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Abstract: Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor is a counter-regulatory axis that counteracts
detrimental renin-angiotensin system (RAS) effects, especially regarding systemic inflammation,
vasopressin (AVP) release, and hypothalamic-pituitary-adrenal (HPA) activation. However, it is not
completely understood whether this system may control centrally or systemically the late phase of
systemic inflammation. Thus, the aim of this study was to determine whether intracerebroventricular
(i.c.v.) administration of Ang-(1-7) can modulate systemic inflammation through the activation
of humoral pathways in late phase of endotoxemia. Endotoxemia was induced by systemic in-
jection of lipopolysaccharide (LPS) (1.5 mg/kg, i.v.) in Wistar rats. Ang-(1-7) (0.3 nmol in 2 µL)
promoted the release of AVP and attenuated interleukin-6 (IL-6) and nitric oxide (NO) levels but
increased interleukin-10 (IL-10) in the serum of the endotoxemic rats. The central administration of
Mas receptor antagonist A779 (3 nmol in 2 µL, i.c.v.) abolished these anti-inflammatory effects in
endotoxemic rats. Furthermore, Ang-(1-7) applied centrally restored mean arterial blood pressure
(MABP) without affecting heart rate (HR) and prevented vascular hyporesponsiveness to nore-
pinephrine (NE) and AVP in animals that received LPS. Together, our results indicate that Ang-(1-7)
applied centrally promotes a systemic anti-inflammatory effect through the central Mas receptor and
activation of the humoral pathway mediated by AVP.

Keywords: Angiotensin-(1-7); Mas receptor; endotoxemia; systemic inflammation; vasopressin;
vascular reactivity; hypotension

1. Introduction

Endotoxemia, a classical model of systemic inflammation, is characterized by the
amplified production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β),
interleukin-6 (IL-6), and nitric oxide (NO) by immune cells and vascular endothelium [1].
The overproduction of inflammatory mediators has been involved in hypotension, hypore-
sponsiveness to vasoactive agents, and alterations in the hypothalamic-neurohypophyseal
axis during systemic inflammation [2,3]. Our previous studies showed a marked decrease
in vasopressin (AVP) plasma levels and increase in activation of the hypothalamic-pituitary-
adrenal (HPA) axis during the late phase of endotoxemia, observed 6 h after lipopolysaccha-
ride (LPS) administration [4–6]. It has been demonstrated that NO may play a role on the
regulation of the HPA axis and AVP synthesis in the hypothalamic paraventricular nucleus
(PVN) during endotoxemia [7–11]. However, besides the immune stimulus, there are

Cells 2021, 10, 105. https://doi.org/10.3390/cells10010105 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://doi.org/10.3390/cells10010105
https://doi.org/10.3390/cells10010105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10010105
https://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/10/1/105?type=check_update&version=1


Cells 2021, 10, 105 2 of 16

other ways to control the hypothalamic-neurohypophyseal axis, including osmolality,
hypotensive stimulus, and activation of the renin-angiotensin system (RAS) [12].

It is well known that the RAS plays a key role in the modulation of many functions in
the body. Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor, the counter-regulatory axis of the
RAS, exerts beneficial effects against the pathophysiologic conditions [13,14]. The expres-
sion of Mas receptor was observed in neurons, glia cells, and endothelial cells of cerebral
vessels [15]. As the agonist for the Mas receptor, Ang-(1-7) is also produced in the brain,
in areas including the hypothalamus [16]. In PVN, this peptide is a potent secretagogue of
AVP and may participate in controlling its release by magnocellular neurons [17]. In addi-
tion to neuroendocrine actions, the activation of Ang-(1-7)/Mas receptor axis attenuates
inflammation in several experimental models, including polymicrobial sepsis and cerebral
ischemia [18–20]. In our most recent study, it has been shown that central administration
of Ang-(1-7) prevented LPS-induced vascular hyporesponsiveness and hypotension due to
an anti-inflammatory effect via activation of sympathetic signaling during the initial phase
of endotoxemia [21]. However, the central mechanisms of Ang-(1-7) to control systemic
inflammation in the late phase of endotoxemia are not well known. Considering that
Ang-(1-7) acts as a central neuropeptide controlling AVP release and the HPA axis as well
as the importance of these hormones for hypotensive and inflammatory response dur-
ing endotoxemia [22–25], in the present study we aimed to determine whether Ang-(1-7)
can modulate systemic inflammation through the activation of humoral pathways in late
phase of endotoxemia.

2. Material and Methods

2.1. Animal Experiments

Experiments were performed on adult male Wistar rats (215–220 g) obtained from
the animal facility of the University of São Paulo, Ribeirão Preto Campus. The animals
were housed at a controlled temperature (24.0 ± 2 ◦C) and exposed to a daily 12 h light–
dark cycle (lights on from 6:00 to 18:00 h) and provided with food and water ad libitum.
All experimental protocols were performed in accordance with the guidelines of the Ethics
Committee on Animal Experimentation of the Ribeirão Preto College of Nursing, Univer-
sity of São Paulo (CEUA Protocol 14.1.872.53.4).

