clusters were identified with Cyto-
scape plugins CytoHubba (version 0.1) and MCODE (version 
1.6.1), respectively. ClueGo (version 2.5.7) was used to analyze  
the common risk factors and contributing genes for PD, nar-
colepsy, and IR. The nodes in the network have been manu-
ally arranged for proper visibility. Select enriched terms are 
included in the network (Figure 3A). All of the enriched terms are  
provided in Extended data, Workbook 5, sheet 536. Legacy data 
sets from the Human Protein Atlas (HPA) (https://www.pro-
teinatlas.org/) along with gene expression data from the Allen 
Brain Atlas were used to assess the expression patterns of key  
genes identified in the ppi network. To assess gene expression 
of the key network genes in the relevant brain regions consid-
ered in this study, we examined microarray data from the Human 
Allen Brain Atlas for the dorsal thalamus and subcoeruleus  
nucleus and the HPA for the hypothalamus and pons. Two data 
sources were used because the Allen Brain Atlas RNA-Seq  
data did not provide enough samples to evaluate the gene 
expression in the hypothalamus and pons for these genes. The  
RNA- Seq data for the dorsal thalamus and subcoeruleus nucleus 
are derived from either 5 or 6 postmortem donor brains of vary-
ing ages and gender. In most instances the genes are sampled 
multiple times using different probes. The data are expressed  
as Z score log2 transformed and indicate the number of stand-
ard deviations away from the mean. The data across probes 
was not combined for statistical analysis because it is qualita-
tive but we calculated the percentage of reads with a positive  
value which measures the detection of RNA at or above the 
standards used in the assay. This is not to say that the negative 
values (Number of standard deviations away from the mean)  
indicate that RNA is not detected.

The HPA includes RNA-Seq data from humans, mouse and pig. 
Human data are derived from the Genotype-Tissue Expression  
(GTEx) (https://www.gtexportal.org/home/) and Functional  
Annotation of Mammalian Genomes 5 (FANTOM5) projects. 
Mouse and Pig RNA-Seq data were generated by the Beijing 
Genomics Institute (https://www.bgi.com/global/ in collabo-
ration with the HPA). Assay conditions are provided in detail  
at the HPA (https://www.proteinatlas.org/about/assays+annotation
#transcriptomics).

Results
Functional analysis of gene correlates
The cluster analysis for the LRRK2, HLA-DQB1, and HCRT 
gene correlates for each brain region resulted in significant  
enrichment categories for only the HLA-DQB1 related gene-
sets. For LRRK2 and HCRT there are several instances in which 
clusters contained enrichment terms for insulin, diabetes, PD,  

other neurodegenerative disorders, and circadian processes but 
these did not achieve significance based on the corrected P value 
criteria. Also, of note for almost every set of correlates, there 
were many significant enrichment categories and correspond-
ing genes associated with keratinocytes/keratin and olfaction. 
The clustering results for each set of gene correlates are listed  
in Extended data, Workbook 237.

For the HLA-DQB1 clusters, the significant enrichment terms 
are: dorsal thalamus: hsa05012:Parkinson’s disease (P=4.38E-
06), 31 genes and hsa04940:Type I diabetes mellitus (P=0.03),  
10 genes; subcoeruleus nucleus: hsa04940:Type I diabetes 
mellitus (P=6.13E-05), 15 genes, and pons: hsa04940:Type I  
diabetes mellitus, six genes (P=0.001). The other genes and 
enrichment categories clustering with PD in the dorsal thala-
mus are related to mitochondria processes such as oxidative 
phosphorylation and electron transport as well as Alzheimer’s  
disease (AD) and Huntington disease (HD).

Geneset overlap
Among the sets of gene correlates for LRRK2, HLA-DQB1 and 
HCRT, there are 10 common genes in both the dorsal thalamus 
and subcoeruleus nucleus (A_32_P232747, DISC1, GABRA4,  
GDF11, HNRNPU, PAK2, , PFKFB2, ROCK1, , SLC9A3R2, and 
ZNF846, ; Figure 1B). Among the relevant genes are ROCK1,  
which is involved in negative regulation of neuron apop-
totic processes, DISC1 associated with neuron migration, and 
HNRNPU involved in circadian regulation of gene expression.  
The ten common genes in the subcoeruleus nucleus are  
GLYAT, HCN4, HMGB1 HNRNPU, ITGB2,LAMP2, LOC653110, 
OPA3, ,PHTF2, and SLC6A6, , among which the relevant ones  
to this study are HNRNPU, which as mentioned above is involved 
in circadian regulation of gene expression and insulin signal-
ing, ITGB2, which is associated with PD and IR, and HMGB1, 
which is a ligand for the RAGE receptor. Among the sets of 
gene correlates for LRRK2, HLA-DQB1, and HCRT, there are  
no common correlated genes in the hypothalamus and pons.

A detailed description of all shared genes and their associ-
ated function for each brain region is provided in Extended  
data, Workbook 3 (sheets 1-8)38. Briefly, the dorsal thalamus 
and subcoeruleus nucleus have the largest number of shared 
correlates between LRRK2, HCRT, and HLA-DQB1. Many of  
these genes for both brain regions are associated with neuron, 
insulin, and dopamine related processes. There are also sev-
eral genes connected directly to PD. In sharp contrast, however,  
the dorsal thalamus associated correlates have many genes  
linked to circadian function.

