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Abstract: To investigate the in-situ response to a stress, grapevine leaves have been 

subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser 

Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. 

Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the 

most efficient matrix allowing a broader range of detected stilbene phytoalexins. 

Resveratrol, but also more toxic compounds against fungi such as pterostilbene and 

viniferins, were identified and mapped. Their spatial distributions on grapevine leaves 

irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI 

reveals that resveratrol (and piceids) and viniferins are not specifically located on the same 

area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass 

spectrometry imaging demonstrate that this technique would be essential to improve the level 

of knowledge concerning the role of the stilbene phytoalexins involved in a stress event. 

Keywords: mass spectrometry imaging; grapevine; stilbene phytoalexin; viniferin; 

resveratrol; pterostilbene; MALDI; Plasmopara viticola; Vitis vinifera 
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1. Introduction 

Mass spectrometry succeeds in providing a lot of qualitative and quantitative data on plant omics [1]. 

Generally, to get the information, the plant material needs to be sampled and extracted by solvents 

before chemical analysis. Using this approach, the sensitivity of detection is very high but the exact 

location of compounds of interest in tissues is lost. In just a few years, mass spectrometry imaging 

(MSI) made the dream of the location of molecular compounds at the micron scale to come true [2,3]. 

First developed on animal slices [4,5], this emerging technique finds a growing interest in plant 

proteomic [6] and metabolomic [7–9]. Indeed, MSI is able to provide a specific spatial distribution of 

proteins or metabolites in tissues. Depending on the ion source, the sample preparation and the mass 

spectrometer used, the spatial distribution of molecules on a plant sample is specifically dedicated to 

some compound families [10,11]. 

In this context, we developed a selective method to map several stilbene phytoalexins on grapevine 

leaves using a time-of-flight mass spectrometer (TOFMS) fitted with a laser ion source operated  

at 266 nm [12]. Phytoalexins are of great interest because they are biosynthetized in response to biotic 

or abiotic stress. They are also well known for inducing an antifungal activity [13–18] and, for 

example, we observed by MSI experiment a co-localization of resveratrol and pterostilbene 

(trimethoxystilbene) at the infection site on the leaf abaxial side (Cabernet Sauvignon) [12] after 

infection by downy mildew. MSI allowed the identification and mapping of resveratrol and 

pterostilbene but the biosynthesis of some other stilbenes is also expected to be induced in grapevine 

leaves and even berries in response to pathogen infection or UV irradiation [19–21]. Besides the 

glycosylation of stilbenes (e.g., piceids), oxidative oligomerization of resveratrol catalyzed by plant 

peroxidases may occur and several of them have been identified in stressed grapevine leaves [22–24]. 

For example, the -viniferin has been identified as the main dimer of trans-resveratrol synthesized in 

Vitis vinifera leaves infected by Plasmopara viticola [25]. These stilbene phytoalexins were found to 

be more or less toxic against fungi according to their chemical structure. In this field, the viniferins are 

known to be more active than resveratrol and thus are suspected to be highly involved against 

pathogen proliferation [13,26]. Resveratrol is synthesized in a large amount regardless of the cultivar, 

the susceptibility or the resistance to fungi. Even if resveratrol has itself an antimicrobial effect [27], 

its transformation to other stilbene phytoalexins could be decisive in the defense mechanisms of the 

grapevine. Consequently, it could be extremely informative to observe the spatial distribution of more 

stilbene phytoalexins than resveratrol or pterostilbene in stressed plant organs. In this paper, we also 

present the first MSI experiments allowing the mapping of viniferins on grapevine leaves. 

In a previous paper, we reported the imaging of metabolites from Vitis vinifera leaves by laser 

desorption/ionization (LDI) time-of-flight mass spectrometry [12]. The relatively high laser power 

density (around 108 W·cm−1) allowed a sufficient ion yield to highlight species of interest in the mass 

spectra at the grapevine leaf surface. In this configuration, we identified different molecules among 

which the resveratrol and the pterostilbene but also some additional compounds such as diacyl and 

triacyl glycerols. The gain of sensitivity to resveratrol and pterostilbene by the biphotonic ionization 

process at 266 nm wavelength was outstanding, but it may be counterbalanced by the signal loss of 

laser-sensitive substances such as viniferins. To overcome this limitation and access to the spatial 

distribution of other stilbene phytoalexins on plant material, we evaluate the potential of a MALDI 
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approach which consists in the addition of a layer of an exogen compound called “matrix”, deposited 

on the leaf surface before the LDI process at 337 nm wavelength. 