2.2. Stereotaxic Surgery

Seven days before the experiment, the rats were anesthetized with a mixture of
ketamine and xylazine (90 mg/kg and 9 mg/kg, respectively, i.p., diluted in 0.9% isotonic
saline) (Aldrich, Milwaukee, WI, USA) and immobilized in a stereotaxic frame. A stainless
steel guide cannula (0.4 mm) was introduced into the right lateral ventricle (coordinates: A:
−1.6 mm, L: 1 mm, D: 3.6 mm from the bregma) [26]. The displacement of the meniscus in
a water manometer ensured the correct position of the cannula into the lateral ventricle.
The cannula was fixed to the skull with stainless steel screws and dental acrylic cement.
A tight-fitting stylet was kept inside the guide cannula to prevent occlusion and infection.
At the end of the surgery, all animals received an injection of a polyvalent veterinary
pentabiotic (24.000 UI/kg; Zoetis, Brazil). The rats were allowed to recover for seven days.

2.3. Cannulation Procedures

For intravenous (i.v.) drug administration, the rats were anesthetized on the day
before the experiment with ketamine and xylazine, and a flexible catheter (PE-10, Silastic®,
Dow Corning CO., Midland, MI, USA) was inserted into the right internal jugular vein.
For direct mean arterial blood pressure (MABP) and heart rate (HR) measurements,
an additional catheter (PE-10 heat-sealed to PE-50) was inserted into the femoral artery.
The catheters were tunneled under the skin and exteriorized in the back of the neck, as de-
scribed previously [5]. The animals were housed separately and allowed to recover for
24 h before taking measurements.
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2.4. Drug Administration

Drugs were administered to the conscious rats, alone or in combination, according
to the following chronology: (a) The rats received an intracerebroventricular (i.c.v.) A779
(3 nmol in 2 µL) or saline (0.9%), a potent and selective antagonist for receptor of Ang-(l-7),
the Mas receptor; (b) After 30 min, the rats received an i.c.v. injection of Ang-(1-7) (0.3 nmol
in 2 µL) or saline (NaCl 0.9%); (c) 1 min after Ang-(1-7) injection the rats received an
i.v. bolus LPS injection (1.5 mg/kg) or saline (0.9%). Control animals were injected with
the same volume of saline through the same routes. The doses of Ang-(1-7), A779, and
LPS used were based on previous studies from our group [21,27]. Thus, the rats were
divided into eight experimental groups according to analysis: (1) Saline (i.c.v.) + Saline
(i.c.v.) + Saline (i.v.) (control group); (2) Saline (i.c.v.) + Ang-(1-7) (i.c.v.) + Saline (i.v.);
(3) Saline (i.c.v.) + Saline (i.c.v.) + LPS (i.v.); (4) Saline (i.c.v.) + Ang-(1-7) (i.c.v.) + LPS
(i.v.); (5) A779 (i.c.v.) + Saline (i.c.v.) + Saline (i.v.); (6) A779 (i.c.v.) + Ang-(1-7) (i.c.v.)
+ Saline (i.v.); (7) A779 (i.c.v.) + Saline (i.c.v.) + LPS (i.v.); (8) A779 (i.c.v.) + Ang-(1-7) (i.c.v.)
+ LPS (i.v.).

2.5. Samples

Samples of PVN and supraoptic nucleus (SON) and blood were collected 6 h after
LPS administration. After harvest, PVN and SON samples were stored in RNase-free
microcentrifuge tubes in a freezer at −80 ◦C. A blood sample was collected with EDTA
(1 mmol/L) and immediately centrifuged (3100 rpm, 4 ◦C, 15 min) to obtain plasma,
which was stored in a freezer at −80 ◦C. Another blood sample was collected without
anticoagulant and centrifuged (3500 rpm, 4 ◦C, 10 min) to obtain serum, which was also
stored in a freezer at −80 ◦C.

2.6. Plasma Osmolality, Sodium, and Lactate Measurements

The determination of plasma osmolality was performed using an osmometer (Fiske OS
Osmometer, Advanced Instruments, Norwood, MA, USA). Plasma sodium levels were
analyzed using a quantitative electrode quantification technique (9180 Electrolyte Ana-
lyzer, Roche Diagnostics GmbH, Mannheim, Germany). To determine the lactate level,
a commercial enzyme immunoassay kit (Quibasa Química Básica, Belo Horizonte, Brazil)
was used.

2.7. Real-Time Polymerase Chain Reaction (RT-PCR)

After decapitation, PVN and SON samples were harvested, stored in RNase-free
microcentrifuge tubes and frozen in liquid nitrogen within a 5-min time frame. Sam-
ples were then disintegrated in the presence of Trizol® (Introvigen, Carlsbad, CA, USA),
and RNA extraction followed the Trizol standard procedure with glicogen. RNA was
quantified by spectrophotometry using nanodrop 1000 equipment (Thermo Fisher Sci-
entific, Wilmington, DE, USA). The analysis of the genes of interest was performed by
RT-PCR using TaqMan assays (AVP Rn00690189_g1; corticotropin-releasing hormone-
CRH Rn01462137_m1; TNF Rn99999017_m1; IL10 Rn01483988_g1; inducible nitric oxide
synthase (NOS2) Rn00561646_m1; GAPDH Rn01775763_g1) as previously described in
Faim et al. [28]. The results were expressed as normalized relative quantities (NRQ).

