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Purpose: Microphthalmia, anophthalmia, and coloboma are ocular malformations with a significant genetic component.
Rx is a homeobox gene expressed early in the developing retina and is important in retinal cell fate specification as well
as stem cell proliferation. We screened a group of 24 patients with microphthalmia, coloboma, and/or anophthalmia for RX
mutations.

Methods: We used standard PCR and automated sequencing techniques to amplify and sequence each of the three RX
exons. Patients’ charts were reviewed for clinical information. The pathologic impact of the identified sequence variant
was analyzed by computational methods using PolyPhen and PMut algorithms.

Results: In addition to the polymorphisms we identified a single patient with coloboma having a heterozygous nucleotide
change (g.197G>C) in the first exon that results in a missense mutation of arginine to threonine at amino acid position 66
(R66T). In silico analysis predicted R66T to be a deleterious mutation.

Conclusions: Sequence variations in RX are uncommon in patients with congenital ocular malformations, but may play
a role in disease pathogenesis. We observed a missense mutation in RX in a patient with a small, typical chorioretinal

coloboma, and postulate that the mutation is responsible for the patient’s phenotype.

Eye development is an intricate process that occurs early
in embryogenesis and is governed by a highly organized
sequence of genetic events. Perturbation of these events may
result in a wide range of congenital eye malformations.
Microphthalmia, anophthalmia, and coloboma are examples
of such malformations, and are thought to have significant
genetic components [1-6].

Rx is a paired-domain homeobox gene that is essential for
vertebrate eye development. It is strongly expressed in the
retina and anterior neural fold during early embryogenesis. Its
product is a transcription factor that directs initial retinal cell
specification and subsequent proliferation, and is expressed
weakly in the adult retina, restricted to the zone of
proliferating cells [7]. Rx gene structure and protein
homeodomains are functionally conserved among species
[7-12], and Rx appears to be essential for proper vertebrate
eye development [9,10,13-16]. Retinal development involves
a complex orchestration of gene activation and expression.
Nrl, Rx, and Pax6 are 3 of many important transcription
factors. These also include CHX10, CRX, ET, Six3, Optx2,
Tlx, and Lhx2. These genes form a genetic network that is
largely conserved from flies to humans. Rx is one of the
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earliest of these to be expressed, and is essential for normal
eye development.

Rx increases the transcription of other eye-specific genes,
including Pax6. However, the direct interactions between Rx
and Pax6 have not been elucidated. Neural retina leucine
zipper (Nrl) is a basic leucine zipper protein of the Maf
subfamily that is preferentially expressed in rod
photoreceptors. It acts synergistically with the homeodomain
protein CRX to regulate rhodopsin transcription. Direct
interactions have been shown between Nrl and CRX. Targeted
homozygous deletion of the Rx gene in the mouse results in
anophthalmia [7]. Rx mutations have been identified in several
animal models of anophthalmia, including mouse [14],
medaka (the Japanese killfish) [11], zebrafish [17], and
Xenopus [18,19]. Rx protein homology is well conserved, and
is identical in Xenopus, Drosophila, and zebrafish.

Voronina et al. [2] identified and characterized
compound heterozygous RX mutations in a patient with
autosomal recessive microphthalmia of one eye and
sclerocornea of the other. The patient had a truncated allele
(Q147X), which affected nuclear localization, and a missense
mutation (R192Q), which affected DNA-binding. Both alleles
were within the homeodomain of the RX protein and were
likely sufficient to account for the patient’s phenotype. The
researchers also reported two polymorphisms (E44/D44 and
Q294Q) in the first and third exons of RX. More recently,
Lequeux and coworkers [20] confirmed the involvement of
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TABLE 1. L1STING oOF PCR PRIMERS USED TO AMPLIFY RX IN THIS STUDY.

Exon Sense primer
1 GGGCGCCCGAACGGCCCTC
2 GGAGTGCATCTGACCCTCC
3 GAGCTGAACCGGCTCAGG

RX in human anophthalmia by reporting a patient with
bilateral anophthalmia and compound heterozygous
mutations. Our study sought to build upon these findings and
to further examine the role of RX in congenital ocular
malformations. We screened a group of 24 patients with
colobomatous microphthalmia for RX mutations, and
correlated our findings with the clinical phenotype of the
patients.

METHODS

Patients: This study was approved by the Internal Review
Board of the Cleveland Clinic Foundation. All blood samples
were obtained after informed consent was secured. A total of
24 index patients were studied: 2 with a positive family history
while the remaining 22 had no known immediate family
history of ocular malformations. These are all patients
microphthalmia, anophthalmia, and colobomas who have
consented to participate in a study of the genetics of eye
diseases at the Cole Eye institute. All patients received
diagnoses through ophthalmologic examination. Patients’
charts were reviewed for clinical information (Appendix 1).
A total of 222 unrelated individuals without symptoms or a
family history of retinal disease were used as normal control
subjects. The controls were recruited from patients and their
families who visit the Cole Eye Institute for routine eye care.
All have signed informed consent to participate in this study.
Mutation detection: Leukocyte nuclei were prepared from
blood samples followed by DNA purification using standard
protocols. Five ml of venous blood was drawn from each
individual. Leukocyte nuclei were purified and DNA was
extracted using Gentra Puregene® Blood Kit before PCR
analysis. PCR products corresponding to the complete known
RX coding sequence (NM_013833) were amplified from
genomic DNA and analyzed by direct sequencing using an
automated sequencer. The primers described in Table 1. PCR
reactions were tailored to each primer pair to yield optimal
amplification. Cycling conditions were as follows:
denaturation at 95 °C for 5 min, 40 cycles of 94 °C for 60 s,
59 °C for 30 s, and 74 °C for 45 s, and a final extension at
74 °C for 5 min.

