
Th
e 

Jo
ur

na
l o

f 
G

en
er

al
 P

hy
si

o
lo

g
y

 

J. Gen. Physiol. © The Rockefeller University Press $8.00
Volume 126 Number 1 July 2005 55–69
http://www.jgp.org/cgi/doi/10.1085/jgp.200509288

 

55

 

ARTICLE

 

Functionally Active T1-T1 Interfaces Revealed by the Accessibility of 
Intracellular Thiolate Groups in Kv4 Channels

 

Guangyu Wang,

 

1

 

 Mohammad Shahidullah,

 

1

 

 Carmen A. Rocha,

 

1

 

 Candace Strang,

 

2

 

 
Paul J. Pfaffinger,

 

2

 

 and Manuel Covarrubias

 

1

 

1

 

Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, 
Philadelphia, PA 19107

 

2

 

Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030

 

Gating of voltage-dependent K

 

�

 

 channels involves movements of membrane-spanning regions that control the
opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains
to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular
regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application
to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3
currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological
analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132
in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition
by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals
predicted protection of the targeted thiolate groups by constitutive high-affinity Zn

 

2

 

�

 

 coordination. Also, added
Zn

 

2

 

�

 

 or a potent Zn

 

2

 

�

 

 chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131,
or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification
rate of the activated state is 

 

�

 

200-fold faster than that of the resting state. Biochemical experiments confirmed the
chemical modification of the intact 

 

�

 

-subunit and the purified tetrameric T1 domain by MTS reagents. These
results conclusively demonstrate that the T1–T1 interface of Kv4 channels is functionally active and dynamic, and
that critical reactive thiolate groups in this interface may not be protected by Zn

 

2

 

�

 

 binding.

 

I N T R O D U C T I O N

 

Activation of voltage-gated potassium channels (Kv
channels) is directly controlled by the movements of
their S4 voltage sensors, and a subsequent concerted
conformational change that opens an internal gate
(Yellen, 1998; Horn, 2000; Bezanilla and Perozo, 2003).
The bundle-crossing of four transmembrane S6 segments
constitutes the main activation gate that controls K

 

�

 

passage at the internal opening of the tetrameric pore
structure (Jiang et al., 2002; Webster et al., 2004). Just
beneath the main activation gate, the NH

 

2

 

-terminal
tetramerization domain (T1) of Kv channels is a four-
fold symmetric structure that is responsible for the
subfamily-specific coassembly of Kv subunits (Li et al.,
1992; Shen et al., 1993). The “side windows” between
the T1 domain and the transmembrane core domain
provide direct access to the internal mouth of the pore
(Kreusch et al., 1998; Gulbis et al., 2000; Kobertz et al.,
2000; Sokolova et al., 2001; Kim et al., 2004a). Recent
studies have suggested that the T1 domain and other
intracellular regions also contribute to the function of

Kv channels (Cushman et al., 2000; Gulbis et al., 2000;
Minor et al., 2000; Kurata et al., 2002; Hatano et al.,
2003; Wray, 2004). However, the underlying molecular
mechanisms are not well understood. Here, we demon-
strate that internally applied thiol-specific reagents irre-
versibly inhibit Kv4 channels by chemical modification
of specific intracellular locations of the channel protein.
Furthermore, by using systematic alanine mutagenesis,
kinetic analysis, and coexpression with specific auxiliary
subunits, we show that the functional inhibition of Kv4.1
channels by a membrane-impermeable thiol-specific
reagent (2-trimethylammonium-ethyl-methanethiosul-
fonate bromide [MTSET]) is gating state dependent
and results from the unexpected modification of thiolate
groups that were predicted to coordinate Zn

 

2

 

�

 

 with
high affinity in the T1–T1 intersubunit interface. Earlier
observations from crystallographic and biochemical
studies have demonstrated that the isolated T1 domains
of channels in the Kv2, Kv3, and Kv4 subfamilies contain
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tightly bound Zn

 

2

 

�

 

 in the intersubunit T1–T1 inter-
face, and that Zn

 

2

 

�

 

 binding is necessary for the assem-
bly and stability of the tetrameric structure (Bixby et
al., 1999; Jahng et al., 2002; Nanao et al., 2003; Strang
et al., 2003). In the crystal structure, this interfacial
Zn

 

2

 

�

 

 is coordinated by thiolate groups from two cys-
teines, the side chain of a histidine and a third thiolate
group from a neighboring subunit (a C3H1 motif en-
coded within the conserved sequence H

 

X

 

5

 

C

 

X

 

20

 

CC).
Given this structural information, the interfacial T1 thi-
olate groups should be protected by stably liganded
Zn

 

2

 

�

 

, and therefore, could not undergo the observed
rapid and dynamic chemical modification that sup-
presses channel function. Our results strongly suggest
that the T1–T1 intersubunit interface is more reactive
and dynamic than the original Zn

 

2

 

�

 

-coordinated crystal
structure had predicted. We also discuss the functional
and structural implications of these findings and possi-
ble mechanisms responsible for the inhibition of the
Kv4.1 channel by MTSET.

 

M A T E R I A L S  A N D  M E T H O D S

 

Chemicals and Reagents

 

Methanethiosulfonate (MTS) reagents (MTSET and 2-sulfonato-
ethyl-methanethiosulfonate bromide [MTSES]) were purchased
from Toronto Research Chemicals and stored in a desiccator at

 

�

 

20

 

�

 

C. These compounds hydrolyze in water, but are stable for
hours at 4

 

�

 

C at concentrations 

 

�

 

100 mM. Final working solu-
tions were made up immediately before use (in buffer, MTSET
decomposes at pH 7.5 with a half-life of 

 

�

 

10 min). Primers for
mutagenesis and DNA sequencing were obtained from the Nu-
cleic Acid Facility of the Kimmel Cancer Institute (Thomas Jef-
ferson University). MTSEA-biotin and DTT were purchased from
Biotium, Inc. and Sigma-Aldrich, respectively. Tetrakis-(2-pyridyl-
methyl) ethylendiamide (TPEN) was purchased from Molecular
Devices. As reported by the manufacturer, TPEN has a K

 

D

 

 for
Zn

 

2

 

�

 

 of the order of 3 

 

�

 

 10

 

�

 

16

 

 M.

 

Molecular Biology

 

Kv4.1 (mouse) and Kv4.3 (rat) were maintained in pBluescript II
KS (Stratagene) and pBK/CMV (Invitrogen), respectively. The
Kv4.3 cDNA was a gift from J. Nerbonne (Washington University,
St. Louis, MO). KChIP-1 was maintained in a modified pBlue-
script vector, pBJ/KSM (gift from M. Bowlby, Wyeth-Ayerst Re-
search, Princeton, NJ). The cDNA encoding the short splice vari-
ant of DPPx (gift from B. Rudy, New York University, New York,
NY) was maintained in pSG5 (Stratagene). Capped cRNA for ex-
pression in oocytes was made using the Message Machine (Am-
bion). The QuickChange system (Stratagene) was used for oligo-
nucleotide-directed mutagenesis. All mutations were verified by
automated DNA sequencing (Nucleic Acid Facility of the Kim-
mel Cancer Institute, Thomas Jefferson University).