2. Results and Discussion 

For mass spectrometry imaging purpose, MALDI has already been used to map different 

metabolites on plant organs [28] such as lipids on leaf surface [29], flavonoids or glycoalkaloid in 

roots and root nodules [30,31], sugars within seed or stem sections [32,33]. Different matrices are 

described in the literature for MALDI MS analysis of vegetable material such as 1,5 diamino 

naphthalene (DAN) or 9-amino acridine (9-AA) in negative ion mode, and tri-hydroxy acetophenone 

(THAP), α-cyano-4-hydroxy cinamic acid (CHCA) or 2,5 dihydroxy-benzoic acid (DHB) in positive 

ion mode. Graphite was also used to avoid high matrix ion background in the m/z range of metabolites [34] 

but it may lead to overmuch carbon deposit on ion lenses during experiments. Consequently, we firstly 

proceeded to a matrix selection for MSI of phytoalexin by analyzing the standard stilbene compounds 

by MALDI-TOFMS with different matrices. To induce phytoalexin synthesis in high amount, 

grapevine leaves were irradiated with UV-C. They were firstly extracted by methanol to control 

phytoalexin content using HPLC-MS/MS and MALDI-TOFMS analyses. Finally, MSI experiments 

were conducted on Vitis vinefera leaves either irradiated by UV-C or infected by Plasmopara viticola. 

2.1. Stilbene Analyses by MALDI-TOFMS 

2.1.1. Matrix Selection for Stilbene Analyses by MALDI-TOFMS 

To evaluate the most appropriate matrix for stilbene analysis, trans-resveratrol, pterostilbene and 

trans--viniferin have been analyzed by MALDI-TOFMS in positive and negative ion mode using 

different matrices (Table 1). Laser desorption ionization (LDI) experiments which is our reference 

ionization method was carried out by depositing 1 µL of pure stilbene standard solution at 10−5 M on 

the target plate without matrix. For MALDI experiments, matrix solution at 10−1 M in 

acetonitrile/water (50/50 with or without 0.1% of TFA) was mixed with standard compound solution 

(matrix/analyte ratio of 1000) and deposited on the target plate (dried-droplet method). Results are 

given in Table 1 which represents, for each experimental condition, the signal-to-noise ratio (S/N) 

values of MS peaks corresponding to stilbene molecular ions. 

Whether in negative or positive ion mode, resveratrol and pterostilbene are detected without any 

matrix. The highest sensitivity is reached for deprotonated molecular ions at m/z 227 and 255 

respectively unlike what we observed at 266 nm [12]. As expected, trans--viniferin is never detected 

in LDI conditions. 

The matrix contribution to the detection of the viniferin is noteworthy. In positive ion detection, 

with CHCA or DHB in acid medium (TFA), the protonated molecular ion [M+H]+ and radical 

molecular ion M●+ of the viniferin are detected with the highest signal-to-noise ratios at m/z 455 and 

454. With a less pronounced effect, THAP allows the radical molecular ion M●+ to be detected and in 

negative detection mode, deprotonated molecular ion is detected at m/z 453 by using 9-AA. Due to the 

matrix ion interference at m/z 453, DAN cannot be used as a matrix for viniferin analysis. 
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Table 1. Signal-to-noise ratio (S/N) values of Matrix Assisted Laser Desorption/Ionisation 

(MALDI)-time-of-flight mass spectrometer (TOFMS) peaks corresponding to stilbene 

molecular ions (* radical ion, otherwise, each peak corresponds to protonated ion (positive 

mode) or deprotonated ion (negative mode); N/A, not applicable because of the presence of 

an interfering peak). 

Ion mode Matrix 
S/N ratio 

trans-Resveratrol Pterostilbene trans--Viniferin 

Negative 

without 307 166 / 

9-AA 68 114 11 

DAN 349 230 N/A 

CHCA / / / 

THAP / / / 

DHB / / / 

Positive 

without 91 451 / 

DAN / / / 

DAN+TFA / / / 

DHB 25 55 139/145 * 

DHB+TFA 259 358 231/239 * 

CHCA N/A 246 146 * 

CHCA+TFA N/A 708 501 * 

THAP / / / 

THAP+TFA 38 / 44 

9-AA / / / 

CHCA matrix in positive mode generates an intense mass peak at m/z 228 corresponding to [M+K]+ 

which interferes with the resveratrol molecular ion at the same m/z value. For its part, DHB matrix 

allows both resveratrol and pterostilbene to be detected as protonated molecular ions with a high S/N value. 

