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ABSTRACT
We develop an automatic peak fitting algorithm using the Bayesian information criterion (BIC) 
fitting method with confidence-interval estimation in spectral decomposition. First, spectral 
decomposition is carried out by adopting the Bayesian exchange Monte Carlo method for 
various artificial spectral data, and the confidence interval of fitting parameters is evaluated. 
From the results, an approximated model formula that expresses the confidence interval of 
parameters and the relationship between the peak-to-peak distance and the signal-to-noise 
ratio is derived. Next, for real spectral data, we compare the confidence interval of each peak 
parameter obtained using the Bayesian exchange Monte Carlo method with the confidence 
interval obtained from the BIC-fitting with the model selection function and the proposed 
approximated formula. We thus confirm that the parameter confidence intervals obtained 
using the two methods agree well. It is therefore possible to not only simply estimate the 
appropriate number of peaks by BIC-fitting but also obtain the confidence interval of fitting 
parameters.
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1. Introduction

High-throughput measurements have become increas-
ingly important for the efficient development of science 
and technology, and there is an urgent need to accumu-
late large amounts of spectral data. In X-ray photoelec-
tron spectroscopy (XPS), which is a time-consuming 
characterization technique, the use of high-intensity 
synchrotron radiation and a high-sensitivity detector 
enables a rapid accumulation of large amounts of 

spectral data [1–3]. Matsumura et al. performed 
peak shift analysis of high-throughput XPS spectra 
using the expectation-maximization algorithm [4]. 
High-throughput data processing is therefore required 
for efficient spectral data analysis.

Peak fitting is performed in the analysis of XPS 
spectra. Such fitting is usually carried out using the 
gradient method. This technique faces three main 
problems. The first is that the technique tends to find 
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a local solution, the second is that the number of peaks 
cannot be estimated, and the third is that the confi-
dence interval of fitting parameters cannot be evalu-
ated. In the gradient method, the initial value of the 
parameter must first be given, and the result is readily 
affected by the initial value. Peak fitting requires the 
number of peaks to be determined at the beginning, 
but the gradient method does not show how many 
peaks are appropriate. The method is also susceptible 
to spectral noise, and although it is intuitively under-
stood that the confidence interval of the fitting para-
meter is wide when there is much noise, there is no 
framework for evaluating the confidence interval.

By incorporating informatics knowledge, we pre-
viously developed a low-cost and efficient method of 
obtaining appropriate models in terms of not only the 
fitting of parameters but also the number of peaks, 
even though the developed method is based on the 
gradient method [5]. Having many initial models 
allows us to search for pseudo-global solutions, and 
a Bayesian information criterion (BIC) allows us to 
obtain a model with an appropriate number of peaks. 
We refer to this technique as BIC-fitting in the present 
paper. However, it remains difficult to evaluate the 
confidence intervals of the fitting parameters with 
this technique.

A spectrum decomposition technique based on 
Bayesian estimation has been proposed for quantita-
tive evaluation of the confidence interval of fitting 
parameters [6]. This technique solves all three pro-
blems described above. By carrying out the model 
selection to a given spectrum on the basis of 
Bayesian estimation, we may be able to estimate not 
only peak parameters such as the peak position but 
also the number of peaks. Furthermore, when adopt-
ing this technique, global solutions can be searched for 
efficiently by performing optimization using algo-
rithms in what is called the exchange Monte Carlo 
(EMC) method, even in the case that there is a local 
optimal solution. Through Bayesian estimation, all 
peak parameters can be optimized, and the confidence 
intervals of the parameters can also be determined 
using the standard deviation (STD) of the Bayesian 
posterior distribution. However, the EMC method has 
a huge computational cost and is difficult to use when 
analyzing many spectra.

In this study, therefore, we develop an algorithm to 
calculate the confidence interval of fitting parameters 
obtained by the EMC method from the results of BIC- 
fitting. By generating various spectral data on 
a computer and applying Bayesian estimation, we 
obtain the behavior of model selection and the STD 
of the Bayesian posterior distribution for each peak 
parameter by computer simulation. In particular, in 
this paper, we cover the peak-to-peak distance 
between two peaks and the signal-to-noise (S/N) 
ratio of spectral data. As a result, we succeed in 

deriving an approximated model formula representing 
the relationship of the STD of the posterior distribu-
tion with the peak-to-peak distance and S/N ratio.

We also apply the approximated model formula to 
real spectra. The confidence interval of the peak para-
meters obtained using the EMC method is compared 
with that obtained by applying BIC-fitting to the 
approximated formula. As a result, it is confirmed 
that the parameter confidence interval obtained by 
the EMC method can be reproduced by BIC-fitting 
and using the approximated formula. This approxi-
mated formula is applicable to not only BIC-fitting but 
also other optimization methods and can be used to 
estimate the parameter confidence interval to the same 
extent as when adopting the EMC method.