 

Heterologous Expression and Oocyte Electrophysiology

 

Wild-type or mutant Kv4, KChIP-1, and DPPx-s cRNAs were in-
jected into defolliculated 

 

Xenopus

 

 oocytes using a Nanoject mi-
croinjector (Drummond). K

 

�

 

 currents were recorded 1–7 d
postinjection. To express ternary Kv4 complexes, the mRNA mo-
lar ratio was (

 

�

 

 subunit:DPPx-s:KChIP1) 1.5:1:3.7 for wild type,
C3xA, C11xA, C12xA; and 5.3:1:3.7 and 7.9:1:3.7 for C13xA and

C14xA, respectively. Patch-clamp recording was conducted using
an Axopatch 200A (Axon Instruments). Patch pipettes were fab-
ricated from Corning glass 7052 or 7056 (Warner Instrument
Corp.). Typically, the tip resistance of the recording pipettes in
the bath solution was 

 

�

 

1 M

 

�

 

. The composition of the pipette so-
lution (ND96; mM) was 96 NaCl, 2 KCl, 1.8 CaCl

 

2

 

, 1 MgCl

 

2

 

, 5
HEPES (pH 7.4, adjusted with NaOH). The bath solution (inter-
nal solution for inside-out patches) contained (mM) 98 KCl, 0.5
MgCl

 

2

 

, 1 EGTA, 10 HEPES (pH 7.2, adjusted with KOH). Passive
leak and capacitive transients from macropatch currents were
subtracted online using a P/4 procedure. Currents were re-
corded at room temperature (22 

 

�

 

 1

 

�

 

C). The reversibility of the
functional effects of MTSET was tested upon washout of the re-
agent or by applying 6–10 mM DTT to the cystoplasmic side of
the inside-out patches. In agreement with the covalent modifica-
tion of thiolate groups (RESULTS), the inhibition of the Kv4
channels by MTSET was not reversed by washout; but upon appli-
cation of freshly prepared DTT, the inhibition of the Kv4.1-
C11xA mutant was reversible in a pH-dependent manner (not
depicted). Partial reversal was observed at pH 7.2 (10–30%) and
nearly complete reversal at pH 8.5 (

 

�

 

80%). This difference is
consistent with the increased ionization and more aggressive re-
ducing power of DTT at alkaline pH.

A computer-controlled piezoelectric translator (EXFO Bur-
leigh) was used for rapid solution switching experiments involv-
ing MTS reagents (see Fig. 9). In this system, a double-barreled
pipette simultaneously delivers a control and experimental solu-
tions (gravity driven). The flow was adjusted to produce two
sharp streams. The inside-out patch was first placed in the con-
trol stream, and the piezoelectric translator controlled the rapid
interface crossing of the pipette tip between the two streams.
The solution exchange time of this system was assessed by mea-
suring the amplitude of K

 

�

 

 currents when the cytoplasmic side of
the membrane is exposed to two distinct concentrations of K

 

�

 

.
With inside-out macropatches, these measurements have yielded
exchange rates of 

 

�

 

1–3 ms (Shahidullah et al., 2003).

 

Data Acquisition and Analysis

 

Voltage-clamp protocols and data acquisition were controlled by
a Pentium-III class desktop computer interfaced to a 12-bit A/D
converter (Digidata 1200 using Clampex 8.0; Axon Instruments).
Data analysis was conducted using Clampfit (pClamp 8.0; Axon
Instruments) and Origin 6.0 (OriginLab Inc.). Current relax-
ations and other time-dependent processes were described as-
suming a simple exponential function or the sum of exponen-
tial terms. Unless stated otherwise, the results are expressed as
mean 

 

�

 

 SEM.

 

Protein Biochemistry

 

CHO cells in DMEM with 10% serum were transfected with Kv4.2
and KChIP-3 using FuGENE 6 (Roche Diagnostics Corp.) or lipo-
fectamine-2000 (Invitrogen), and then CHO cell membrane
fragments were prepared as described previously (Strang et al.,
2003; Kunjilwar et al., 2004). The Kv4.2-T1 domain with a poly-
His tag at the NH

 

2

 

 terminus was expressed in bacteria and puri-
fied by a standard Ni

 

2

 

�

 

 column protocol as described previously
(Jahng et al., 2002). For biotinylation, MTSEA-biotin was pre-
pared immediately before use, at 0.2 M in water, and then stored
on ice and used within 2 h. Final reaction concentrations were
0.2 mM for membrane preparations and 0.5 mM for Kv4.2-T1
preparations. After reaction with MTSEA-biotin, the protein was
prepared for gel electrophoresis and characterized by FPLC (fast
protein, peptide, and polynucleotide liquid chromatography)
analysis as described previously (Strang et al., 2003). Kv4.2 and
T1 proteins that reacted with MTSEA-biotin were detected with
streptavidin HRP (Pierce Biotechnology). The streptavidin HRP
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solution (0.1 mg/ml streptavidin HRP in PBS) was diluted 1/10,000
with PBS containing Tween-20 at 0.05% vol/vol. Western blots
for proteins were performed as described previously using the
same primary and secondary antisera (Zhou et al., 2004). Blots
were preblocked with 1% BSA in the PBS-Tween-20 at 0.05%, in-
stead of the milk solution, to avoid any contamination of milk-
based biotin containing peptides and proteins.

 

R E S U L T S

 

Inhibition of Kv4 Channels by Internally Applied 
Thiol-specific Reagents

 

To investigate the effect of thiolate group modifica-
tion on the functional properties of mammalian Kv4
channels heterologously expressed in 

 

Xenopus

 

 oocytes,

we applied thiol-specific reagents to the intracellular
side of inside-out macropatches (Fig. 1, A–F). Expos-
ing Kv4.1 and Kv4.3 channels to 200 

 

	

 

M MTSET re-
sulted in a time-dependent and nearly complete inhi-
bition of the outward currents within 2–7 min. The
time courses of inhibition were approximately expo-
nential and the second-order rate constants of inhibi-
tion were 58 and 248 M

 

�

 

1

 

s

 

�

 

1

 

 for Kv4.1 and Kv4.3, re-
spectively (Fig. 1, legend). At the same concentration,
the negatively charged MTSES also inhibited Kv4.1.
Although the rate constant of inhibition (37 M

 

�

 

1

 

s

 

�

 

1

 

)
was only modestly slower than that of MTSET, 

 

�

 

40%
of the peak current remained at steady state. In addi-
tion to methanethiosulfonate reagents, 

 

N

 