The addition of trifluoroacetic acid significantly improves the signal. Thus, the signal of resveratrol with 

DHB is only 15% lower from that obtained without matrix but it is around two times higher for 

pterostilbene compared to LDI. Therefore, DHB with TFA addition provides m/z peaks related to each 

tested stilbene with high sensitivity making it a matrix of choice for stilbene analysis by MALDI-TOF. 

2.1.2. MALDI-TOFMS Analysis of Stressed Leaf Extract 

To investigate resveratrol, pterostilbene and viniferins in a real sample, a grapevine leaf has been 

first irradiated by UV-C. Two days after this treatment, the production of stilbene phytoalexin is 

expected to be induced. Stilbenes were then extracted from leaves using methanol. The leaf was then 

extracted with methanol. The presence of stilbenes in the leaf extract was controlled by HPLC-ESI/MS 

and MS/MS in negative ionization mode (more sensitive detection than in the positive mode). 

Several stilbenes are detected by LC-ESI/MS using a reversed-phase support (RPLC). The 

identification was confirmed by the retention time and the fragmentation pattern of standard 

compounds compared to the literature (MS/MS, Table 2) [25,35,36]. Ion extract chromatograms of 

deprotonated molecular ions are displayed in the Figure 1. Piceids are the most polar stilbenes due to 

their glucose moiety. Thus, they are the less retained stilbenes as expected in RPLC. The trans-isomer 
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is eluted at 13.68 min and cis-isomer at 13.01 min. The peaks at 17.02 and 18.07 min are associated 

with the cis- and trans--viniferin respectively. The following peaks at 21.60 and 22.65 min are in turn 

associated with trans- and cis- -viniferin respectively. This elution order of viniferin isomers have 

been described by Pezet using a C18 column [25]. Resveratrol is identified at 42.72 min. Finally, 

pterostilbene, the most apolar stilbene, is detected at 47.94 min. 

Table 2. List of retention times, molecular formulae and MS/MS product ions of stilbenes detected 

by LC-ESI/MS (see also Figure 1). The relative intensities of fragments are indicated in parenthesis. 

Compound 
Retention  

Time (min) 
[M-H]− 

Precursor 
Ion 

MS/MS (CID) 

cis-piceid 13.01 C16H15O3
− 389 228(100) 

trans-piceid 13.68 C16H15O3
− 389 228(100) 

cis--viniferin 17.02 C28H21O6
− 453 435(20); 411(10); 369(12); 359(42); 347(100); 333(44) 

trans--viniferin 18.07 C28H21O6
− 453 435(24); 411(14); 359(100); 347(58); 333(18) 

trans--viniferin 21.60 C28H21O6
− 453 435(22); 411(15); 359(100); 347(40); 333(8) 

cis--viniferin 22.65 C28H21O6
− 453 

435(100); 411(68); 369(62); 359(38); 347(40) ; 
333(50); 317(14); 307(20); 267(12); 251(13) 

trans-resveratrol 42.72 C14H11O3
− 227 185(100); 183(38); 159(32); 157(29); 143(11) 

trans-pterostilbene 47.94 C14H11O3
- 255 240(100); 239(5) 

Figure 1. Ion extract chromatograms from HPLC-ESI/MS analysis of stressed leaf extract 

(a) piceid isomers at m/z 389 (b) viniferin isomers at m/z 453 (c) resveratrol at m/z 227 and 

(d) m/z pterostilbene at 255 – peak assignments were confirmed by MS/MS experiments of 

the 10 more abundant ions in each mass spectrum, the molecular structures of trans- 

isomers of each stilbene are displayed. 
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The extraction sample of grapevine leaf irradiated by UV was also investigated by MALDI-TOFMS 

with DHB as the matrix (and 0.1% of TFA). The average mass spectrum obtained from 50 mass 

spectra is displayed in the Figure 2. In the low mass region, the mass spectrum of a methanolic extract 

of leaf is similar to the one obtained with pure DHB matrix with mass peaks observed at m/z 137, 155, 