2.8. Corticosterone and Vasopressin (AVP) Measurements

The corticosterone and AVP radioimmunoassay were performed as previously de-
scribed by Vecsei [29]. Plasma samples (25 µL) were extracted using ethanol, lyophilized,
and stored at −20 ◦C until analysis of corticosterone. Plasma samples (0.5 mL) were ex-
tracted using the acetone/petroleum ether method, lyophilized, and stored at −20 ◦C until
analysis of AVP. Assay sensitivity and intra- and inter-assay coefficients of variation were
0.4 µg/dL; 3.3% and 10.0% for corticosterone; and 0.7 pg/mL, 7.6%, and 12% for AVP.
The results were expressed as µg/dL for corticosterone and pg/mL for AVP.
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2.9. Cytokine Measurements

Levels of interleukin (IL)-1β (catalog # RLB00), IL-6 (catalog # R6000B), and interleukin-
10 (IL-10) (catalog # R1000) were quantified by enzyme-linked immunosorbent assay
(ELISA) using commercial kits from R&D Systems (Minneapolis, MN, USA) according
to the user manual. The TNF level was quantified by an ELISA kit from Biolegend (cata-
log 438206) (San Diego, CA, USA) according to the user manual. The results were expressed
as cytokine concentration in pg/mL based on standard curves.

2.10. Plasma Nitrite/Nitrate (NOx) Measurement

Plasma samples were deproteinized with 100 µL of absolute ethanol at 4 ◦C for 30 min.
The samples then were centrifuged at 10,000 rpm for 5 min. After deproteinization, 5 µL of
samples were injected into a reaction vessel containing vanadium trichloride. The NOx
produced was detected as ozone-induced chemiluminescence using the Sievers Instruments
NO analyzer (NOA model 280i; Boulder, Colorado). The results were expressed as NOx
concentration in µM/L.

2.11. Thiobarbituric Acid Reactive Substance (TBARS) Measurement

Levels of TBARS were quantified by colorimetric assay using a commercial kit from
Cayman chemical (#10009055, Michigan, MI, USA) according to the user manual. The re-
sults were expressed as TBARS concentration in nmol/L based on standard curve.

2.12. Mean Blood Pressure (MABP) and Heart Rate (HR) Measurements

On the day of the experiment, an arterial catheter was connected to a pressure
transducer (TSD104A) and a data acquisition unit (MP100 System; BIOPAC Systems Inc,
Santa Barbara, CA, USA) to record the MABP and HR of conscious and freely moving rats.
The data were converted and analyzed using AcqKnowledge v.3.9.0 software (BIOPAC Sys-
tems Inc, Santa Barbara, CA, USA). A quiet environment was maintained to avoid stress,
and the rats had pulsatile arterial pressure recorded at baseline conditions for 30 min.
After LPS or saline injection, MABP and HR were then measured as a single time point at
360 min. The results were expressed as the difference from baseline.

2.13. Vascular Reactivity on Thoracic Aorta

After 6 h of LPS administration, the thoracic aorta of each animal of experimental
groups (Saline (i.c.v.) + Saline (i.c.v.) + Saline (i.v.) (control group); (2) Saline (i.c.v.) + Ang-
(1-7) (i.c.v.) + Saline (i.v.); (3) Saline (i.c.v.) + Saline (i.c.v.) + LPS (i.v.); (4) Saline (i.c.v.) + Ang-
(1-7) (i.c.v.) + LPS (i.v.)) was sectioned and cut into four rings of the same size (4 mm)
to normalize contractile forces. The rings were kept in two stainless steel stirrups and
connected to an isometric force transducer (Letica Scientific Instruments, Barcelona, Spain)
in a chamber containing Krebs solution (composition in mmol/L: NaCl 130.0; KCl 4.7;
KH2PO4 1.2; MgSO4 1.2; NaHCO3 14.9; C6H12O6 5.5; CaCl2 1.6), pH 7.4, supplied with a
gas containing 95% O2 and 5% CO2 at 37 ◦C. Each ring was stretched to a resting tension
of 1.5 g, which was maintained for 60 min for stabilization. In vitro, the rings were subse-
quently stimulated with phenylephrine (0.1 µmol/L), a selective α1-adrenergic receptor
agonist, and the presence or absence of endothelium was verified using acetylcholine
(1 µmol/L). Cumulative concentration-effect curves were constructed for norepinephrine
(NE) (0.1 µmol/L–10 µmol/L) in the presence or absence of the aminoguanidine, NOS2
selective inhibitor (100 µmol/L), and AVP (1 nmol/L).

2.14. Statistical Analysis

Statistical analyses were performed using Prism 6.0 (GraphPad) software. Osmolality,
sodium, lactate, cytokines, NOx, corticosterone, AVP, MABP, HR, and RT-PCR measure-
ments were statistically analyzed by two-way ANOVA followed by the Bonferroni post-hoc
test. The maximum constrictor effect (Emax) was considered as the maximal amplitude
response reached in the concentration-effect curves for the contractile agent. The concentra-
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tion of agents that produced half-maximal relaxation amplitude was determined after logit
transformation of the normalized concentration-response curves and reported as negative
logarithm (pD2) of the mean of individual values. The experimental sample n refers to
the number of animals, and data are expressed as the means ± standard error of the mean
(SEM). Differences were considered statistically significant when p < 0.05.

3. Results

3.1. Central Ang-(1-7) Attenuated the Lactate Level and Did Not Change Osmolality and Sodium
Plasma Levels in Endotoxemia

LPS increased the lactate plasma level as compared with the control group (3.94 ± 0.15
versus 2.01 ± 0.28 mM; F = 20.34, p < 0.0001, respectively). Central administration of
Ang-(1-7) attenuated the lactate plasma level in the presence of LPS (2.71 ± 0.22 versus
3.94 ± 0.15 mM; F = 0.0654, p < 0.05, respectively). The statistical analysis showed significant
endotoxemia and treatment interaction (F = 6.92, p = 0.0133) for lactate. Neither central
Ang-(1-7) nor LPS affected the plasma osmolality and levels of sodium (317.88 ± 5.95
and 311.90 ± 6.70 versus 298.75 ± 5.69 mOsm/Kg; 144.75 ± 0.75 and 144.60 ± 1.06 versus
144.33 ± 0.80 mEq/L, respectively) (Table 1).