-ethyl-male-

Figure 1. Time-dependent inhibition of Kv4
channels by thiol-specific reagents applied to the
intracellular side of the membrane. (A–H) Currents
were evoked by a step depolarization from �100 mV
to �50 mV at 3-s intervals. The intracellular side of
inside-out macropatches from Xenopus oocytes was
exposed to the thiol-specific reagents (200–600 	M
MTSET, 200 	M MTSES, 2 mM NEM). The current
traces are averages of �7–20 individual responses
recorded before the reagent application (black) and
after the inhibition approached steady-state (red).
Reagent exposure in the corresponding inhibition
time courses (B, D, F, and H) is indicated by a black
horizontal bar. Each symbol type represents a sepa-
rate macropatch (B, n 
 2; D, n 
 3; F, n 
 2; H,
n 
 3; J, n 
 4). Red lines in these graphs are the
best fits assuming an exponential decay. The mean
values of the derived second-order rate constants
(1/(� � [reagent])) were 248, 58, 37, and 8 M�1s�1,
for B, D, F, and H, respectively. (I and J) When
MTSET (600 	M) was present in the pipette (external
solution), the current remained stable. The black
and red traces correspond to the average currents
obtained during the first and second half of the
experiment, respectively (black and red bars).
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imide (NEM, 2 mM) also induced an approximately
exponential and nearly complete inhibition of Kv4.1
currents (Fig. 1, G and H) with a very slow rate con-
stant (8 M

 

�

 

1

 

s

 

�

 

1

 

). In all instances, the inhibition was
not reversed upon washout of the reagents, which im-
plies a covalent modification (MATERIALS AND
METHODS). The critical thiolate groups targeted by
the reagents could only be accessed from the intracel-
lular side. When a membrane-impermeant reagent
(MTSET, 0.6–1 mM) was present in the patch pipette
solution bathing the external regions of the channel,
the Kv4.1 current remained stable over the same pe-
riod of time that is normally sufficient to observe sig-
nificant inhibition by internal application of the re-
agent (Fig. 1, I and J). From these observations, we
conclude that thiol-specific compounds react with thi-
olate groups located in functionally sensitive intracel-
lular domains of Kv4 channels.

 

Functional Profiling of Intracellular Cysteine Residues

 

To pinpoint the location of the reactive internal thiol
group(s), we identified all candidate cysteines of the
Kv4 subunit that might be exposed to the intracellular
milieu (Fig. 2). In Kv4.1, there are four thiol groups in
the intracellular NH

 

2

 

-terminal region (C105, C110,
C131, and C132); one in the S2–S3 loop (C257); one in
the S4–S5 loop (C322); and eight in the COOH-termi-
nal region (C392, C467, C484, C490, C532, C533,
C589, and C642). Even though C392 is located in the
S6 transmembrane segment, we considered it as a can-
didate because the reagents may gain access to the
C392 thiol group from the ion permeation pathway.
Only 5 out of the 14 thiol groups listed above are Kv4.1

specific (C105, C257, C467, C490, and C642). The rest
are highly conserved in both vertebrate and inverte-
brate variants of the Kv4 subfamily. According to the
most recent structural models of Kv channels (Cuello
et al., 2004; Durell et al., 2004), other highly conserved
Kv4.1 cysteines are found in the extracellular S1–S2
loop (C209 and C223) and the NH

 

2

 

-terminal external
half of S2 (C233 and C338). These extracellular thiol
groups are not accessible or do not play a functional
role because externally applied MTSET had no effect
on Kv4.1 currents (Fig. 1, I and J).

The 14 intracellular cysteines were mutated to ala-
nines to test their functional impact. Fig. 2 illustrates
the specific sites and substitutions, and defines the
corresponding nomenclature of the mutants. Exten-
sive cysteine to alanine mutations did not significantly
affect channel function. Kv4.1-C11xA mutant (with
only the three Zn

 

2

 

�

 

 site cysteines) exhibited peak
conductance–voltage relationship and macroscopic
inactivation kinetics comparable to those of Kv4.1 wild-
type channel, as previously described (Beck and Co-
varrubias, 2001) (Fig. 3). Thus, most intracellular cys-
teines are not functionally critical. In contrast, Kv4.1
mutations of the three remaining cysteines (C110A,
C131A, C132A, and C3xA) and complete mutation
of all 14 intracellular cysteines to alanines (Kv4.1-
C14xA) abolished functional expression. These re-
sults are in agreement with the contribution of C110,
C131, and C132 to the interfacial T1 Zn

 

2

 

�

 

 binding
site, which is critical for the formation and stability of
the tetramer.

To characterize the function of the Zn

 

2

 

�

 

 site mu-
tants, we took advantage of the surprising ability of

Figure 2. Mutagenesis of intracellular cysteines in Kv4.1 channels. (A) Schematic topology of the Kv4.1 pore-forming subunit. Filled red
circles mark the approximate positions of the 14 cysteine residues likely exposed to the intracellular milieu. (B) Nomenclature of the
Kv4.1 mutant channels. Alanine was substituted for cysteine at the indicated positions. CZn indicates that the marked cysteine contributes
to Zn2� binding in the crystal structure of the isolated T1 tetramer.
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KChIP1 or KChIP3 to repair the apparently lethal phe-
notype induced by the disruption of the Zn

 

2

 

�

 

 binding
site (Kunjilwar et al., 2004). KChIPs are soluble cyto-
solic proteins related to the neuronal Ca

 

2

 

�

 

 sensor that
specifically interact with Kv4 channels (An et al.,
2000). KChIP1 facilitates trafficking of the Kv4 tet-
ramer from the endoplasmic reticulum to the plasma
membrane and remodels Kv4 gating (An et al., 2000;
Beck et al., 2002). Thus, KChIP1 conceivably compen-
sates for the loss of Zn

 

2

 

�

 

 binding by promoting the as-
sembly of the Kv4 tetramer, enhancing its stability, and
ensuring the formation of a functional channel com-
plex (Kunjilwar et al., 2004). Accordingly, the function
of the Kv4.1-C14xA mutant and C3xA was rescued by
coexpression with KChIP1; however, the functional ex-
pression levels were insufficient to observe reliable
macroscopic currents in 

 

Xenopus

 

 oocyte inside-out
macropatches. In light of this important observation,
we decided to investigate the ternary Kv4 complexes
composed of the pore-forming Kv4.1 

 

�

 

-subunit and
the auxiliary subunits KChIP1 and DPPx-s. DPPx-s is
a membrane-bound auxiliary subunit related to the
CD26 surface antigen that also remodels gating and
up-regulates surface expression of Kv4 channels (Na-
dal et al., 2003). The Kv4 ternary complex is likely to
underlie the somatodendritic A-type K

 

�

 

 current in
the brain (Nadal et al., 2003). The similarity between
the functional profile of the ternary complexes includ-
ing either Kv4.1-wild type, Kv4.1-C11xA, Kv4.1-C12xA,
Kv4.1-C13xA, Kv4.1-C14xA, or Kv4.1-C3xA suggests

that the basic biophysical properties of the Kv4 chan-
nel and their remodeling by auxiliary subunits are in-
dependent of intracellular thiol groups, including
those that may contribute to Zn

 

2

 

�

 

 binding in the T1
domain (Fig. 4, A–C; Table I). The peak conductance–
voltage relations of the mutants and the wild-type
channels were similar, and the time constants of inacti-
vation were only modestly changed by the most exten-
sive mutations (Fig. 4, D and E; Table I). The time con-
stants of inactivation of wild-type and mutant channels
increased with membrane depolarization in a similar
fashion, a property that is characteristic of certain neu-
ronal A-type K

 

�

 

 channels (Hoffman et al., 1997). From
the results obtained in the presence of auxiliary sub-
units, we confirmed that the Zn

 

2

 

�

 

 binding site in the
T1 domain of Kv4 channels is not essential for surface
expression and qualitatively normal activation and in-
activation gating.