177, 193 and 273. At m/z higher than 500, mass peaks correspond to diacylglycerol compounds as 

already reported in LDI-TOFMS analysis of Vitis vinifera leaves. With DHB, stilbenes are detected as 

protonated ions. Resveratrol and pterostilbene are also detected as protonated ions but the detection of 

viniferin as molecular ions is worth to note. They could be observed at m/z 454 and 455 (right window 

in Figure 2). Note that viniferin isomers cannot be distinguished from each other by MS and that they 

all contribute to the same MS signal. Other metabolites are jointly detected as for example flavonol 

aglycone at m/z 303 for quercetin and m/z 319 for myricetin (left window in Figure 2). In our 

experimental conditions, the loss of sugar moiety systemically occurs. Thus, piceids are solely detected 

without sugar moiety and contribute to the same m/z signal as resveratrol (in the next sections, m/z 

peak at 229 will be assigned to resveratrol/piceids). 

Figure 2. MALDI-TOF mass spectrum of methanol extract from grapevine stressed leaf – 

the blue peak labels correspond to matrix ions (DHB); in inserts, a zoom of m/z peaks 

corresponding to flavonol aglycone ([M+H]+) and viniferins (M+ and [M+H]+). 

 

2.2. In-Situ MALDI-MSI of Stilbenes on Stressed Leaves 

Using DHB matrix for the successful detection of viniferins by MALDI-MS experiment of leaf 

extract is thus a promising route for the MSI investigation of stilbene compounds. 4 µL of a DHB 

solution were deposited with a micropipette over a 10.6 mm² area on the abaxial side of a  

UV-C-stressed leaf. The drying time was short enough to prevent needle formation during matrix 

crystallization and to avoid the distribution of the studied metabolites in the native sample to be 

disturbed. Moreover, the size of the image is smaller than the surface of the deposited droplet 
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containing the matrix. Thus, the imaged area is corresponding to the center of the dried droplet where 

the coffee ring effect does not exist. To support this affirmation, the repartition of the ion m/z 137 

[DHB-H2O]+ (the most intense ion of the matrix) shows a rather homogenous deposition (Figure 3). 

MSI experiment was then conducted on this sample. A mass spectrum corresponding to one pixel is 

displayed on the Figure 3. DHB mass peaks contribute to a large part of the signal (peak labels in 

blue). However, all previously investigated stilbenes are detected as protonated molecular ions: 

resveratrol/piceids at m/z 229, pterostilbene at m/z 257 and viniferins at m/z 455 and also radical ion at 

m/z 454 (insert of the Figure 4). Compared to MALDI-TOFMS analysis of methanolic extract, the 

intensity of viniferins significantly increases meaning that the MALDI-MSI improves the sensitivity of 

their detection. This may be explained by the fact that there is no dilution effect in MSI (metabolites 

are detected where they are located) whereas in MALDI-TOFMS, methanol extracts rather provide an 

average response of metabolites contained in the sampled leaf disc. 

Figure 3. MALDI-TOF mass spectrum of stressed grapevine leaf: the blue peak labels 

correspond to matrix ions (DHB). Stilbene phytoalexins are detected as protonated and 

radical ions as it is observed for the viniferin in insert. 

 

The spatial distributions of stilbene phytoalexins on the leaf are given in the Figure 4. The color 

scale represents the relative intensity of each ion. For each stilbene, the black color is used when 

nothing is detected in the corresponding pixel whereas the white color represents the maximum of 

intensity detected in the map. 

Examining the ion extracted MS images of resveratrol/piceids at m/z 229, pterostilbene at m/z 257 

and viniferins at m/z 454 and 455, the heterogeneity of their surface distributions is clearly highlighted. 

Moreover, they are almost exclusively localized on the same areas of the leaf. Their spatial location 

evidences a clear relationship in their synthesis under UV-stress conditions. Even if the image 
resolution is not sufficient to explore cells at the organelle scale, stilbenes seem to accumulate 

themselves in the network of small veins and more precisely in the dense parenchyma tissue. This is in 

good agreement with UV irradiated leaf analyzed by fluorescence for which global stilbene 

fluorescence has been mainly located in vein and lignified tissues [37,38]. Notably, none of these 

stilbenes was detected in the control samples (not irradiated) leading to black images (data not shown). 
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Figure 4. MALDI-MSI of UV stressed grapevine leaf (a) optical image; (b) ion extracted 

image related to one peak of the matrix [DHB-H2O+H]+ (m/z 137); (c) ion extracted image 

of resveratrol and piceids (m/z 229); (d) ion extracted image of pterostilbene (m/z 257);  

(e) ion extracted image of viniferin (m/z 454 and 455). The color scale indicates the 

absolute intensity of each pixel (arbitrary units). 