PCR products were gel-purified. They were then directly
sequenced, using the SequiTherm Excel II DNA sequencing
kit (Epicenter Technologies, Madison, WI), on an automated
sequencer (3130XL; Applied Biosystems, Foster City, CA).
Computational assessment of R66T: Two sequence homology
based programs were used to predict the functional impact of
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Antisense primer
GCCTCTCCTCTCCGTCTCC
TGGCTGCAATTTGGGCCTCG
GGATCCCAAGACGTTCCCC

R66T: PolyPhen (polymorphism phenotyping) and PMut.
PolyPhen structurally analyzes an amino acid polymorphism
and predicts whether that amino acid change is likely to be
deleterious to protein function [21]. The prediction is based
on the position specific independent counts (PSIC) score
derived from multiple sequence alignments of observations.
PolyPhen scores of >2.0 indicate the polymorphism is
probably damaging to protein function; scores of 1.5-2.0 are
possibly damaging; and scores of <1.5 are likely benign. PMut
allows the accurate pathological prediction of single amino
acid mutations based on the use of neural networks [22].
Following the input of a reference sequence and the amino
acid substitution of interest, the algorithm provides an answer
and a reliability index. An output value >0.5 is predicted to be
a pathological mutation and a value <0.5 is neutral. The
reliability is considered good with a score of 6 and greater and
is highly reliable at the maximum score of 9.

RESULTS

Malformations represented by our patient population included
10 diagnosed with isolated coloboma, 6 with colobomatous
microphthalmia, 5 with isolated microphthalmia, 1 with
microphthalmia and anophthalmia, 1 with anophthalmia, and
1 with nanophthalmos (Appendix 1).

We identified 2 polymorphisms (E44/D44 and Q294Q)
that have previously been described by Voronina et al. [2] The
first (E44/D44) involves either glutamic acid or aspartic acid
being found at amino acid 44 of exon 1. The second (Q294Q)
is a silent mutation with either A or G in the third codon
position of amino acid 294 in exon 3. Of the 24 patients, 7
carried the E44/D44 polymorphism, 6 the Q294Q
polymorphism, and 4 patients carried both (Appendix 1). We
compared the patient’s phenotypes with the observed
nucleotide variations. Diagnoses among the 7 patients
carrying the E44/D44 polymorphism consisted of isolated
coloboma (3), microphthalmia (2), colobomatous
microphthalmia (1), and combined anophthalmia—
microphthalmia (1). Diagnoses among the 6 patients carrying
the Q294Q polymorphism consisted of coloboma (5) and
microphthalmia (1).

In addition, we identified a single patient with a
heterozygous nucleotide change, G>C at nucleotide position
197 in the first exon, that results in a missense mutation of
arginine to threonine at amino acid position 66 (R66T; Figure
1). The patient also carried both polymorphisms. The patient’s
ocular phenotype was a small, typical retinal coloboma of the
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right eye (Figure 2). In silico analysis using
PolyPhenpredicted R66T to be possibly damaging to the
protein. A large difference (1.602) was noted in PSIC scores
between the allelic variants arginine versus threonine. This
difference indicates that the observed substitution is rarely or
never observed in the RX protein family and is predictive of
a structurally damaging mutation that alters the function of the
protein. PMutanalysis also predicts R66T to be pathological
with high reliability.

We analyzed the DNA of 222 unaffected individuals and
did not find the g.197G>C mutation in these patients. We did
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Figure 1. DNA sequence of the RX heterozygous R66T mutation.
DNA sequence of the RX heterozygous mutation R66T in exon 1 in
acoloboma patient and the corresponding DNA sequence in a control
individual. Abbreviations: A.A. is Amino acid, Asp is aspartic acid,
Arg is arginine, Leu is leucine, Gly is glycine.

Figure 2. Fundus photographs of the patient with RX mutation, R66T.
Right fundus with small typical coloboma at the inferior edge of the
nerve that is vertically elongated. Note the pattern of exit of the
inferior arcade vessels, indicating the presence of the coloboma.
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observe the polymorphisms reported by Voronina et al. [2]
(E44/D44 and Q294Q) in both patients and controls. We did
not observe either of previously described mutations (Q147X
or R192Q)) in any of the patients.