To examine the possibility of dynamic Zn

 

2

 

�

 

-depen-
dent modulation involving the thiolate groups in the
high-affinity interfacial T1 Zn

 

2

 

�

 

 site, we exposed the in-
tracellular side of inside-out patches expressing the ter-
nary complex of Kv4.1-C11xA or Kv4.1-C14xA to 10 

 

	

 

M
ZnCl

 

2

 

. Neither the amplitude nor the kinetics of the
currents was significantly affected by this treatment
(Fig. 5, A, C, and D). We also investigated the modula-
tory role of intracellular Zn

 

2

 

�

 

 by applying 20 

 

	M TPEN
(a high-affinity Zn2�-specific chelator) to the intracel-
lular side of inside-out patches expressing the ter-
nary complexes of Kv4.1-C11xA and Kv4.1-C14xA. This

Figure 3. Functional properties of
Cys-depleted Kv4.1 channels. The
Kv4.1 wild type and the mutant
C11xA (Fig. 2) were functionally
expressed in the absence of auxil-
iary subunits. (A and B) In the cell-
attached configuration, macropatch
outward currents were evoked by
step depolarizations from �100 mV
to command voltages ranging be-
tween �80 and �60 mV in 20-mV
increments. (C) Voltage dependence
of the peak conductance. Filled
and hollow symbols correspond to
wild-type and C11xA channels, re-
spectively. The solid lines are the
corresponding best-fit fourth-order
Boltzmann functions with the fol-
lowing best-fit parameters for wild
type: Va 
 �53.6 � 1.8 mV, V1/2 

�10.9 � 2.9, k 
 25.6 � 1.2 mV
(n 
 5); and for C11xA: Va 

�63.9 � 4.5 mV, V1/2 
 �8.1 �
6.4 mV, k 
 33.6 � 1.3 mV (n 
 5).

(D) The time constants of inactivation were determined from the best biexponential fits describing the decay of the currents at the ex-
amined membrane potentials (Beck and Covarrubias, 2001; Shahidullah et al., 2003). (E) The ratio of the amplitudes (AFAST/ASLOW) of
the biexponential fits plotted against the examined membrane potentials. Note that the kinetic parameters of current decay are only mod-
estly affected by the C11xA mutation.
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treatment reduced both the peak current and the time
constant of inactivation (Fig. 5, B, C, and D). These
effects are, however, not caused by the removal of
Zn2� from the T1 Zn2� binding site because the mutant
lacking the critical Zn2� site cysteines (Kv4.1-C14xA)
yielded similar results (Fig. 5, C and D). Because there
is no evidence of additional Zn2� sites in other regions
of the Kv4 channel complex, TPEN appears to exert

collateral effects on Kv4 channel function that are inde-
pendent of its Zn2� chelating activity. These TPEN ef-
fects (reduced peak current and accelerated inactiva-
tion) are reminiscent of an open-channel occlusion
mechanism. Overall, the Zn2� and TPEN experiments
suggest that the T1 Zn2� site of Kv4 channels does not
contribute to dynamic Zn2�-dependent modulation of
channel function.

Figure 4. Functional properties of Cys-
depleted Kv4.1 channels coexpressed
with auxiliary subunits. All mutants
examined here were expressed as ter-
nary complex including the Kv4.1
pore-forming subunit, DPPx-s and
KChIP-1. (A–C) In the cell-attached
configuration, currents were evoked by
step depolarizations from �100 mV to
command voltages ranging between
�90 and �110 mV in 20-mV incre-
ments. (D) Kv4.1-C11xA, Kv4.1-C12xA,
Kv4.1-C13xA, and Kv4.1-C14xA exhibit
modestly accelerated inactivation but
maintain preferential closed-state inac-
tivation as evident from the voltage
dependence of the time constant of
inactivation (Jerng et al., 2004b). The
solid lines are the best-fit exponential
growth functions (Table I). (E) Kv4.1-
C11xA, Kv4.1-C12xA, Kv4.1-C13xA, and
Kv4.1-C14xA do not exhibit significantly
altered voltage dependence of the peak
conductance. The solid lines are the
corresponding best-fit fourth-order
Boltzmann functions (Table I).

T A B L E  I

Biophysical Properties of Kv4.1 Cys→Ala Mutants

Peak Conductance–Voltage Relation Inactivation

Va V1/2 k �V 
 �90 z

mV mV mV/e-fold ms e0

Kv4.1-wild type �54 � 1.5 �9.6 � 1.5 26.8 � 0.5 67 � 2.1 0.38 � 0.02

n 
 16 n 
 13

Kv4.1-C3xA �61.9 � 3.1 �17.8 � 1.9 26.5 � 1.9 63.6 � 6.9 0.21 � 0.02

n 
 3 n 
 3

Kv4.1-C11xA �44.9 � 1.7 �2.1 � 2.4 28.3 � 1.2 23.7 � 0.8 0.41 � 0.02

n 
 16 n 
 16

Kv4.1-C12xA �47.4 � 3.5 �4 � 4.6 30.9 � 1 25.4 � 0.7 0.37 � 0.02

n 
 17 n 
 16

Kv4.1-C13xA �54.9 � 3.8 �9.1 � 3 27.5 � 2 35.3 � 2.3 0.30 � 0.02

n 
 8 n 
 8

Kv4.1-C14xA �57.7 � 1.3 �11.2 � 1.9 28 � 0.9 31.9 � 1.4 0.34 � 0.01

n 
 16 n 
 17

The Kv4.1 channels were expressed as ternary complex including the pore-forming subunit, DPPx-s, and KChIP1 (MATERIALS AND METHODS). Va,
activation voltage derived from a fourth-order Boltzmann fit; k, slope factor derived from a fourth-order Boltzmann fit; V1/2, voltage at G = 50%; �V 
 �90,
time constant of inactivation at �90 mV; z, apparent valence of macroscopic inactivation derived from the best fit exponential growth function (Fig. 4 D).