 

The MSI experiment was then conducted on Cabernet Sauvignon leaf infected by Plasmopara 

viticola (Figure 5). Before analysis, 4 µL of DHB matrix solution were deposited with a micropipette 

over a 9.1 mm² area on the grapevine leaf five days after infection. The MS image of the control leaves 

did not exhibit any stilbene (data not shown) because their concentration is under the detection limits. 

The Figure 4 displays ion extraction images of resveratrol/piceids and viniferins. As it was observed 

under a UV stress, their spatial distribution on the grapevine leaf is non-homogeneous. However, some 

differences appear between resveratrol/piceids and viniferin localizations (for this sample, the 

pterostilbene level was under the detection limit). While viniferins are mainly located around the veins, 

the distribution of resveratrol/piceids is more scattered on the leaf surface. Its distribution should 

correspond to the infection sites. Grapevine reacts to P. viticola infection by producing high amounts 

of stilbenes at the infection site [15] and MALDI-MSI brings new chemical details on their spatial 

distributions. Resveratrol and piceid are much less toxic against P. viticola than viniferins [14]. 

Viniferins are supposed to be involved depending on the cultivar resistance to the pathogen [22]. For 

the Cabernet Sauvignon, which has a low degree of resistance to P. viticola, the less toxic compounds 

for pathogen are localized at the leaf infection sites where the viniferins are not accumulated. It 

suggests that for a susceptible variety, the viniferins may be too far away from infection sites to play a 

real antifungal role. Their specific locations need to be understood according to the involved 

biosynthesize pathways and their isomeric composition [21]. Consequently, the investigation of 

viniferins locations from a range of susceptible to resistant grapevine species is now possible by 

MALDI-MSI to understand their role in the constitutive and inducible defenses of grapevine against fungi. 
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Figure 5. MALDI-MSI of grapevine leaf 5 days after infection by Plasmopara viticola (a) 

optical image; (b) ion extracted image of resveratrol/piceids at m/z 229; (c) ion extracted 

image of viniferins at m/z 454 and 455. The color scale indicates the absolute intensity of 

each pixel (arbitrary units). The dotted line highlights a small vein and the arrows point out 

pixels corresponding to a high intensity of viniferins. 

 

3. Experimental Section  

3.1. Plant Material and Leaf Sample Preparation 

The study was carried out on Cabernet Sauvignon, a grape variety of Vitis vinifera highly sensitive 

to Plasmopara viticola. Plants were grown in greenhouse. The sixth leaf, counted from the apex of  

3.5 months old plants having 12–14 fully expanded leaves, was harvested and washed with 

demineralized water. To induce stilbene synthesis, grapevine leaves were irradiated by UV-C lamp at 

the 254 nm wavelength (Osram, 30 W, 90 µW·cm−2, Molsheim, France) for 180 s or were infected by 

spraying a 2 × 104 sporangia·mL−1 solution of Plasmopara viticola sporangia on the abaxial side. After 

inoculation or irradiation, leaves were transferred to wet paper with the abaxial surface up in trays 

closed by transparent plastic bags. Leaves were stored in a culture chamber for an initial period at a 

temperature of 23 °C in the dark for 24 h, then 18 h of light (about 200 µmol·m−2·s−1) and 6 h of 

darkness until analysis.  

Two days after irradiation or five days after infection, foliar discs were cut out using a  

2 cm-diameter hollow-punch. Leaf discs were placed in a high vacuum to stop phytoalexin synthesis 

and stored at 4 °C before imaging experiments. For MALDI experiments, matrix solution  

at 10−1 mol·L−1 in a solvent mix (acetonitrile/water—50/50) acidified by TFA was deposited on the 

leaf sample by using a P20 micropipette (Eppendorf). 