In the dorsal thalamus, the relevant genes are associated with 
neuron function (negative regulation of neuron apoptotic  
process, neuron projection development and regulation, neu-
ron differentiation, neuron fate commitment, neuron death in 
response to oxidative stress, neuron regeneration), circadian proc-
esses (regulation of circadian rhythm, circadian entrainment,  
circadian regulation of gene expression, regulation of circadian 
rhythm, entrainment of circadian clock by photoperiod), and 
insulin signaling (insulin secretion, insulin receptor signaling,  
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insulin secretion). Other genes of interest are related to 
dopamine (dopaminergic neuron differentiation, regulation of 
dopamine uptake involved in synaptic transmission, positive  
regulation of dopamine secretion, Wnt signaling pathway 
involved in midbrain dopaminergic neuron differentiation, 
dopamine receptor binding, dopamine biosynthetic process, ade-
nylate cyclase-activating dopamine receptor signaling pathway) 
and also behavior (locomotory, feeding, learning, memory and  
vocalization, response to stimulants).

In the subcoeruleus nucleus, the relevant genes are also associ-
ated with neuron function (negative regulation of neuron differ-
entiation, dopaminergic neuron differentiation, neuron apoptotic  
process, negative regulation of neuron differentiation, fore-
brain neuron differentiation), insulin signaling (insulin secretion, 
insulin receptor signaling pathway, negative regulation of  
insulin receptor signaling pathway, positive regulation of insu-
lin secretion, diabetes mellitus), dopamine related processes 
(dopaminergic synapse, dopamine biosynthetic process, dopamin-
ergic neuron differentiation, regulation of synaptic transmission,  
dopaminergic dopamine biosynthetic process from tyrosine), 
and behavior (locomotory, vocal learning, response to fear,  
grooming, response to stimulants).

There are few shared correlated genes in the hypothalamus 
and pons. For the hypothalamus, the most pertinent genes are  
involved in neuron migration and circadian processes. In the 

pons, the relevant genes are concerned with negative regula-
tion of neuron apoptotic processes, neuron projection, circadian  
regulation of gene expression, and hippocampus and pyramidal 
neuron development.

Geneset overlap of the correlates for LRRK2, HLA-DQB1, and 
HCRT was assessed within each brain region (see Extended 
data, Workbook 3, sheets 9-11)38. Of the LRRK2 correlates,1.6%  
were common in all 4 brain regions. Among these are genes 
associated with insulin (MAX, NUCKS1, PIK3R1, PTPN11),  
diabetes (PIK3R1) and circadian-related processes (HNRNPU, 
BHLHE41). Several transcription factors were also present 
(MAX, SKI, ATF7IP, NUCKS1, BHLHE41, NR2C2, PIK3R1). 
One of these, BHLHE41, acts as a negative regulator of orexin, 
controls circadian rhythms, and is associated with short sleep 
syndrome and advanced sleep phase disorder. For HLA-DQB1,  
1.2% of the correlates are common in all brain regions; rel-
evant associated themes include PD and dopamine (SLC18A1)  
insulin (HLA-DRB5, HLA-DOA, HLA-DQA1, HLA-DQB1) and 
transcription factors (FOXE3, HMGB1, LGALS9, PYCARD, 
SOX8, ZNF446). Only 0.2% of the HCRT correlates are com-
mon among all brain regions considered. This includes  
HCRT itself and an insulin associated gene, GHSR. Of note, 
the MOG gene, which is present among the HLA-DQB1 cor-
relates of the subcoeruleus nucleus and HCRT correlates 
of the hypothalamus, is a risk factor for narcolepsy and is  
linked to PD.

Figure 1. Geneset Overlap. Shared correlates for LRRK2, HLA-DQB1 and HCRT over all brain regions. X-axis, Intersection size; Y-axis, 
Genes and brain regions.
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Keyword evaluation of gene correlates
From the GO analysis of the gene correlates, a functional  
annotation table was generated for GO Biological Process. Genes 
associated with keywords were obtained and their frequencies 
determined. The keyword categories used are as follows: sleep, 
circadian, Parkinson, locomotion, dopamine, insulin, behav-
ior, learning, memory, and transcription factor (Figure 2A–C  
and Extended data, Workbook 4, sheets 1-6)39. Each of the  
correlates for the genesets are evaluated for keywords related 
to the phenotypes of narcolepsy, PD, and IR in the hypothala-
mus, dorsal thalamus, pons, and subcoeruleus nucleus. Most of 
the keywords of the three sets of gene correlates are associated  
with subcoeruleus nucleus.

The LRRK2 gene correlates have the highest frequency of the 
keyword categories. The highest represented categories are:  
transcription factor (hypothalamus), insulin, behavior, learning, 
memory, locomotion (dorsal thalamus), dopamine, Parkinson, 
and sleep (subcoeruleus nucleus) and circadian processes (equal  
frequency in dorsal thalamus and subcoeruleus nucleus).

The highest represented keyword categories for HLA-DQB1 
are behavior, insulin, transcription factor, circadian, memory, 
dopamine, sleep (subcoeruleus nucleus), locomotion (hypotha-
lamus), and learning (equal frequencies in the hypothalamus  
and subcoeruleus nucleus). The highest represented categories 
of HCRT are transcription factor, behavior, insulin, circadian, 
dopamine, Parkinson, memory, sleep, locomotion (subcoeruleus 
nucleus), and learning (hypothalamus) 

Functional analysis of PD, narcolepsy, and IR risk factor 
and related genes
PD, narcolepsy, and IR risk factor and related genesets were 
evaluated to identify a common set of genes associated with 
the three disorders (Extended data, Workbook 5, sheets 1-4)36. 
There were 38 shared genes between the PD and narcolepsy  
genesets. CAMK1D is the only gene common among the  
3 genesets for PD, narcolepsy, and IR and it is a Calcium/
Calmodulin kinase that is upregulated in PD patients and is  
also a risk factor for Type 2 diabetes40,41.