Wang et al. 61

The Zn2� Site Thiolate Groups in the T1 Domain 
Are Responsible for the Inhibition of Kv4 Channels 
by Thiol Reagents
If Zn2� is tightly bound in the T1–T1 intersubunit inter-
face of the intact Kv4 ternary complex, as found in the
crystal structure of the isolated Kv4-T1 domain (Bixby
et al., 1999; Jahng et al., 2002; Nanao et al., 2003) (see
Fig. 10), the critical Zn2� site cysteines (C110, C131,
and C132) would be protected and therefore are inac-
cessible to chemical modification by MTSET or any
other thiol-specific reagent (Smith et al., 2005). To fur-
ther investigate this possibility, we examined the effect
of internally applied MTSET (200 	M) on ternary com-
plexes that included Kv4.1 wild type (14 intracellular
thiol groups) or Kv4.1 mutants with three, two, and one
remaining thiolate group in the Zn2� site (C11xA,
C12xA, and C13xA, respectively; Fig. 2). Note that the
remaining cysteines in Kv4.1-C12xA are C131 and C132
and the remaining cysteine in Kv4.1-C13xA is C110. Be-
cause all other intracellular cysteines have been mu-
tated to alanines in these mutants, we can be assured
that the membrane-impermeant MTSET is targeting
the remaining thiolate group(s) only. Like the Kv4.1
wild type, all mutants with an intact (C11xA) or par-
tially disrupted Zn2� site (C12xA and C13xA) exhibited
an exponential and nearly complete (�77%; Fig. 6) in-
hibition by MTSET with rate constants not differing by
�2.4-fold (28–67 M�1s�1; Figs. 6 and 7). In sharp con-
trast, as mentioned earlier, the Kv4.1 mutant channel
that has no intracellular thiolate groups (Kv4.1-C14xA)

was not inhibited by MTSET (Fig. 6, I and J). The con-
tribution of the auxiliary subunits in the ternary com-
plex is also ruled out because the Kv4.1-C11xA mutant
expressed alone exhibits inhibition by MTSET similar
to that of the ternary complex (unpublished data). Al-
together, these results provide compelling evidence
demonstrating that at least one out of three thiolate
groups in the Zn2� site of Kv4.1 wild type and Kv4.1-
C11xA is always accessible to chemical modification by
MTSET, which results in a potent inhibition of the
channel. Although the results from mutants with the
impaired Zn2� site (C12xA and C13xA) suggest modest
changes in the accessibility of the targeted thiolate
group, it is clear that even with an intact Zn2� site,
metal coordination cannot simultaneously protect all
thiolate groups in the T1 Zn2� site. The exponential
time dependence of the inhibition suggests that reac-
tion with a single thiolate group in the T1–T1 intersub-
unit interface would be sufficient to suppress channel
function.

Does the Occupancy of the T1 Zn2� Site Modulate the 
Inhibition of Kv4 Channels by MTSET?
If the Zn2� coordination site is not protecting the T1 in-
terfacial thiolate groups against chemical modification
by MTSET, it is conceivable that the native T1 domain
of the Kv4 channel adopts a conformation that has
lower affinity for Zn2�, or does not coordinate Zn2� in
the manner observed in the crystals of the isolated T1
oligomers (see Fig. 10 C). Thus, the metal ion could dis-

Figure 5. Effects of internal Zn2� or TPEN on
Kv4 channels with intact (C11xA) or disrupted
(C14xA) T1 Zn2� sites. Mutant channels were
expressed as described in Fig. 4 legend. (A
and B) Outward Kv4.1-C11xA currents evoked
by a step depolarization to �80 mV from a
holding potential of �100 mV. These currents
were recorded from inside-out patches before
(black) and after (red) the intracellular appli-
cation of Zn2� or TPEN at the indicated
concentrations. (C) Bar graph comparing the
normalized peak current (at �80 mV) before
and after the application of Zn2� or TPEN.
(D) Bar graph comparing the effects of Zn2�

and TPEN on the time constant of inactivation
at �80 mV (Fig. 4). The Zn2� and TPEN ex-
periments were conducted separately; there-
fore, the data are presented in two groups.
Note that independently of the integrity of the
T1 Zn2� site, the peak current and time
constant of inactivation decreased upon
TPEN application (see text).
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sociate from the intact channel upon patch excision, ex-
posing the site; or dynamically expose one or more thi-
olate coordination groups depending upon the specific
structural constraints in the intact Kv4 channel. To test
whether differential Zn2� occupancy affects the reactiv-
ity of the relevant thiolate groups when the site is intact
and functional, we exposed the intracellular side of in-
side-out patches expressing the Kv4.1-C11xA mutant to
1–10 	M Zn2� or 20 	M TPEN during the application
of 200 	M MTSET (Fig. 7, A and B). If some Zn2� sites
were free and occupancy plays a significant role in regu-
lating thiolate group accessibility and reactivity, we
would expect a slower rate of inhibition in the presence
of added Zn2� (Zn2� binding would protect critical thi-
olate groups against MTSET); and if the sites were still

Zn2� bound, we would expect an accelerated rate of in-
hibition in the presence of TPEN (the chelator would
deplete the Zn2� site, leaving the thiolate groups unpro-
tected). Our results showed that both Zn2� and TPEN
modestly increased the rate constant of the inhibition of
Kv4.1-C11xA by �50% (Fig. 7 C). Similarly, the inhibi-
tion of Kv4.1-C12xA, with a partially disrupted Zn2� site,
was also increased by TPEN (50%; Fig. 7 C). Although
the effect of TPEN on these mutant channels is qualita-
tively consistent with the simple Zn2� occupancy hy-
pothesis involving a relatively weak interaction, the ef-
fect of Zn2� is not. Diverging from the crystal structure,
the results suggest that Zn2� could be preferentially
liganded to two or three coordinating groups (e.g.,
H104 and C132 in C12xA or H104, C131, and C132 in

Figure 6. Inhibition of Kv4.1-wild type
and Zn2� site mutants by internal MT-
SET. Mutant channels were expressed
as described in Fig. 4 legend. (A, C, E,
and G) Time-dependent inhibition of
wild type, C11xA, C12xA, C13xA, and
C14xA (Fig. 2 for mutant nomenclature)
by internally applied MTSET (arrow,
200 	M). The y axis is the normalized
peak current (peak current after MT-
SET/peak current before MTSET).
These experiments were conducted as
explained in Fig. 1 legend. The solid
black line through the data points cor-
responds to the best-fit exponential.
The second-order rate constants are
indicated within the corresponding
panels. (I) When all internal cysteines
were mutated to alanines (C14xA),
there was no inhibition by MTSET. Red
symbols and gray bars represent the
mean � SEM from the number of in-
dependent measurements indicated in
the corresponding panels. (B, D, F, H,
and J) Representative current traces
(corresponding to the left panels in
each row) evoked by a step depolariza-
tion from �100 to �80 mV (inside-out
patch configuration). The traces are
averages (�7–20 traces) taken before
(black) and after (red) approaching
the steady-state level of the inhibition.
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C11xA) in a way that always leaves at least one thiolate
group exposed and poorly protected against the MTS
reagent (e.g., C131 in C12xA, and C110 in C11xA) (see
Fig. 10 C). Weakly liganded Zn2� could exert a modest
acceleration of the inhibition by MTSET through local
rearrangements and steric interactions.