Table 1. Effect of central Ang-(1-7) administration in osmolality, sodium, and lactate plasma levels of
the endotoxemic rats.

Experimental Groups

Plasma
Osmolality
(mOsm/Kg)

Sodium
(mEq/L)

Lactate
(mM)

Saline (i.c.v.) + Saline (i.v.) 298.75 ± 5.69 144.33 ± 0.80 2.01 ± 0.28
Ang-(1-7) (i.c.v) + Saline (i.v.) 300.14 ± 4.38 144.50 ± 0.66 2.20 ± 0.42

Saline (i.c.v) + LPS (i.v.) 311.90 ± 6.99 143.60 ± 1.06 3.94 ± 0.15 *
Ang-(1-7) (i.c.v) + LPS (i.v.) 317.88 ± 5.94 144.75 ± 0.75 2.71 ± 0.22 #

* p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, # p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group.
ANOVA, followed by Bonferroni post-hoc test.

3.2. Central Administration of Ang-(1-7) Did Not Attenuate Neuroinflammation in Endotoxemia

Neuroinflammatory analysis showed significant effects of LPS on TNF, NOS2, and IL10
gene expression in PVN (F = 54.09, p < 0.0001; F = 6.69, p = 0.8169; F = 14.39, p = 0.0008,
respectively) and SON (F = 11.34, p = 0.0022; F = 2.11, p = 0.1582; F = 20.86, p < 0.0001,
respectively) (Figure 1A–F). Central administration of Ang-(1-7) did not change the TNF,
NOS2, and IL10 gene expression in the hypothalamic nuclei of endotoxemic rats, but there
was a tendency to mitigate TNF and elevate IL10 gene expression in PVN (F = 0.1492,
p = 0.7025; F = 4.181, p = 0.0515, respectively) (Figure 1A,C).

3.3. Central Administration of Ang-(1-7) Attenuated Systemic Inflammation and Restored Plasma
AVP Levels in Endotoxemic Rats via Mas Receptor

LPS significantly increased the production of inflammatory markers analyzed includ-
ing serum and plasma levels of TNF-α, IL-1β, IL-6, IL-10, NOx, and TBARS as compared
with the control group (F = 70.12, p < 0.0001; F = 171.70, p < 0.0001; F = 60.02, p < 0.0001;
F = 181.60, p < 0.0001; F = 297.90, p < 0.0001; F = 33.99, p < 0.0001, respectively). Central ad-
ministration of Ang-(1-7) specifically decreased IL-6, NOx, and TBARS, and increased
serum IL-10 levels in endotoxemic rats (F = 1.47, p < 0.05; F = 2.88, p = 0.0429; F = 22.75,
p < 0.0001; F = 4.99, p = 0.0044, respectively); however, administration of A779 abrogated
these peripheral anti-inflammatory responses (Figure 2A–F). Statistical analysis showed
significant endotoxemia and central administration of Ang-(1-7) interaction (F = 1.43,
p < 0.05; F = 5.18, p = 0.0036; F = 3.08, p = 0.0339; F = 16.55, p < 0.0001) for IL-6, IL-10, NOx,
and TBARS levels, respectively.
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Figure 1. Central administration of Ang-(1-7) did not attenuate neuroinflammation in endotoxemia. Effect of central Ang-
(1-7) on the TNF (A,D), NOS2 (B,E), and IL10 (C,F) gene expression in PVN and SON of rats 6 h after LPS administration
(1.5 mg/Kg, i.v.). Ang-(1-7) (0.3 nmol in 2 µL, i.c.v.) was injected 1 min before LPS. Data are expressed as the mean ± SEM,
n = 7–9. ANOVA, followed by Bonferroni post-hoc test. * p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group.

Considering that the central nervous system (CNS) may activate neuroimmune path-
ways in order to control peripheral inflammation, we analyzed whether central administra-
tion of Ang-(1-7) affected the production of corticosterone or AVP (Figure 3A–D). Systemic
administration of LPS decreased (F = 0.15, p < 0.05) AVP mRNA in PVN, and Ang-(1-7)
prevented this decrease (F = 2.61, p < 0.05) in PVN. Statistical analysis showed significant en-
dotoxemia and central administration of Ang-(1-7) interaction (F = 4.79, p = 0.0382) for AVP
mRNA in PVN (Figure 3A). Moreover, central administration of Ang-(1-7) increased AVP
plasma levels in endotoxemic rats (F = 3.90, p = 0.0130), and this effect was blocked by
central injection of A779. Neither central Ang-(1-7) nor A779 administration affected the
levels of corticosterone (F = 0.67, p = 0.5768) in the presence of LPS (Figure 4A,B).



Cells 2021, 10, 105 7 of 16

Cells 2021, 10, x FOR PEER REVIEW 7 of 17 
 

 

7) increased AVP plasma levels in endotoxemic rats (F = 3.90, p = 0.0130), and this effect 
was blocked by central injection of A779. Neither central Ang-(1-7) nor A779 
administration affected the levels of corticosterone (F = 0.67, p = 0.5768) in the presence of 
LPS (Figure 4A,B). 