Of the common PD and narcolepsy genes, several were directly 
associated with PD and narcolepsy behavioral phenotypes such 
as locomotion (DRD2, DRD3, DRD4, GDNF, SLC18A2), sleep 
(DRD2, DRD3, GRIN2A, HTR2A, NLGN1), circadian processes 
(CACNA1C, DRD2, DRD3, DRD4, GRIN2, MAPK1, NLGN1, 
PPARGC1A,), circadian entrainment (CACNA1C, GRIN2A, 
MAPK1), learning (COMT, DRD1, DRD2, DRD3 GRIN2A) and 
memory (COMT, DRD1, DRD2, DRD3, GRIN2A, HTR2A). 
There were two common genes between the PD and IR genesets: 
RREB1, which is a transcription factor, and ANKFY1, which is 
involved in vesicle trafficking and is also implicated in Type 2  
diabetes. There is one common gene between narcolepsy 
and IR: HLA-DQB1, which is the narcolepsy associated gene  
under study here.

The enrichment results are visualized as a network of function-
ally grouped terms and pathways and listed in the accompa-
nying bar graph (Figure 3A, B, Extended data, Workbook 5,  
sheet 5)36. The most significant term of a given group is high-
lighted as the leading term in the network which is indicated by 
color. The most significant terms emphasized in the graph are  
dopaminergic synapse (ten genes, KEGG ID:04728, P=2.77E-09)  
and the AGE-RAGE signaling pathway in diabetic complica-
tions (seven genes, KEGG ID:04933, P=4.70E-06) both of 
which are relevant to PD and IR. Other relevant enriched GO  
Terms include Type I diabetes mellitus (four genes, KEGG:04940, 
P=6.27E-04), Type II diabetes mellitus (four genes, KEGG:04930, 
P=7.54E-04), and Amyotrophic lateral sclerosis (five genes, 
KEGG:05014, P=9.56E-05). The other enriched terms in the 
network also represent pathways linked to the reward system,  
serotonin signaling, immune system function, and insulin  
regulation. There are several points of convergence in the graph 
where the enriched terms overlap: AGE-RAGE, Sphingolipid,  
and Fc Epsilon RI signaling pathways as well as long term  
potentiation. (Extended data, Workbook 5, sheet 5)36.

The PD, narcolepsy, and IR connection
A protein-protein interaction network revealed the insulin  
connection between the LRRK2 and HLA-DQB1 networks using 
the multiple protein option in the STRING database (Figure 4A,  
Extended data, Workbook 6, sheets 1-2)42. The distribution  
for the PPI scores for each show that the majority of the  
interactions fall in the high range with scores between 0.7 
and 1.0 (Figure 4B). Insulin (INS) and its receptor (INSR) are  
connected to HLA-DBQ1 through 1st shell interactions both of 
which are based on crystallographic evidence. INSR is in turn con-
nected to CALM1, a calmodulin binding protein involved in cal-
cium signaling and associated with diverse processes including 
circadian entrainment (KEGG pathway 04713). The evidence for 
the INSR/CALM1 interaction is based on coimmunoprecipitation, 
electro mobility shift, and western blot assays. Relevant interac-
tions, scores, and references are provided in Table 1.

In the network, CALM1 bridges INSR, CAMK1D (the only 
common gene among the database curated genesets for PD,  
narcolepsy, and IR), and LRRK2. The CALM1 and CAMK1D  
relationship is supported by coimmunoprecipitation and filter  
binding and phage display assays. The CALM1/LRRK2  
interaction is supported by cosedimentation, coimmunoprecipita-
tion and genetic interference assays.

There are many proteins in the network related to insulin signaling  
(CACNA1C, CALM1, CALM2, CALM3, IDE, IGF1, IGF1R, 
INSRR, INS-IGF2, KCNN2, PRKCE, RAF1, YWHAG, YWHAH). 
Several genes are implicated in AD (CACNA1C, CALM1,  
CALM2, CALM3, IDE), circadian entrainment (CACNA1C, 
CALM1, CALM2, CALM3), and dopamine signaling (CACNA1C, 
CALM1, CALM2, CALM3, LRRK2). LRRK2 is the only gene 
in the network linked to PD. There were no experimentally vali-
dated interacting partners for HCRT and it did not connect to the  
network.
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Figure  2.  Keyword  Enrichment.  Representative keyword enrichment of the gene correlates of LRRK2, HLA-DQB1 and HCRT in the 
Hypothalamus, Dorsal Thalamus, Pons and Nucleus Subcoeruleus based on GO term classification. (A) LRRK2 gene correlates (B) HLA-DQB1 
gene correlates (C) HCRT gene correlates. X-axis, keyword categories; Y-axis, frequency of occurrence.
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Results for gene expression of the key genes in the hypothalamus, 
and pons, are as follows: Each of the genes with the exception  
of AGER were expressed in both the hypothalamus and pons 
for human, mouse and pig. CACNA1C expression was also  
confirmed at the protein level by immunohistochemistry in the 
mouse hypothalamus and pons/medulla (https://www.proteinatlas.
org/ENSG00000151067-CACNA1C/antibody). Expression data 
are summarized in Extended data, Table 1. The expression pat-
tern of the key genes in dorsal thalamus and subcoeruleus 
nucleus data were obtained for humans only and are as follows: 
HMGB1, AGER, BHLHE41 are expressed in both the dorsal 
thalamus and subcoeruleus nucleus. CACNA1C is expressed 
in the dorsal thalamus but is not expressed in the subcoeru-
leus nucleus. CAMK1D was not expressed in either the dorsal 
thalamus or subcoeruleus nucleus. The results from the gene 
expression data are summarized in Table 2, Data for the dorsal  
thalamus and subcoeruleus nucleus are provided in Extended  
data, workbook 743.