As a negative control, we also investigated the effects
of MTSET, TPEN, and Zn2� on Kv4.1-C3xA, a mutant
lacking Zn2� site thiolate groups in the T1 domain but
maintaining 11 intracellular cysteines, which are not
likely to contribute to metal coordination (Fig. 2).
Kv4.1-C3xA coexpressed with KChIP1 and DPPx-s was
partially inhibited by 200 	M MTSET (�60%), with a
modification rate constant that was only modestly de-
creased by Zn2� or TPEN (Fig. 7 C). Therefore, there is
at least another thiol group located within a function-
ally critical intracellular region outside of the T1 Zn2�

site. This additional reactive thiolate group is not in
the auxiliary proteins because the ternary complex
of Kv4.1-C14xA, which lacks all intracellular thiolate
groups in the pore-forming subunit (Fig. 2), exhibited
no response to internally applied MTSET (Fig. 6, I and
J). From these results, we concluded that there are two
loci for MTSET reagents in the cytoplasmic domains of
Kv4.1, one involving thiolate groups in the T1 Zn2� site
and the other at an as yet unidentified intracellular cys-
teine. The relatively small and variable effects of Zn2�

and TPEN on the modification rate constants of vari-
ous Kv4.1 mutants (including Kv4.1-C3xA with no Zn2�

site thiolate groups; Fig. 7) suggest that these reagents
may exert weak and possibly nonspecific effects on the

modification rate constant of MTSET. More signifi-
cantly, however, the main evidence argues strongly for
the presence of one or more reactive thiolate groups in
the functionally active T1 interfacial Zn2� site (Figs. 6
and 7). Further research beyond the scope of this study
is necessary to solve the exact configuration and occu-
pancy of the Zn2� site in the native channel and the in-
teractions of thiol-specific reagents with other internal
Kv4 thiol groups outside of the T1 domain.

Chemical Modification of the Kv4 Channel Protein by a 
Thiol-specific Reagent
To directly show the chemical modification of the Kv4
protein by the MTS reagent, we performed biochemi-
cal labeling experiments using MTSEA-biotin. For
full-length channels, we used intact Kv4.2 channel ex-
pressed in CHO cells (Fig. 8 A), and for specific label-
ing of the Zn2� site cysteines, we used the Kv4.2-T1 do-
main expressed and purified from bacteria (Fig. 8 B).
The Kv4.2 subunit was preferred for these experiments
because we have good antisera against this subunit, and
the only cysteines in its T1 domain are three cysteines
involved in Zn2� coordination. For both, the full-length
Kv4 channel as well as the Kv4-T1 domain, Western blot
analysis revealed strong specific signals upon streptavi-
din-HRP detection. Thus, thiolate groups in the intact
Kv4.2 channel and the isolated Kv4.2-T1 domain are re-
acting with MTSEA-biotin. The modification of the iso-
lated Kv4-T1 protein with the MTS reagent is especially
significant because it shows that at least one out of
three cysteines equivalent to those remaining in the

Figure 7. Inhibition of Kv4.1
Zn2� site mutants by intracellular
MTSET in the presence of Zn2�

or a Zn2�-specific chelator. The
experiments were conducted as
explained in Fig. 6 legend. (A)
MTSET-induced inhibition in
the presence of 10 	M ZnCl2 in
the internal solution (no EGTA
added). The solid line across the
symbols corresponds to the best-
fit exponential function (1/� 

0.067 mM�1s�1; A∞ 
 0.2; A∞ is
the estimated level of the remain-
ing current). (B) MTSET-induced
inhibition in the presence of 20
	M TPEN in the internal solu-
tion. The solid line across the
symbols corresponds to the best-
fit exponential function (1/� 

0.050 mM�1s�1; A∞ 
 0.16). The
insets in A and B display the
currents before (thick line) and
after (thin line) application of

MTSET to the internal side of the inside-out patch. The dashed line marks the zero current level. (C) Bar graph summarizing the MTSET
second-order inhibition rate constants (1/(� � [MTSET])) for various Kv4.1 mutants (Fig. 2) examined under control conditions or in
the presence of ZnCl2 or TPEN.
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Kv4.1-C11xA mutant is reacting with MTS reagents on
its own. We also examined the effect of MTSEA-biotin
on the T1 tetramer stability by using size exclusion
chromatography FPLC. The FPLC profile showed that
before and after the treatment with MTSEA-biotin, the
T1 oligomer remained fully tetrameric (Fig. 8 C).
Thus, the MTSEA-biotin may react with one or more
thiolate groups in the Kv4-T1 interface, but this reac-
tion does not destabilize the tetramer. Therefore, tet-
ramer dissociation does not seem to be the cause of the
rapid inhibition of Kv4 channel function by the thiol-
specific reagents. More likely, MTSET inhibits the Kv4
currents by altering gating, which results from the
chemical modification of free critical thiolate groups in
the T1–T1 interfacial Zn2� binding sites. Even though
previous studies have shown that Zn2� is bound to the
isolated Kv4.2-T1 oligomeric protein (Jahng et al.,
2002; Nanao et al., 2003; Strang et al., 2003), the bio-
chemical data demonstrate that at least one out of the
three relevant thiolate groups must be free to react
with MTSEA-biotin when the protein is in solution.

Inhibition of Kv4.1 Channels by Internal MTSET Is Gating 
State Dependent
Does the inhibition of Kv4.1 channels by a thiol-specific
reagent depend on conformational changes associated
with gating? This is a relevant question because thiolate
groups are found in regions that are believed to play a
role in gating of Kv channels (Fig. 2), including the T1
domain (Cushman et al., 2000; Minor et al., 2000).
Also, it is conceivable that conformational changes ini-
tiated by the movement of the voltage sensor propagate
into the T1 domain and other intracellular regions. To
examine this question, the intracellular side of inside-
out patches expressing Kv4.1 wild type and Kv4.1-
C11xA (in the absence of auxiliary subunits) were ex-
posed to 200 	M MTSET using controlled concentra-
tion jumps combined with two distinct voltage-clamp
protocols (Fig. 9, A and B): (1) to test the inhibition of
resting channels, a 7-ms pulse of the reagent was ap-
plied when the membrane potential was held at �100
mV and the available current was tested by a subse-
quent 5-ms step depolarization to �80 mV; and (2) to
test the inhibition of activated channels, a 7-ms pulse of
the reagent was applied during a short 12-ms step depo-
larization to �80 mV to mainly encompass the peak of
the current. Significant current inhibition by MTSET
was observed with both protocols (Fig. 9, A and B).
However, the time course of the inhibition was very dif-
ferent when comparing the modification of resting and
activated channels, even though the application time of
MTSET was the same (Fig. 9 C). With both, Kv4.1 wild
type and Kv4.1-C11xA, the observed second-order inhi-
bition rate constant of the activated state (�2 � 104

M�1s�1) was �200-fold faster than that of the resting

state (�100 M�1s�1) (Fig. 9 D). This result strongly sug-
gests that gating rearrangements change the accessibil-
ity of critical thiolate groups in the interfacial T1 Zn2�

site; and therefore, we conclude that the T1–T1 inter-
face of the Kv4.1 channel is functionally active.