 
Figure 2. Central administration of Ang-(1-7) attenuated systemic inflammation in endotoxemic rats via Mas receptor. 
Effect of central Ang-(1-7) on the TNF-α (A), IL-1β (B), IL-6 (C), IL-10 (D), NOx (E), and TBARS (F) levels in rats 6 h after 
LPS administration (1.5 mg/Kg, i.v.). A779 (3 nmol in 2 µL, i.c.v.), a selective antagonist for Mas receptor, was injected 30 
min before Ang-(1-7) administration (0.3 nmol in 2 µL, i.c.v.). Data are expressed as the mean ± SEM, n = 7–12. ANOVA, 
followed by Bonferroni post-hoc test. * p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, # p < 0.05 versus Saline (i.c.v) + LPS 
(i.v.) group, and & p < 0.05 versus Ang-(1-7) (i.c.v) + LPS (i.v.) group. 

Figure 2. Central administration of Ang-(1-7) attenuated systemic inflammation in endotoxemic rats via Mas receptor.
Effect of central Ang-(1-7) on the TNF-α (A), IL-1β (B), IL-6 (C), IL-10 (D), NOx (E), and TBARS (F) levels in rats 6 h after
LPS administration (1.5 mg/Kg, i.v.). A779 (3 nmol in 2 µL, i.c.v.), a selective antagonist for Mas receptor, was injected
30 min before Ang-(1-7) administration (0.3 nmol in 2 µL, i.c.v.). Data are expressed as the mean ± SEM, n = 7–12. ANOVA,
followed by Bonferroni post-hoc test. * p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, # p < 0.05 versus Saline (i.c.v) + LPS
(i.v.) group, and & p < 0.05 versus Ang-(1-7) (i.c.v) + LPS (i.v.) group.

3.4. Central Ang-(1-7) Restored Vascular Hyporesponsiveness and Prevented
LPS-Induced Hypotension

Systemic administration of LPS decreased the contractile response to NE in the Emax as
compared with the control group, and central administration of Ang-(1-7) restored vascular
hyporesponsiveness to NE in endotoxemic rats (Figure 5A and Table 2). The addition of
aminoguanidine and AVP, in vitro, restored vascular hyporesponsiveness to NE induced
by LPS (Figure 5B,C and Tables 3 and 4). Thus, these results suggest that LPS effects on
vascular function were dependent on the production of NO by NOS2 and reduction in the
AVP plasma level during endotoxemia.
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post-hoc test. * p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, # p < 0.05 versus Saline (i.c.v) + LPS
(i.v.) group.
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Figure 4. Central administration of Ang-(1-7) restored plasma AVP levels in endotoxemic rats via
Mas receptor. Effect of central Ang-(1-7) on the AVP (A) and corticosterone (B) plasma levels in rats
6 h after LPS administration (1.5 mg/Kg, i.v.). A779 (3 nmol in 2 µL, i.c.v.), a selective antagonist for
Mas receptor, was injected 30 min before central Ang-(1-7) administration (0.3 nmol in 2 µL, i.c.v.).
Data are expressed as the mean ± SEM, n = 7–10. ANOVA, followed by Bonferroni post-hoc test.
* p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, # p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group,
and & p < 0.05 versus Ang-(1-7) (i.c.v) + LPS (i.v.) group.
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Figure 5. Central Ang-(1-7) restored vascular hyporesponsiveness in endotoxemic rats. Effect of central Ang-(1-7) (0.3 nmol
in 2 µL, i.c.v.) in vascular reactivity of the thoracic aorta to NE in the absence (A) or presence of aminoguanidine, a NOS2
selective inhibitor (100 µmol/L) (B), and AVP (1 nmol/L) (C) in rats 6 h after LPS administration (1.5 mg/Kg, i.v.). Data are
expressed as the mean ± SEM, n = 5–7. ANOVA, followed by Bonferroni post-hoc test. * p < 0.05 versus Saline (i.c.v.) + Saline
(i.v.) group and # p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group.

Table 2. Values of maximum constrictor effect (Emax) and pD2 obtained from concentration-response
curves in response to NE in thoracic aorta rings of control or endotoxemic rats treated or not with
Ang-(1-7).

Experimental Groups
NE

n Emax pD2

Saline (i.c.v.) + Saline (i.v.) 7 2.36 ± 0.20 7.86 ± 0.09
Ang-(1-7) (i.c.v) + Saline (i.v.) 6 2.16 ± 0.19 8.07 ± 0.16

Saline (i.c.v) + LPS (i.v.) 6 1.36 ± 0.06 * 8.09 ± 0.09
Ang-(1-7) (i.c.v) + LPS (i.v.) 7 1.97 ± 0.09 # 8.05 ± 0.12

* p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, # p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group.
ANOVA, followed by Bonferroni post-hoc test.

Table 3. Values of Emax and pD2 obtained from concentration-response curves in response to NE,
in the presence or absence of aminoguanidine (in vitro), in thoracic aorta rings of endotoxemic rats
treated or not with Ang-(1-7).