Discussion
The aim of this study is to identify the underlying genes and 
pathways linking PD, narcolepsy, and IR. An integrative  
genomics and systems biology approach was used for the analy-
sis of gene expression patterns of the LRRK2, HLA-DQB1,  
and HCRT genes which are strongly associated with each of 
these disorders. A comparison of the shared gene correlates 
for sleep, neurodegeneration, behavior, and insulin led to the  

identification of genes such as AGER, BHLHE41, CACNA1C, 
CAMK1D, and HMGB1, whose defects might be plausible 
for the narcoleptic-like symptoms in PD and the relationship  
with IR.

The ppi network of LRRK2, HLA-DQB1, and CAMK1D 
reveals a connection with several insulin/diabetes, circadian, 
and PD risk factor genes supporting our hypothesis that these  
three disorders have common pathogenetic processes and fur-
ther supports earlier studies that have reported a relationship 
between these conditions. There is a great deal of evi-
dence derived from knockout and cell based studies linking 
AGER, CACNA1C and HMGB1 to Parkinson’s pathogen-
esis. CACNA1C is also associated with circadian rhythm and  
narcolepsy.

There is also evidence of disrupted calcium homeostasis in 
PD44. Genetic variants of CACNA1C which is a subunit of  
Cav1.2 Ca2+ channels. are linked to greater PD risk which 
is dependent on vitamin D deficiency45. Microglia in an 
induced PD model exhibited enhanced neuroinflammation and  
inhibited neuroprotection in the presence of a Ca2+ agonist46.

Degeneration of dopaminergic neurons have also been observed 
in microglia-specific Cav1.2 knockdown mice intoxicated 
with MPTP, a neurotoxin that induces PD-like symptoms46.  
CACNA1C was also expressed 3x higher in microglia treated 

Figure 3. Enrichment Network Analysis. (A) Risk factors enrichment network. In the network the color gradient indicates the proportion 
of genes in each cluster associated with the enriched GO term. Dark blue nodes include dopaminergic synapse and pathways related to 
the reward system. Cyan nodes include the AGE-RAGE Signaling pathway in diabetic complications, immune system pathways and lipid 
signaling. Magenta nodes involve terms associated with immune system function and also insulin signaling. (B) GO pathway terms and 
associated genes. Bar graph showing the percentage of genes connected with the GO terms. Bars are colored according to the network 
(Figure 3A).
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Figure  4.  PPI  network  linking  narcolepsy  and  Parkinson’s  through  insulin.  (A) PPI network showing the insulin interaction with 
the Narcolepsy gene (HLA-DQB1) and Parkinson’s disease gene (LRRK2.) (B) Interaction score distribution,X-axis, interaction score; Y-axis, 
frequency.
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with agents to stimulate neuro inflammation46. CAMK1D, also 
associated with Ca2+ signaling, exhibited decreased expres-
sion levels in iPSC-derived neurons carrying the LRRK2 
G2019S mutation, the most prevalent genetic cause of late onset  
PD47.

HMGB1 and AGER appear to act in concert mediating  
inflammatory processes that ultimately lead to neuron cell 
death via NF-κB signaling48. Studies indicate that HMGB1 is  
associated with autophagy dysfunction and the degeneration 
of dopaminergic neurons through interaction with α-synuclein 
thereby intensifying protein aggregation and in conjunction  
with RAGE, inflammation and cell death49,50. RAGE initiates 
signal transduction cascades and activates NF-κB, increases 
cytokine expression and also leads to the production of reac-
tive oxygen species51,52. In neuronal cells expressing the G2019S  
LRRK2 mutant, RAGE enhanced cell death. Expression of RAGE 
proteins were also upregulated in the LRRK2 mutant cells53.  
RAGE is highly expressed in PD patients when compared with 
age-matched controls51 and RAGE gene variants have been  
linked to sporadic PD in an Asian population54

Silencing of the RAGE pathway in a mouse model of  
PD improved neuroinflammation which causes dopaminergic  
neurodegeneration in PD patients52. This is important because 
the deterioration of dopaminergic neurons in the brain is 

believed to play a critical role in the development of PD60. By the  
time clinical signs of PD are identified and a diagnosis is 
made, a large number of dopaminergic neurons have already  
been lost1. Dopaminergic neurons are also involved in promot-
ing feeding behavior in the hypoglycemic state which is medi-
ated by insulin receptors in the substantia nigra, indicating  
that dopaminergic neuronal loss may alter glycemic control61,62. 
Loss of orexin/hypocretin is also linked to binge-eating 
behavior, low BMR, and obesity, which is a symptom of  
narcolepsy63–65.

BHLHE41, the other gene of interest identified from the ppi 
network analysis, is a transcription factor associated with  
circadian processes. Variants of BHLHE41 have been impli-
cated in short sleep syndrome66. BHLHE41 also has a role in 
immune function and in addition to CAMK1D, AGER is impli-
cated in diabetes along with the narcolepsy-related gene,  
HLA-DQB1.