D I S C U S S I O N

This study found that, regardless of their chemical
structure or polarity, thiol-specific reagents applied to
the intracellular side of the membrane cause irrevers-
ible inhibition of Kv4 channels. This result suggests
that the steric effect of the resulting adduct at the mod-
ified site(s) inhibits gating or blocks permeation. Since
the inhibition was still robust with only three thiolate
groups in the Zn2� site of the T1 domain remaining in-
tact, and the T1 domain does not contribute to the per-
meation pathway, we conclude that the intracellular
T1–T1 intersubunit interface near the Zn2� site is func-
tionally active and that the inhibition may result from a
packing perturbation that interferes with channel gat-

Figure 8. Biochemical evidence of the chemical modification of
Kv4.2 and Kv4.2-T1 by MTSEA-biotin. (A) Membrane fragments
containing Kv4.2 and KChIP3 (Kv4.2:KChIP3, 1:3) were reacted
with MTSEA-biotin for 20 min at room temperature, and then
electrophoresed and blotted with either anti-Kv4.2 or streptavidin-
HRP (MATERIALS AND METHODS). (B) Likewise, the purified
T1 domain of Kv4.2 was also reacted with the biotinylated MTSEA
reagent and screened with streptavidin-HRP. The indicated
molecular weights correspond to those of Kv4.2 a-monomer (67
kD) and the monomeric Kv4.2-T1 protein (14 kD). (C) FPLC
profile of the Kv4.2-T1 protein before (black) and after (red)
treatment with MTSEA-biotin (0.5 mM). AU280, normalized
absorbance units at 280 nM. The expected elution times of the T1
tetramer and the T1 monomer are schematically marked above
the abscissa.
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ing. Biochemical experiments confirmed that tetramer
dissociation is not the likely cause of the inhibition be-
cause the Kv4-T1 protein remained tetrameric upon
chemical modification by MTSET.

Mechanistic and Physiological Implications
The solute accessibility or reactivity of the targeted
thiolate group(s) is dramatically enhanced when the
channel activates. This result may be interpreted as the
propagation of a conformational change that starts
with movements in the voltage sensing domain (trans-
membrane segments S1–S4) followed by rearrange-
ments in the T1–T1 intersubunit interface (where the
reactive thiolate groups are found; Fig. 10, A and B)
and the opening of an internal pore gate. From elec-
tron microscopy studies of Kv4 channels (Kim et al.,
2004b), the four T1–T1 interfacial Zn2� sites are pre-
dicted to sit just below the “side windows” that provide
aqueous access to the pore from the cytoplasmic side
(Fig. 10 A) (Bixby et al., 1999; Nanao et al., 2003). Con-
ceivably, the T1–T1 intersubunit interfaces may rear-
range during channel gating as part of a conforma-
tional change that widens the side windows to enhance
solute access to the open pore. Supporting this model,

the Zn2� site is located between T1 layers 3 and 4 (L3
and L4) in a region that is probably close to the core of
the channel (Fig. 10, B and C). L4 is a short �-helix di-
rectly connected to a short linker that joins T1 to the
NH2-terminal end of the S1 transmembrane segment;
therefore, it may serve as a physical link between T1
and the voltage-dependent activation machinery of the
channel. We propose a clockwise displacement of L4
(viewed from the membrane side of T1) that results
from voltage-dependent activation gating (Fig. 10 D).
This movement would effectively expose the thiolate
groups in the Zn2� site and account for the dramatic
200-fold increase in the modification rate constant
upon channel activation (Fig. 9). The exponential time
course of the inhibition suggests that perturbation of
one site would be sufficient to cause inhibition because
the T1 tetramer may act as a functional unit that under-
goes a concerted conformational change. The pro-
posed rearrangement of the T1–T1 interfaces (Fig. 10
D) may be a prerequisite for a subsequent expansion of
the lateral windows and opening of the inner mouth of
the pore. Chemical modification of a single thiolate
group in the Zn2� site may thus obliterate this confor-
mational change and favor a nonconducting conforma-

Figure 9. State-dependent inhibition of Kv4.1
wild type and Kv4.1-C11xA currents by inter-
nally applied MTSET. The Kv4.1 pore-forming
subunits were expressed alone and the outward
currents were recorded in the inside-out patch
configuration. The acquisition program
controls the coordinated application of
voltage steps and MTSET concentration
jumps (MATERIALS AND METHODS). (A)
MTSET (200 	M) was applied when the
membrane was held at �100 mV (resting
channels), and the test current was evoked by
the indicated pulse protocol. (B) MTSET (200
	M) was applied during the step depolariza-
tion to �80 mV as illustrated in the figure
(activated channels). For both resting and
activated channels, the duration of the reagent
concentration jump was 7 ms. (C) Time
courses of the inhibition by MTSET of resting
(hollow symbols) and activated (filled symbols)
channels. The solid lines are the best-fit ex-
ponential decays with the following best-fit
parameters: 1/� 
 20 mM�1s�1 and A∞ 
 0.4,
for activated channels; 1/� 
 0.9 mM�1s�1 and
A∞ 
 0.2, for resting channels. The observed
resting state rate constant is not an accurate
estimation of the overall modification rate
constant because the brief time frame of the
experiment (0–0.2 mM � s) severely limits the
observed fraction of the slow decay (see below).
However, the current data cannot rule out the

possibility of a small fast component (�10%) in the modification time course of the resting channels. (D) Bar graph summarizing the
second-order rate constants of the modification by MTSET (n 
 4–6). For a more accurate estimation of the slow rate constant from
resting channels, the duration of the MTSET concentration jump was 240 ms and the MTSET concentration was 400 	M. Under these
conditions, �90% of the decay was exponential.
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tion of the channel. A previous study found that NH2-
terminal thiolate groups of Kv2.1 (including those that
contribute to Zn2� binding) are modified by MTS re-
agents, which primarily delayed the single channel la-
tency to the first opening (Pascual et al., 1997). Al-
though this study did not determine the exact location
of the targeted thiolate groups, it suggested a contribu-
tion of the intracellular NH2-terminal region to activa-
tion gating of Kv channels.

Kv4 channels exhibit preferential closed-state inacti-
vation (Beck and Covarrubias, 2001; Bähring et al.,
2001; Shahidullah and Covarrubias, 2003), which may
involve channels that fail to open because they become
effectively desensitized to changes in membrane poten-

tial, as proposed for HCN channels (Shin et al., 2004).
Previous studies of Kv4 channels have suggested that
the opening step is not strongly forward biased (Bäh-
ring et al., 2001; Beck and Covarrubias, 2001; Beck
et al., 2002; Shahidullah et al., 2003). Through the
mechanism proposed above, MTSET modification of
intracellular thiolate groups in the T1–T1 interface
could induce further shifting of the opening equilib-
rium toward the inactivation permissive preopened
closed state, and thereby promote inactivation that
would result in a partial or complete suppression of
current, depending on the magnitude of the shift. Ad-
ditionally, MTSET could directly promote closed-state
inactivation, either by stabilizing the closed-inactivated