Experimental Groups
Aminoguanidine

n Emax pD2

Saline (i.c.v.) + LPS (i.v.) 5 1.99 ± 0.12 8.09 ± 0.09
Ang-(1-7) (i.c.v) + LPS (i.v.) 5 2.57 ± 0.53 # 8.01 ± 0.12
Saline (i.c.v) + LPS (i.v.) plus

Aminoguanidine 5 2.20 ± 0.14 # 7.84 ± 0.13 #

Ang-(1-7) (i.c.v) + LPS (i.v.)
plus Aminoguanidine 7 2.04 ± 0.29 7.97 ± 0.12

# p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group. ANOVA, followed by Bonferroni post-hoc test.
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Table 4. Values of Emax and pD2 obtained from concentration-response curves in response to NE, in
the presence or absence of AVP (in vitro), in thoracic aorta rings of endotoxemic rats treated or not
with Ang-(1-7).

Experimental Groups
AVP

n Emax pD2

Saline (i.c.v.) + LPS (i.v.) 6 1.36 ± 0.06 8.09 ± 0.08
Ang-(1-7) (i.c.v.) + LPS (i.v.) 5 2.03 ± 0.07 # 8.05 ± 0.12

Saline (i.c.v.) + LPS (i.v.) plus AVP 5 1.90 ± 0.17 # 7.60 ± 0.11 #

Ang-(1-7) (i.c.v.) + LPS (i.v.) plus AVP 6 2.22 ± 0.25 7.83 ± 0.14
# p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group. ANOVA, followed by Bonferroni post-hoc test.

In our experimental model, LPS induced hypotension (F = 37.11, p < 0.0001) without
promoting tachycardia (F = 0.76, p = 0.3935) (Figure 6A,B). Considering that the hyporespon-
siveness to vasoconstrictor agents, such as AVP lead to vasoplegia and finally to hypoten-
sion, we analyzed whether Ang-(1-7) controls pressor response through the restoration
of vascular responsiveness. Central administration of Ang-(1-7) prevented LPS-induced
hypotension without affecting the HR (F = 15.20, p = 0.0010; F = 0.92, p = 0.3496, respec-
tively) (Figure 6A,B). The statistical analysis showed significant endotoxemia and central
administration of Ang-(1-7) interaction (F = 6.40, p = 0.0205) for MABP measurement.
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Figure 6. Central Ang-(1-7) prevented LPS-induced hypotension in endotoxemic rats. Effect of central Ang-(1-7) (0.3 nmol
in 2 µL, i.c.v.) on mean arterial blood pressure (MABP) (A) and heart rate (HR) (B) in rats submitted to endotoxemia (LPS,
1.5 mg/Kg, i.v.) for a 6-h period. Data are expressed as the mean ± SEM, n = 6–9. ANOVA, followed by Bonferroni post-hoc
test. * p < 0.05 versus Saline (i.c.v.) + Saline (i.v.) group, and # p < 0.05 versus Saline (i.c.v) + LPS (i.v.) group.

4. Discussion

The main findings obtained in the present study were that Ang-(1-7) applied centrally
prevented vascular hyporesponsiveness and hypotension by improving AVP impairment
and systemic inflammation in endotoxemic rats. This effect is mediated by activation of
Mas receptor located in the CNS, and it appears to be dependent on humoral pathway
mediated by AVP.

The endotoxemia has been used as a powerful model to study the mechanisms in-
volved in the pathophysiology of systemic inflammation [30]. During systemic inflamma-
tion, LPS activates peripheral immune cells causing synthesis and release of relatively high
amounts of proinflammatory mediators. Furthermore, peripheral LPS challenge activates
microglia, the major active immune cells in the CNS, leading to increased proinflammatory
mediator levels in the brain, including elevated expression of TNF-α [31].
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Evidence indicates that the RAS could promote pro-inflammatory effects within the
hypothalamus, including microglial activation and production of pro-inflammatory media-
tors [32,33]. However, Ang-(1-7), a protective component of the RAS, exerts direct actions
at the microglia to counteract these pro-inflammatory effects, via Mas receptor [34,35]. Mas
receptor is expressed on neurons and there is evidence that this receptor is also expressed on
microglia, astrocytes, and neurons, including the hypothalamus [15,19,35]. In the present
study, we observed the elevated expression of TNF-α in PVN and SON during systemic
inflammation, and central Ang-(1-7) administration showed a very clear tendency to pro-
mote anti-inflammatory effects particularly on PVN. Although it cannot be considered
as being statistically significant, our results have the same anti-inflammatory profile as
previous findings [13,19]. Although we haven’t found a potent central anti-inflammatory
effect, we reported the systemic anti-inflammatory effect promoted by central Ang-(1-7),
via Mas receptor, in endotoxemic rats.

Recent studies have reported elaborate neuroimmune interactions, in which the CNS
controls the innate immune system and promotes efferent anti-inflammatory signals to
regulate the excessive activation of the immune system. From a neuroimmune perspective,
the CNS can regulate the activation of PVN resulting in the stimulation of humoral routes,
mainly HPA axis activation and AVP release [36].

The activation of the HPA axis and secretion of corticosterone are clearly important in
the control of inflammatory response during the late phase of endotoxemia [37]. Corticos-
terone exerts anti-inflammatory effects by inhibiting the function of nuclear factor kappa
B and consequently modifying at both transcriptional and post-transcriptional levels of
the pro-inflammatory genes on peripheral immune cells [38,39]. However, cytokines as
well as NO production in hypothalamic nuclei are also critical for the activation of the
HPA axis. Evidence has suggested that NO may be involved regulating the activity of
the HPA axis, although it remains controversial as to whether NO has a stimulatory or an
inhibitory effect on the release of CRH [10,40,41]. LPS-induced endotoxemia causes HPA
axis activation through the parvocellular neurons activation that synthesize and secrete
CRH in the hypothalamus [42]. Subsequently, CRH as well as AVP induces secretion of
adrenocorticotropic hormone by the anterior pituitary and finally glucocorticoids from
the adrenal cortex [43]. Our study corroborates the findings of previous studies. As ex-
pected, we observed an increase in plasma corticosterone levels after LPS treatment in rats,
although no increase in CRH mRNA was observed in our model.