Further insight into the relationship between PD, IR and dis-
rupted sleep patterns is evident from studies in which the repur-
posing of treatment for one of these diseases has been used to  
alleviate symptoms in another. Results from a recent clinical  
trial in which PD patients were treated with intranasal insu-
lin, reported that test subjects had improved verbal fluency 
and motor skills and sleep related symptoms67. Insulin is also  
promising for treating AD symptoms along with growth fac-
tors and incretins (orexin) which are a current therapy  
for T2D68. Metformin another anti diabetic drug has been used 
to treat AD and may have promise for PD as well69. Current 
trends in Biomarkers for disease detection include neuroimaging  
techniques such as petscan monitoring to glucose uptake 
in PD patients and also monitoring of oxidative stress and  
cholesterol metabolism70,71. Melatonin, the naturally occurring  
hormone that controls sleep and wake cycles, was also found  
to be beneficial in PD72.

There are more than 10 million people worldwide that live 
with Parkinson’s disease. Additional studies aimed at identify-
ing genes and regulatory factors underlying and bridging these  
comorbid disorders may aid in the design of early interven-
tion and diagnosis strategies, as well as treatment regimes for  
patients with PD, diabetes, and/or narcolepsy.

Table 2. Expression summary of key genes in the hypothalamus, dorsal 
thalamus, nucleus subcoeruleus and pons.

gene hypothalamus dorsal thalamus nucleus subcoeruleus pons

AGER - + + -

BHLHE41 + + + +

CACNA1C + + - +

CAMK1D + - - +

HMGB1 + + + +

Table 1. LRRK2, HLA-DQB1 and 
CAMK1D relevant network 
interactions and scores.

PPI Score References

INS-INSR 0.974 55

CALM1-CAMK1D 0.732 56

INS-HLA-DQB1 0.72 57

CALM1-INSR 0.433 58

CALM1-LRRK2 0.403 59
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Conclusion
We have identified genetic signatures that link PD with its 
comorbid disorders, narcolepsy and insulin resistance, from 
the convergence and intersection of dopaminergic, insulin, and  
immune system related signaling pathways. The result-
ing genes and pathways identified here are consistent with 
many published findings and may aid in the design of early  
intervention strategies and treatment regimes for non-motor 
symptoms in PD patients as well as individuals with diabetes  
and narcolepsy.

Data availability
Source data
All data underlying the results are available as part of the  
article and no additional source data are required.

Underlying data
All data underlying the results are available as part of the  
article and no additional source data are required.

Extended data
Figshare: Extended data workbook 1 LRRK2, HLA-DQB1, 
and HCRT gene correlates.xlsx. (https://doi.org/10.6084/
m9.figshare.13072037.v135.

This file contains gene correlates of LRRK2, HLA-DQB1 and 
HCRT in the hypothalamus, dorsal thalamus, pons and nucleus 
subcoeruleus.

Figshare: Extended data workbook 2 Cluster analysis of gene  
correlates.xlsx. https://doi.org/10.6084/m9.figshare.13072103.v137.

This file contains cluster analysis of gene correlates of LRRK2, 
HLA-DQB1 and HCRT in the hypothalamus, dorsal thalamus,  
pons and nucleus subcoeruleus.

Figshare: Extended data workbook 3 Common genes and  
functions.xlsx. https://doi.org/10.6084/m9.figshare.13072124.v138.

This file contains gene set overlap and functional analysis for 
LRRK2, HLA-DQB1, and HCRT gene correlates.

Figshare: Extended data workbook 4 Keyword genes.xlsx.  
https://doi.org/10.6084/m9.figshare.13072130.v139.

This file contains keyword enrichment of gene correlates of  
LRRK2, HLA-DQB1 and HCRT.

Figshare: Extended data workbook 5 PD, narcolepsy  
and IR risk factors genes.xlsx. https://doi.org/10.6084/
m9.figshare.13072151.v136.

This file contains Parkinson’s disease, narcolepsy and Insulin  
resistance risk factors genes

Figshare: Extended data workbook 6 LRRK2, HLA-DQB1 and 
CAMK1D protein-protein interaction network.xlsx. https://doi.
org/10.6084/m9.figshare.13072160.v142.

This file contains LRRK2, HLA-DQB1 and CAMK1D protein- 
protein interaction network coordinates.

Figshare: Extended data workbook 7 Gene expression pat-
terns for AGER, BHLHE41 CACNA1C, CAMK1D, .HMGB1  
in the dorsal thalamus and subcoeruleus nucleus.xlsx. https://doi.
org/10.6084/m9.figshare.1668057143.

This file contains dorsal thalamus and subcoeruleus nucleus  
RNA-Seq data for key genes

Figshare: Extended data Table 1. Hypothalamus_and_Pons 
gene_expression_for_key_genes. https://doi.org/10.6084/
m9.figshare.1669208573

This file contains hypothalamus and Pons RNA-Seq data for  
key genes.