Figure 10. A structural model of the Kv4-T1 domain and the contribution of T1–T1 intersubunit interface to the gating state–dependent
inhibition of the Kv4 channel by MTSET. (A) Model of the Kv4 tetramer depicting a theoretical model of the transmembrane �-core
(Durell et al., 2004) and the likely location of the intracellular T1 domain (red). The depicted 3-D model of the T1 domain is based on the
crystal structure of the isolated Kv4-T1 domain (Nanao et al., 2003). (B) Magnified views of the T1 domain model. In both, the lateral
(left) and top (right) views, the blue spheres represent the location of Zn2� atoms in the T1–T1 intersubunit interface as found in the
crystal structure. The four layers of the T1 scaffolding are indicated next to the lateral view as L1–L4. Note that the Zn2� site is located
between L3 and L4. In the intact channel, L4 is directly connected to the NH2-terminal end of the transmembrane S1 segment, which
links T1 with the voltage-sensing regions of the channel. (C) Magnified view of a single interfacial Zn2� site in T1. The coordinating amino
acid side chains are explicitly shown in a scaled ball and stick representation, and the outlined circle (dashed line) represents the Zn2�

atom. H104, C131, and C132 are from the same subunit, and C110 is from the neighboring subunit. H104 is behind the backbone of C131
and C132. A standard color scheme is used to represent the relevant atoms (sulfur atoms in yellow). Note that the peptide bond between
C131 and C132 is also shown. (D) Working hypothesis explaining the gating state dependence of the inhibition of Kv4 channels by
MTSET. In the resting state (at hyperpolarized voltages), at least one thiolate group (e.g., C131) exhibits low accessibility to MTSET. Upon
activation by a strong depolarization, a concerted clockwise displacement of L4 exposes the Zn2� site thiolate groups to MTSET. The data
suggest that modification of a single thiolate group in the T1–T1 interface would be sufficient to explain the inhibition of the channel
(see text). A possible location of Zn2� in these models is indicated by the dashed perimeter of a circle in the T1–T1 inter face. The exact
alternative architecture of the T1 Zn2� site that leaves at least one free thiolate in the T1–T1 interface is not known (see text).
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state or by enhancing the rate of entry into the closed-
inactivated state.

The presence of free reactive thiolate groups in a
functionally active T1–T1 intersubunit interface of Kv4
channels can have broad physiological implications be-
cause these groups are subject to oxidation under nor-
mal or pathological conditions. Kv4 channels underlie
the somatodendritic A-type K� current (ISA) (Johnston
et al., 2003; Jerng et al., 2004a) in brain and the fast
transient K� current in the heart and smooth muscle
(ITO) (Nerbonne et al., 2001; Amberg et al., 2003). ISA

is a key neuronal moderator of electrical excitability
that, among various functions, regulates spike firing
frequency and dampens backpropagating action poten-
tials (Johnston et al., 2003; Jerng et al., 2004a). These
functions contribute to signal coding, dendritic inte-
gration, and plasticity (Cai et al., 2004). ITO in the heart
regulates cardiac excitability by shaping phase-1 of the
cardiac action potential. Suppression of the ITO is ar-
rhythmogenic. Mammalian Kv4 channels (Kv4.1, Kv4.2,
and Kv4.3) are highly conserved and vertebrate and in-
vertebrate orthologues share the determinants of the
Zn2� binding site (Jerng et al., 2004a). In light of our
observations, future studies need to examine whether
oxidative stress (hypoxia and ischemia-reperfusion)
and physiological modulators (e.g., NO and its reactive
metabolites) in brain and heart have an impact on Kv4
channel function through the chemical modification
of the thiol groups in the intracellular T1–T1 intersub-
unit interface. Our results may explain the irreversible
inhibition of native Kv4 channel in rat ventricular
myocytes by thiol-specific reagents (Rozanski and Xu,
2002).

Structural Implications
Earlier studies of native or engineered Zn2� binding
sites in nonchannel proteins have shown that high-
affinity Zn2� binding protects the coordinating thiolate
groups against chemical modification by thiol-specific
reagents, including fluorescent maleimide derivatives
and NEM (Fu et al., 1996; Smith et al., 2005). Thus,
what can be said about the configuration and chemical
state of the T1–T1 thiolate groups in the Kv4 channel?
Although originally identified as part of a high-affinity
Zn2� coordination site in isolated Kv4-T1 crystals (Fig.
10, A–C), the relevant thiolate groups are more reac-
tive and dynamic than expected from this original
model. In solution, even the isolated T1 domain con-
taining the three Zn2� site thiolate groups only exhibits
chemical modification by MTSEA (Fig. 8), which sug-
gests that at least one thiolate group is not protected by
Zn2� binding. Also, as the number of thiolate groups in
the Zn2� site of the full-length channel is progressively
reduced by mutagenesis (Figs. 6 and 7), the accessibil-
ity of the remaining thiolate(s) is similar (within a two-

fold range) and only modestly affected by a potent
Zn2� chelator (Fig. 7). Thus, the T1 Zn2� site of these
mutants seems to be unoccupied under the conditions
of our inside-out patch recordings; or Zn2� is only
weakly liganded in the T1 site. This conclusion is tem-
pered by the absence of an inhibitory effect of adding
Zn2� on thiolate group accessibility (Fig. 7), which sug-
gests that either (a) the site is unable to bind Zn2�, or
(b) that the architecture of the Zn2� site differs from
that in the T1 crystal structure in such a way that at
least one free thiolate group (e.g., from the interfacial
C131; Fig. 10 C) is accessible to the MTS reagents in a
gating state–dependent manner (Fig. 9). High-affinity
Zn2� binding per se may help to assemble and stabilize
the tetramer in the early biogenesis of the Kv4 protein.
However, once the Kv4 protein and auxiliary subunits
form the native channel complex, the functional con-
figuration of the oligomer may no longer support high-
affinity Zn2� binding involving all four coordinating
groups from the C3H1 motif in the T1–T1 interface. In
agreement with this hypothesis, KChIP1 or KChIP3 can
override the essential need of Zn2� for tetramer forma-
tion and stability; and the Kv4-KChIP channel complex
without the T1 Zn2� site is fully functional and exhib-
its qualitatively normal biophysical properties (Fig. 4)
(Kunjilwar et al., 2004). Future studies need to con-
sider these observations and possibilities to fully under-
stand the function of Zn2� in Kv channels.

Conclusion
It has been shown previously that the intersubunit T1
Zn2� site plays an important structural role in Kv4
channels (Jahng et al., 2002; Nanao et al., 2003; Strang
et al., 2003). Other studies have also suggested that the
Kv channel T1 domain may play a more direct func-
tional role (Pascual et al., 1997; Cushman et al., 2000;
Minor et al., 2000; Kurata et al., 2002). Our data sug-
gest strongly that the interfacial T1 Zn2� sites are func-
tionally active because MTSET suppresses channel
function through the chemical modification of the rel-
evant thiolate groups that are not protected by Zn2�.
The preferential inhibition in the activated state of the
channel by MTSET is especially attractive because it
suggests significant structural rearrangements involv-
ing the T1–T1 intersubunit interface and potential
modulation of Kv4 gating by the redox state of the cell.
Similar interactions may take place in Kv2 and Kv3
channels, which share the interfacial Zn2� site in their
T1 domain (in contrast to Kv1 channels) (Kreusch et
al., 1998; Bixby et al., 1999).
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