DISCUSSION

It is the complexity of eye development that underlies the
diversity of structural eye disease, with numerous
opportunities for disruption [23]. Environmental factors have
been suggested to play a role in the malformations, including
exposure to infections as well as toxins during pregnancy
[24-28]. More intensely scrutinized, however, are the genetic
contributions. Several genes known to be important in ocular
development have been implicated, including PAX6, RX,
SOX2, OTX2, CHX10, PAX2, SHH, and SIX6. We found a
missense mutation in RX in a patient with a small, typical
retinal coloboma. RX mutations have been associated with
primarily severe ocular malformations such as anophthalmia
[2,20]. Our findings suggest a possible role for RX in later
developmental stages that have not previously been described,
particularly latter-stage closure of the optic fissure.
Unfortunately family members of our patient were not
examined; therefore we cannot comment on the inheritance
pattern of this mutation. While the 2 previous reports suggest
a recessive mode for severe ocular malformations such as
anophthalmia, we believe that there may be a dosage effect of
this gene. When 2 pathogenic mutations are present [2,20],
anophthalmia or severe microphthalmia is produced. In our
case, this single mutation results in a reduced dosage of the
protein and leads to a minor malformation, a small coloboma
at the optic nerve head.

Several genetic mutations have been implicated in
microphthalmia and anophthalmia. Glaser et al. [1] described
homozygous loss of function mutations in PAX6 in a patient
with  anophthalmia and central nervous system
malformations. Mutations in SOX2 cause predominantly
anophthalmia [6,29,30]. Mutations in OTX2 have been
associated with various severe eye malformations, including
anophthalmia and microphthalmia [31]. PAX2 malformations
have been associated with optic nerve coloboma [4,5,32],
SIX6 mutations with bilateral anophthalmia and pituitary
abnormalities [33] as well as microphthalmia [34], CHX10
mutations with microphthalmia [3], and SHH mutations with
human microphthalmia and coloboma [35].

Rx gene structure and protein homeodomains are well
conserved among species [7-12], and animal studies have
established Rx as a high-order gene in ocular development.
Mathers et al. [7] showed in knockout studies in mice that
elimination of Rx prevented eye formation. In a zebrafish
model of anophthalmia (chokh mutation), Loosli et al. [11]
showed that the mutation resulted from a nonsense mutation
in the homeodomain of Rx3, leading to a severely truncated
protein. Tucker et al. [14] established that the mouse eyeless
mutation is secondary to a disrupted translation initiation site
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leading to reduced levels of Rx protein. Andreazzoli et al.
[18] showed that the Xenopus model of anophthalmia is due
to elimination of Rx function.

In human subjects, sequence variations in RX are
uncommon in patients with major congenital ocular
malformations, but may play a role in the pathogenesis of
these malformations. Voronina et al. [2] described a patient
with anophthalmia OD and sclerocornea OS who was a
compound heterozygote for RX mutations. The patient had a
truncated allele (Q147X), which affected nuclear localization,
and a missense mutation (R192Q), which affected DNA
binding. Both alleles were within the homeodomain of the RX
protein and were likely sufficient to account for the patient’s
phenotype. Lequeux et al. [20] report a patient with bilateral
anophthalmia and two mutations in exon 3 (c.664delT and c.
909C>Q@) that lead to premature truncation of the protein,

We describe a heterozygous missense mutation in the first
exon of RX in a patient with a small, typical optic nerve
coloboma of the right eye. We postulate that the mutation is
responsible for the patient’s phenotype. Given the importance
of Rx in eye development, it is possible that even a small
perturbation would result in an ocular defect. While the
majority of research delineates the role of Rx in the initial
stages of ocular development, and the majority of functional
studies have been knockout experiments that resulted in
severe malformations, there is also evidence that Rx plays a
role in the later stages of retinal development. Our finding
strengthens this evidence and implies that Rx plays a role in
closure of the optic fissure in addition to its other established
roles. It is possible that the location of the sequence variation
outside the homeobox or the paired box may explain the mild
nature of the colobomatous defect. A sequence variation/
mutation within the homeobox or the paired box may have
caused a more severe phenotype.

The g.197G>C nucleotide change results in an alteration
in the primary amino acid sequence from a large, positively-
charged amino acid (arginine) to a small, neutral amino acid
(threonine). While we have yet to characterize the functional
consequences of this change, it is conceivable that the
secondary and tertiary structures are sufficiently affected to
alter the function of the protein. To predict the potential effect
of the R66T missense change, we obtained estimates of the
impact of this mutation through the use of two sequence
homology-based programs. Both the PolyPhenand
PMutalgorithms predict this amino acid change to be
structurally damaging to the RAX protein. However, it is also
possible that the mutation we discovered in this patient is not
related to the phenotype, but is rather a coincidental finding.
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Appendix 1. Clinical details of all cases.

Table summarizing clinical details and RX sequence (AD), right eye, (OD), left eye (OS), both eyes (OU). To
variations in 24 patients with ocular malformations of the access the data, click or select the words “Appendix 1.” This
microphthalmia/coloboma/anophthalmia spectrum. will initiate the download of a compressed (pdf) archive that
Abbreviations: male (M), female (F), autosomal dominant contains the file.
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