Extended data are available under the terms of the Creative  
Commons Attribution 4.0 International license (CC-BY 4.0).
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Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, 
CA, USA 

Parkinson’s disease is the second most common neurodegenerative disease right after 
Alzheimer’s disease nowadays. There is no treatment to counteract the symptoms of the disease, 
and most of the medications used are aimed at alleviating the symptoms. However, the use of 
these drugs also has disadvantages in the form of side effects, which makes the quality of life of 
the patients drop drastically. Lately, research on Parkinson's disease has been focused on the 
detection of markers that allow diagnosis of this disorder in early stages to increase the 
probabilities of treatments being effective. Within these types of studies, we have this article 
published by Chunduri et al., in which the main objective is the search for the expression of certain 
genes shared between Parkinson's disease, insulin resistance and narcolepsy. The authors 
propose to analyze the molecular bases of the comorbidity of these three disorders in order to 
find risk factors that could predispose and facilitate the early diagnosis of Parkinson's disease. As a 
result of the study, the authors have identified several genes that are related to the signaling 
pathways of dopamine, insulin and the immune system, among which are: CACNA1C, CAMK1D, 
BHLHE41, HMGB1, and the AGE-RAGE axis. 
 
The preliminary data obtained in this study is interesting and would allow further research on the 
early diagnosis of this disorder, through the individualized study of each of these candidate genes, 
probably through knock-out or knock-down strategies in animal models. However, some parts of 
the article need to be supplemented with additional data, and furthermore, the discussion of the 
data obtained seems short and incomplete, so the authors should increase the number of 
bibliographic references that are currently discussing the analysis of comorbidity in Parkinson's 
disease, both in animal models and in humans. 
 
Specifically, I would like the authors to address the following points:

It would be appropriate to validate the expression of some of these candidate genes in the 
mentioned brain regions, in the tissue of healthy human or wild-type animals (e.g. mouse, 
rat, monkey), mainly by quantitative PCR or in situ hybridization, or alternatively by Western 
Blot or immunohistochemistry. It would be very interesting if the authors could also analyze 
the expression of these genes in tissue from patients or animal models of Parkinson's 
disease. 
 

1. 

It would be quite useful to validate the data obtained in humans, with the gene expression 
database available for mouse or monkey brain tissue, on the Allen Brain Institute website. 
Mouse Brain Atlas: https://developingmouse.brain-map.org/search/index 
Non-human primate Brain Atlas: https://www.blueprintnhpatlas.org/microarray/search 
 

2. 

It would be great if the authors could comment on why they decided to analyze specifically 
the comorbidity of Parkinson’s disease with insulin resistance and narcolepsy. There are 
other disorders that are more frequent comorbidities in Parkinson’s disease patients, such 
as hypertension, Crohn's disease, schizophrenia, restless leg syndrome, anemia (see 
attached references).1,2,3 
 

3. 

Could the authors comment and discuss if some of the candidate genes found are 
expressed in dopaminergic neurons in the human or mouse brain (regarding the 
bibliography available in the field)? 

4. 
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I suggest that the authors should cite more relevant references in the discussion section 
(see list of references attached).4,5,6,7,8,9,10,11,12,13,14,15,16,17

5. 

 
Once the authors are able to address all the issues I have proposed in this report, I would be 
willing to re-evaluate this manuscript. 
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Parkinson’s disease is the second most common neurodegenerative disease right after 
Alzheimer’s disease nowadays. There is no treatment to counteract the symptoms of the 
disease, and most of the medications used are aimed at alleviating the symptoms. However, 
the use of these drugs also has disadvantages in the form of side effects, which makes the 
quality of life of the patients drop drastically. Lately, research on Parkinson's disease has 
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been focused on the detection of markers that allow diagnosis of this disorder in early 
stages to increase the probabilities of treatments being effective. Within these types of 
studies, we have this article published by Chunduri et al., in which the main objective is the 
search for the expression of certain genes shared between Parkinson's disease, insulin 
resistance and narcolepsy. The authors propose to analyze the molecular bases of the 
comorbidity of these three disorders in order to find risk factors that could predispose and 
facilitate the early diagnosis of Parkinson's disease. As a result of the study, the authors 
have identified several genes that are related to the signaling pathways of dopamine, 
insulin and the immune system, among which are: CACNA1C, CAMK1D, BHLHE41, HMGB1, 
and the AGE-RAGE axis. 
 
The preliminary data obtained in this study is interesting and would allow further research 
on the early diagnosis of this disorder, through the individualized study of each of these 
candidate genes, probably through knock-out or knock-down strategies in animal models. 
However, some parts of the article need to be supplemented with additional data, and 
furthermore, the discussion of the data obtained seems short and incomplete, so the 
authors should increase the number of bibliographic references that are currently 
discussing the analysis of comorbidity in Parkinson's disease, both in animal models and in 
humans. 
 
Reviewer 3 comment: 
 
Specifically, I would like the authors to address the following points: 
It would be appropriate to validate the expression of some of these candidate genes in the 
mentioned brain regions, in the tissue of healthy human or wild-type animals (e.g. mouse, 
rat, monkey), mainly by quantitative PCR or in situ hybridization, or alternatively by Western 
Blot or immunohistochemistry. It would be very interesting if the authors could also analyze 
the expression of these genes in tissue from patients or animal models of Parkinson's 
disease. 
 
Response: 
 
We have addressed the request for validation of candidate gene expression in the 
mentioned brain regions above in our response to Reviewer 1 and have added the 
information to the Results and Discussion sections of the revised manuscript. To 
summarize our findings, each of the key genes is expressed in at least two of the brain 
regions relevant to this study. 
 
To address the reviewer’s question concerning expression of these genes in tissue 
from patients or animal models of Parkinson's disease, we have analyzed the gene 
expression data available in the NCBI GEO database specifically for Parkinson’s 
Disease datasets to determine if any of the key genes identified in our study are 
differentially expressed.  
 