In addition, the increase in AVP mRNA induced by Ang-(1-7) did not potentiate the
secretion of CRH, nor the plasma concentration of corticosterone in the rats in which LPS
was administered. The use of A779 did not alter the plasma corticosterone level indicating
that central Ang-(1-7) administration does not seem to participate in the activation of the
HPA axis in our study. In accordance with our results, a recent study showed that ACE2
overexpression mice had no effect on plasma corticosterone under stress conditions [44].
Thus, our data suggest that other humoral pathways, such as AVP release, may mediate
the anti-inflammatory induced by Ang-(1-7), in an experimental model of endotoxemia.

HPA axis activation is associated with peripheral anti-inflammatory effects of AVP,
composing the humoral network for the control of systemic inflammation. During phys-
iological conditions, the magnocellular neurons of PVN and SON in the hypothalamus
synthesize and release AVP [45,46]. During endoxemia, the increase of plasma AVP levels
was observed after LPS administration (early phase), followed by a rapid decrease over
the next few hours, despite the presence of persisting hypotension [6,11]. In addition,
no changes in the AVP stocks were seen in the neurohypophysis [7]. “AVP impairment”
refers to the inappropriate decrease of AVP concentration seen in the late phase of a sep-
sis or endotoxemia model despite the persistent hypotension that can lead to shock and
eventually to death [22]. In endotoxemia, AVP impairment in late phase of endotoxemia
is associated with an increase in the synthesis of pro-inflammatory mediators during
and the consequent late production of NO by NOS2 [47]. The data of the current study
showed that the systemic administration of LPS decreased AVP mRNA in PVN and did
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not change the plasma AVP concentration even in the face of hypotension and exacer-
bated systemic inflammatory response, suggesting the occurrence of AVP impaired in our
experimental model.

NO has been reported to participate in the modulation of AVP secretion; however, stud-
ies to date have produced contradictory evidence regarding the effect of NO in secretion
of this hormone during systemic inflammation [11,39,48]. Ota et al. [49] and Yamaguchi,
Watanabe, and Yamaya [50] showed that central injection of an NO donor caused an
increase in plasma AVP concentration; whereas Carnio et al. [51] and Reis et al. [52] sug-
gest that NO arising from NOS2 plays an important inhibitory role in AVP release during
endotoxemia. The mechanism by which NO can modulate AVP release is not well estab-
lished. It has been shown that NO can act directly or not inhibiting the postsynaptic activity
of neurohypophysial neurons [53]. The data of the current study showed that Ang-(1-7)
applied centrally has not reduced the increase in gene expression of NOS2 in PVN and SON
induced by systemic LPS. Interestingly, we observed that expression of NOS2 in PVN did
not affect the Ang-(1-7) effect on AVP secretion, suggesting that NO showed no inhibitory
effect in our experimental model. Similarly, Nomura et al. [9] did not observe any effect of
the NOS2 gene disruption on AVP mRNA levels in the mouse hypothalamus. In addition,
we also cannot exclude the possibility that the NOS2 posttranslational modifications have
occurred, resulting in an impairment in NOS.

In this context, classic studies revealed that Ang-(1-7) induced AVP release in rat
hypothalamus–pituitary explants with a potency equal to Ang II [17], whereas other stud-
ies indicated that central Ang-(1-7) administration did not change AVP release in basal
conditions in rats [54]. In PVN, this peptide is a potent secretagogue of AVP and may
participate in controlling its release by magnocellular neurons [17]. In fact, Qadri et al. [55]
confirmed the first study performed in neurohypophysial explants by Schiavone et al. [16],
showing that Ang-(1-7) microinjections into the PVN induce a release of AVP. The exci-
tatory action of Ang-(l-7) on magnocellular neurons of the PVN provides evidence at a
cellular level for a modulatory action of this heptapeptide on the regulation of vasopressin
secretion [56]. Although these studies point to contrasting effects of Ang-(1-7) on the
release of AVP, together they strengthen the concept that distinct Ang-(1-7) effects can
be observed in specific brain areas depending on the existing pathophysiological condi-
tion [56]. Moriguchi et al. [57], evaluating the effect of i.c.v. Ang-(1-7) on the synthesis of
AVP in the PVN of hypertensive rats, observed that the exogenous infusion of Ang-(1-7)
proved to be as potent as to Ang II in stimulating AVP synthesis, reinforcing the role
of this heptapeptide in the hydro-electrolytic control carried out by the PVN. Moreover,
although there are classic studies demonstrating the effect of the release of AVP by Ang-
(1-7), the role in which this heptapeptide promotes this action is not clear. Specifically in
PVN, Ambuhl et al. [58] demonstrated that applications by Ang-(1-7) microiontophoresis
resulted in an increase in the excitability of neurons in this region, this effect being blocked
by A779. In our study, the pharmacological blockage of central Mas receptor blocked the
rise in AVP plasma levels induced by central administration of Ang-(1-7) in endotoxemic
rats. Considering the previously demonstrated expression of the Mas receptor in the
hypothalamus [19], we suggest that Ang-(1-7) may have affected the electrical activity of
the paraventricular magnocellular neurons to promote AVP secretion in our current study.
However, we cannot exclude the possibility that other neuroimmune routes participate
in Ang-(1-7) anti-inflammatory effects in our experimental model. Our group recently
demonstrated that in early stage of endotoxemia, Ang-(1-7) elicits anti-inflammatory effects
through the activation of a neuroimmune pathway involving central activation of Mas
receptors and subsequent sympathetic autonomic signaling [21].