3.2. Leaf Extraction 

Solid-liquid extraction of the leaf was performed as follows: leaf disc placed in 0.5 mL of methanol 

and heated at 60 °C for 45 min under stirring. Then, the leaf disc was removed from the extract which 

was centrifuged at 12,000 rpm before MS analysis. 
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3.3. Standard and Solvents 

Pure trans-resveratrol and trans-pterostilbene were purchased from Sigma-Aldrich. Viniferins were 

collected from semi-preparative LC of methanol extraction of stressed Vitis leaves. All matrices,  

9-amino-acridine (9-AA), 1,5-diaminonaphtalene (DAN), 2,5-dihydroxybenzoic acid (DHB), α-cyano-

4-hydroxycinnamic acid (CHCA) and trihydroxyacetophenone (THAP) were purchased from Sigma-

Aldrich. Trifluoroacetic acid (TFA) was purchased from Sigma-Aldrich. HPLC-grade methanol, 

acetonitrile and water were purchased from VWR. ESI positive and negative calibration kit from 

Thermo was used to achieve mass calibration of ESI-LTQ system. 

3.4. LC-MS and MS/MS 

For LC-MS analysis, high performance liquid chromatography system (Dionex Ultimate 3000, 

Dionex, France) was connected to a dual-pressure linear ion trap mass spectrometer (LTQ Velos Pro, 

Thermo Fisher Scientific, San José, CA, USA). For stilbene separation, C18 reverse phase column was 

used (Symmetry Shield, 4.6 × 50 mm, 3.5 µm, Waters). 20 µL of sample were injected. The flow rate 

was kept to 500 µL·min−1 and a constant elution gradient was applied from 0 (5% acetonitrile/95% 

water) to 55 min (100% acetonitrile) during the LC run. HESI (Heated Electrospray Ionization Source) 

interface was plugged to the ion source of the LTQ mass spectrometer. MS system was running from 

110 to 2000 m/z at MS scan rate of 9 Hz. To confirm chromatographic peak assignment, MS/MS by 

CID was systematically conducted on the most intense 10 mass peaks of each mass spectrum. 

3.5. MALDI Mass Spectrometer 

A Bruker Reflex IV MALDI–TOF mass spectrometer (Bruker Daltonics, Bremen, Germany) was 

used to perform in situ MALDI analysis and imaging experiments. The nitrogen laser generates a laser 

pulse at a wavelength of 337 nm with a pulse duration of 4 ns and a 9 Hz repetition rate (Science Inc., 

Boston, MA, USA). Positive mass spectra were acquired in the 0–1000 m/z range. The mass 

spectrometer was operated in the reflectron mode at a total acceleration voltage of 20 kV and a 

reflecting voltage of 23 kV. A delay time of 200 ns was used prior ion extraction. The used laser 

fluence was kept at ~0.5 J/cm2. 

3.6. Mass Spectrometry Imaging (MSI) 

For MSI experiments, leaf discs were fixed on a metal MALDI target plate with aluminized tape.  

FlexImaging software (Bruker) allowed the tracking of the leaf sample on MALDI target plate, the 

image pixel features and the treatment of post-acquisition image to be achieved. The mass spectrum 

obtained for each pixel of the images corresponds to the averaged mass spectrum of 50 consecutive 

mass spectra on the same location. Approximately 3 h were required to achieve an image of  

7.5 mm² area with a 75 µm spatial resolution (1100 pixels). 
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4. Conclusions  

For the first time, MALDI was successfully conducted on stilbene phytoalexins and more 

particularly on the viniferins. From all tested matrices, the DHB allows the viniferins, resveratrol and 

pterostilbene to be detected with a higher sensitivity. The in-situ grapevine leaf response to a stress 

was then investigated using MALDI imaging mass spectrometry experiment. For this purpose, stress 

was generated by UV-C irradiation. The ion images of resveratrol/piceids, pterostilbene and viniferins 

exhibit heterogeneous distribution on leaf surface but also demonstrate their colocalization around the 

leaf veins. Moreover, the MALDI-MSI investigation of a Cabernet Sauvignon leaf infected by 

Plasmopara viticola allows different spatial distributions between resveratrol/piceids and viniferins to 

be highlighted. Only resveratrol/piceids, the less toxic compounds for fungi are detected on the 

infection sites of this susceptible cultivar. This result suggests that viniferin locations may influence 

the resistance level to a pathogen. The MALDI mass spectrometry imaging of stilbene phytoalexins 

provides a new level of understanding the plant response to a biotic or an abiotic stress. 
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