Out of 24 available datasets, we found that BHLHE41 and AGER were differentially 
expressed as compared with controls from two distinct studies (
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE36321 and 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19587).  
For BHLHE41, the study involved assessing gene expression in human neural stem 
cells containing the LRRK2 (G2019S) pathogenic mutation. The LRRK2 (G2019S) 
containing cells had higher expression of BHLHE4. AGER was differentially expressed 
with borderline significance in a study that examined post mortem medullary regions 
from brains with evidence of Parkinson’s. AGER was expressed higher in brains from 
individuals with Parkinson’s. However, due to low n values we do not have enough 
confidence in the data to include these results in the manuscript. The other genes of 
interest, CACNA1C, CAMK1D, and HMGB1 were not identified in any of the GEO gene 
expression datasets as being expressed differently than controls. 
 
We also assessed expression of the key genes in individuals with Parkinson’s versus a 
healthy control group from data generated in a longitudinal study in which the aim is 
to identify biomarkers of Parkinson’s disease progression (Parkinson's Progression 
Markers Initiative https://www.ppmi-info.org/). The Parkinson’s cohort consisted of 
423 individuals and the control group, 196. There was no difference in the expression 
for any of the key genes.  
 
Reviewer 3 comment: 
 
It would be quite useful to validate the data obtained in humans, with the gene expression 
database available for mouse or monkey brain tissue, on the Allen Brain Institute website. 
Mouse Brain Atlas: https://developingmouse.brain-map.org/search/index 
Non-human primate Brain Atlas: https://www.blueprintnhpatlas.org/microarray/search 
 
Response: 
 
Thank you for the suggestion. However, to the best of our knowledge, there is no 
Microarray data available for mouse at the Allen Brain Atlas but we were able to 
consider the in situ hybridization data (discussed above). Regrettably the Non-human 
primate atlas does not contain data for the relevant brain regions used in this study 
which is unfortunate because this is an intriguing dataset. 
 
Reviewer 3 comment:  
 
It would be great if the authors could comment on why they decided to analyze specifically 
the comorbidity of Parkinson’s disease with insulin resistance and narcolepsy. There are 
other disorders that are more frequent comorbidities in Parkinson’s disease patients, such 
as hypertension, Crohn's disease, schizophrenia, restless leg syndrome, anemia (see 
attached references).1,2,3 
 
Response: 
 
Initially, the focus of our study was to investigate the connection between Parkinson’s 
and narcolepsy. Early on in the data collection and preliminary analysis, we observed 
that many of the gene correlates were linked to insulin resistance. On the basis of this 
finding we decided to expand the scope of the study. 
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Reviewer 3 comment:  
 
Could the authors comment and discuss if some of the candidate genes found are 
expressed in dopaminergic neurons in the human or mouse brain (regarding the 
bibliography available in the field)? 
 
Response: 
 
AGER, BHLHE41, CACNA1C, and HMGB1 are expressed in Dopaminergic neurons from 
the substantia nigra pars compacta and ventral tegmental area in rats. These data are 
publicly accessible at GEO datasets, accession number: GSE1837 (
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1837).  
 
There is also further support from previously published studies: 
CACNA1C (PTSD study generated mice with specific deletion of cacna1c from D1R-
expressing neurons https://pubmed.ncbi.nlm.nih.gov/32332995/). 
 
CAMK1D (Decreased mRNA Expression of Key ER Ca2+ Regulators and CamK1D in 
LRRK2 G2019S NeuronsD 
https://www.sciencedirect.com/science/article/pii/S2213671118304909)  
 
HMGB1/RAGE/AGER (Activation of the HMGB1-RAGE axis upregulates TH expression in 
dopaminergic neurons via JNK phosphorylation 
https://pubmed.ncbi.nlm.nih.gov/28887039) 
 
Reviewer 3 comment: 
 
I suggest that the authors should cite more relevant references in the discussion section 
(see list of references attached).4,5,6,7,8,9,10,11,12,13,14,15,16,17 
 
Response:  
 
We thank the reviewer for providing these references. We have updated the 
Introduction and Discussion sections of the revised manuscript to include this 
information.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 April 2021
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Qing Wang   
Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 
Guangdong, China 

This study has identified the genes such as CACNA1C, CAMK1D, BHLHE41, HMGB1, and AGE-RAGE 
that link PD with narcolepsy and insulin resistance and their signaling networks are connected 
through insulin and immune system pathways. These findings may contribute to develop new 
treatment strategies in PD patients as well as individuals with diabetes and narcolepsy. The results 
of the study are interesting. 
 
However, the introduction and discussion are too weak. So it is suggested to cite more relevant 
references as follows (please see the reference list below) in order to elaborate on the 
mechanisms.   
 
After my concerns above have been fully addressed, I am happy to re-evaluate this manuscript. 
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This study has identified the genes such as CACNA1C, CAMK1D, BHLHE41, HMGB1, and AGE-
RAGE that link PD with narcolepsy and insulin resistance and their signaling networks are 
connected through insulin and immune system pathways. These findings may contribute to 
developing new treatment strategies in PD patients as well as individuals with diabetes and 
narcolepsy. The results of the study are interesting. 
 
Reviewer 2 comment: 
However, the introduction and discussion are too weak. So it is suggested to cite more 
relevant references as follows (please see the reference list below) in order to elaborate on 
the mechanisms. After my concerns above have been fully addressed, I am happy to re-
evaluate this manuscript. 
 