Although the number of studies demonstrating the systemic anti-inflammatory effects
of AVP is still limited, AVP has been shown to have direct action on immune cells to
control systemic inflammation. In cultured rat mesangial cells, AVP inhibits LPS- and IL-
1β-stimulated NO and cGMP via V1 receptor [23], whereas in murine macrophages [25,59]
AVP promotes anti-inflammatory effects by the inhibition of CD14 expression, endotoxin
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binding, and subsequent NF-κB activation. Regarding the peripheral anti-inflammatory
effects of PVA, previous data highlighted the involvement of the V2 receptor in the reduc-
tion of sepsis-induced lung inflammation [60]. In the present study, we do not use AVP
receptor antagonists as a pharmacological tool; however, we suggest that AVP may have
mediated the attenuation of the systemic inflammatory response during endotoxemia by
direct action on its receptors expressed in the cells of the immune system.

During endotoxemia, the vascular reactivity and endothelial barrier function are im-
paired, and this contributes to the hypotensive response [21]. In the vascular endothelium,
LPS can cause synthesis and release of relatively high amounts of pro-inflammatory cy-
tokines, which in turn produces relaxation of vascular smooth muscle tone resulting in
hypotension and reduction of vasoconstrictor response to catecholamines [2,3]. IL-6 and
NO are two well-recognized inflammatory mediators upregulated in inflammatory models,
whereas IL-10 plays an immunoregulatory role inhibiting vascular IL-6 production [61].
Interestingly, IL-6 increases NOS2 activity in aortic smooth muscle cells and is associated
with a drop in MABP in septic patients [62,63]. Previous studies of our group also showed
that hypotension induced by LPS is dependent on NO release [4–6]. In this context, glu-
cocorticoids and AVP also regulate different aspects of endothelial physiology during
systemic inflammation. Glucocorticoids act as a negative regulator of NO and prostacyclin
release in endothelial cells, whereas in the vascular smooth muscle cells, it increases arterial
contractile sensitivity to NE and vascular resistance [64,65]. In respect to endogenous
AVP, in addition to their anti-inflammatory property, it exerts a potent vasoconstrictor
effect during systemic inflammation. In fact, concomitant glucocorticoid and AVP therapy
may be associated with a survival benefit in septic patients [66]. The central Ang-(1-7)
administration in our study attenuated hypotension and vascular hyporesponsiveness
by reduction of NO production in endotoxemic rats. Herein, we reported that Ang-(1-7)
reestablished vascular responsiveness to NE and AVP in the endotoxemia model. Based on
these data, we speculate that the effect of Ang-(1-7) on vascular responsiveness is the result
of the plasma reduction of IL-6, the systemic increase of IL-10, and the consequent decrease
in NO production. Furthermore, Ang-(1-7) applied centrally has not been shown to have an
effect on HR. Tachycardia, in turn, has been reported as a reflex compensatory response of
hypotension and alterations can indicate reduction in the spontaneous baroreflex sensitivity
during systemic inflammation [30]. In our experimental model, despite the tendency to
increase the HR of endotoxemic animals, this response was not significant. Studies have
already shown that Ang-(1-7) in the CNS improves baroreflex sensitivity [34,67]. Thus,
although we did not observe the tachycardic response, we found an improvement in MABP
accompanied by the restoration of HR in endotoxemic rats, suggesting a possible effect of
Ang- (1-7) on baroreflex sensitivity. Moreover, hyperlactatemia is also used as an important
biochemical marker of the progression of the systemic inflammation and the associated
hypotension in endotoxemia models [6]. The improvement in vascular responsiveness,
in the presence of AVP, may have led to the attenuation of the hypotensive response in
endotoxemic animals treated with Ang-(1-7). Therefore, possibly the improvement of
LPS-induced hypotension by Ang-(1-7) provides adequate perfusion in the endotoxemic
rats, controlling hyperlactatemia in our study.

In conclusion, our data demonstrate the participation of central Ang-(1-7), via Mas
receptor, on modulation of peripheral inflammation and on pressor response during endo-
toxemia. Although we have demonstrated the importance of the Ang-(1-7)/Mas receptor
axis for the control of the inflammatory response in the endotoxemic animal, the present
study has limitations. First, as in classic studies, we demonstrated the stimulating effect
of the Ang-(1-7)/Mas receptor axis on the release of AVP during endotoxemia; however,
we did not evaluate the exact mechanism by which this effect occurred in our study. Fur-
ther studies are needed to investigate the exact mechanism by which central administration
of Ang-(1-7) induces the synthesis and release of AVP in PVN in the experimental model
of endotoxemia. Second, we did not use AVP receptor antagonists as a pharmacological
tool in our study to assess the participation of AVP by mediating the peripheral effects
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of central Ang-(1-7) administration. Thus, mechanisms of these effects are not precisely
elucidated, but our results suggest a strong participation of the humoral pathway mediated
by AVP regulating the effects resulting from the Ang-(1-7) applied centrally.
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