Response: 
We thank the reviewer for providing us with many relevant references. Based on this 
information we have revised the Introduction and Discussion sections of the 
manuscript and have included more mechanistic detail and context as recommended.  
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Comorbidity of Parkinson’s disease (PD) with insulin resistance (IR) and narcolepsy-like sleep 
patterns are frequently described, but the mechanism is unclear.   
In this study, an integrative genomics and systems biology approach was used to analyze gene 
expression patterns associated with PD, IR, and narcolepsy to identify genes and pathways that 
may shed light on how these disorders are interrelated. The results showed that the PD and 
narcolepsy signaling networks are connected through insulin and immune system pathways. 
Important genes and pathways that link PD, narcolepsy, and IR were shown to be CACNA1C, 
CAMK1D, BHLHE41, HMGB1, and AGE-RAGE. The authors concluded that these findings might aid in 
the design of early intervention strategies and treatment regimes for non-motor symptoms in PD 
patients as well as individuals with diabetes and narcolepsy. 
Overall, the results are interesting and clear. I agree that the paper may contribute to the PD 
research. My comments are as follows:

It would be much better if modification of the expression of the identified genes (knockout 
or overexpression), including CACNA1C, CAMK1D, BHLHE41, HMGB1, and AGE-RAGE, might 
result in phenotypes related to PD and/or narcolepsy in cells or animal models. Are there 
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such previous papers? Otherwise, the result of network analysis alone seems preliminary. 
 
In the same context, other experiments, such as immunohistochemistry, should be 
conducted to confirm the expression of these genes at the protein level.
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We would like to thank you for taking the time to review our article and providing 
constructive feedback. We will submit a revised version once we have received all of the 
reviews.  
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In this study, an integrative genomics and systems biology approach was used to analyze 
gene expression patterns associated with PD, IR, and narcolepsy to identify genes and 
pathways that may shed light on how these disorders are interrelated. The results showed 
that the PD and narcolepsy signaling networks are connected through insulin and immune 
system pathways. Important genes and pathways that link PD, narcolepsy, and IR were 
shown to be CACNA1C, CAMK1D, BHLHE41, HMGB1, and AGE-RAGE. The authors concluded 
that these findings might aid in the design of early intervention strategies and treatment 
regimes for non-motor symptoms in PD patients as well as individuals with diabetes and 
narcolepsy. 
Overall, the results are interesting and clear. I agree that the paper may contribute to the 
PD research. My comments are as follows: 
 
Reviewer 1 comment: 
It would be much better if modification of the expression of the identified genes (knockout 
or overexpression), including CACNA1C, CAMK1D, BHLHE41, HMGB1, and AGE-RAGE, might 
result in phenotypes related to PD and/or narcolepsy in cells or animal models.  
Are there such previous papers? Otherwise, the result of network analysis alone seems  
Preliminary. 
 
Response: 
We thank the reviewer for taking the time to provide us constructive feedback on this 
manuscript. There is in fact a great deal of evidence derived from knockout and cell 
based studies linking CACNA1C, HMGB1, and AGER/AGE-RAGE to Parkinson's 
pathogenesis. CACNA1C is also associated with Circadian rhythm and narcolepsy. In 
addition, CAMK1D is a component of the calmodulin dependent calcium signaling 
cascade and there is also support for its role as an interactor of LRRK2, one of the key 
genes influencing Parkinson’s. HMGB1 and AGER/AGE-RAGE appear to act in concert 
mediating inflammatory processes that ultimately lead to neuron cell death via NF-κB 
signaling. AGER/AGE-RAGE and LRRK2 are also linked as RAGE proteins are upregulated 
in LRRK2 G2019S mutant cells. The LRRK2 G2019S mutation is the most common 
genetic cause of neurodegeneration and PD. The other major gene of interest 
identified in the ppi network, BHLHE41, is a transcription factor associated with 
Circadian processes. Variants of BHLHE41 have been implicated in short sleep 
syndrome and this gene also has a role in immune function. BHLHE41 in addition to 
CAMK1D, RAGE, and HMGB1 are also implicated in diabetes.  
 
Details of the supporting studies for the candidate genes as well as the other network 
genes have been included in the Introduction and Discussion sections of the revised 
manuscript. 
 
Reviewer 1 comment: 
In the same context, other experiments, such as immunohistochemistry, should be 
conducted to confirm the expression of these genes at the protein level. 
 
Response: 
We agree that the above mentioned studies could be useful to further support the 
results presented here. Regrettably we do not have access to wet lab facilities. Our 
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method of research is based in bioinformatics, systems biology and integrative 
genomics.  
 
However, we were able to address your question using legacy datasets from the 
Human Protein Atlas (https://www.proteinatlas.org/) which also contains data for 
gene expression in mice and pigs and the human database in the Allen Brain Atlas (
https://human.brain-map.org/microarray/search). 
 
Results for gene expression of the key genes in the hypothalamus and pons are as 
follows: Each of the genes with the exception of AGER were expressed in both the 
hypothalamus and pons for human, mouse and pig. CACNA1C expression was also 
confirmed at the protein level by immunocytochemistry in the mouse hypothalamus 
and pons/medulla. 
 
The expression pattern of the key genes in dorsal thalamus and subcoeruleus nucleus 
data were obtained for humans only and are as follows: HMGB1, AGER, BHLHE41 are 
expressed in both the dorsal thalamus and subcoeruleus nucleus. CACNA1C is 
expressed in the dorsal thalamus and is not expressed in the subcoeruleus nucleus 
CAMK1D was not expressed in either the dorsal thalamus or subcoeruleus nucleus. 
These data are have been added to the revised version of the manuscript.  
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