2. Calculation methods

2.1. Fitting model: pseudo-Voigt function

We first describe the model function used in this study. 
We consider fitting spectral data D ¼ xi; yið Þf g

n
i¼1, 

where n is the number of spectral data points, by sum-
ming pseudo-Voigt functions V x; h; μ;w; rð Þ: 

y ¼ f x; θð Þ ¼
XK

k¼1
V x; hk; μk;wk; rk
� �

: (1) 

The pseudo-Voigt function V x; h; μ;w; rð Þ is fre-
quently used in spectral decomposition. We here 
adopt the sum type of the pseudo-Voigt function, 
defined as a linear combination of the Gaussian and 
Lorentzian functions: 

V x; h; μ;w; rð Þ ¼ h r~L x; μ;wð Þ þ 1 � rð Þ~G x; μ;wð Þ
� �

;

(2) 

~G x; μ;wð Þ ¼ e� log 2ð Þ
x� μ

wð Þ
2

¼ 2�
x� μ

wð Þ
2

; (3) 

~L x; μ;wð Þ ¼
1

1þ x� μ
w

� �2 ; (4) 

where K is the number of peaks. The fitting para-
meters are θ ¼ hk; μk;wk; rk

� �K
k¼1, where hk is the 

peak height, μk is the peak position, wk is the half 
width at half maximum (HWHM) of the peak, and 
rk is the Lorentz–Gauss mixing ratio of the pseudo- 
Voigt functions. In the peak fitting of XPS, the appro-
priate basis function is the Voigt function defined by 
the convolution of a Lorentzian function derived from 
the natural width and a Gaussian function derived 
from a device. Indeed, the pseudo-Voigt function, an 
approximated form of the Voigt function, is com-
monly used because of computational difficulty in 
peak fitting with the Voigt function [7].

A least-squares method is often used to optimize 
fitting parameters. In this method, parameters are 
obtained so as to minimize the error function E θð Þ

Science and Technology of Advanced Materials 21 (2020) 403                                                                                                      H. SHINOTSUKA et al.



representing the difference between the model func-
tion and the spectral data D ¼ xi; yið Þf g

n
i¼1: 

E θð Þ ¼
1

2n

Xn

i¼1
yi � f xi; θð Þf g

2
: (5) 

In spectral decomposition, this problem becomes 
a nonlinear least-squares problem, and it is difficult 
to derive such an optimum solution analytically. It is 
therefore common to find the parameter θ that mini-
mizes the error function based on the gradient 
method. However, there is a problem that the fitting 
result is easily trapped into a local solution depending 
on the selection of initial values. In addition, it is 
impossible to objectively determine the number of 
peaks K from the data. The gradient method also has 
a problem that the confidence interval of the fitting 
parameter cannot be obtained. Bayesian estimation 
can solve these problems as we will see below [6].

2.2. Bayesian spectral deconvolution

Bayesian estimation is a framework in which the pro-
cess of generating data in a probabilistic model is 
formulated and an estimation is made by tracing 
back the causal relationship using the Bayesian theo-
rem [6,8]. By combining Bayesian estimation with the 
exchange Monte Carlo (EMC) method, we may be 
able to not only perform spectral deconvolution but 
also obtain confidence intervals for fitting parameters 
through Bayesian posterior probabilities. It is also 
possible to select a good model by comparing the 
Bayesian free energies of different models with differ-
ent numbers of peaks. In this study, we call this 
method the Bayesian EMC method. Details are 
shown in Appendix A.

2.3. BIC-fitting

It is usually difficult to analytically evaluate the 
Bayesian free energy for model selection because it 
requires multiple integration on the parameter space. 
The BIC is obtained by approximating the multiple 
integration under the assumption that the likelihood 
function can be approximated with a Gaussian distri-
bution for all parameters. The BIC is expressed as the 
sum of a likelihood term and a penalty term, and the 
model is selected on the basis of the trade-off between 
models.

We have developed a low-cost and efficient method 
of obtaining appropriate models in terms of not only 
the fitting parameters but also the number of peaks 
using many initial models and the BIC [5]. The 
method searches many initial fitting models by chan-
ging the degree of smoothing, and then optimizes the 
peak parameters using the modified Levenberg– 
Marquardt method [9–11], which is one of the 

gradient methods. The goodness of the optimized 
models is ranked on the basis of the BIC, written as 

BIC ¼ � 2logL
_

þm log n (6) 

where L̂ is the maximum likelihood calculated from 
the likelihood between the measured spectrum yif g

n
i¼1 

and the model function f xi; θð Þf g
n
i¼1 obtained as 

a result of optimization. m is the number of para-
meters included in the model function. When we 
ignore the background, m ¼ 4K is obtained using 
the number of peaks K. The logarithm of the max-
imum likelihood L̂ can be obtained as 

� 2 log L̂ ¼ n log 2πσ̂2� �
þ 1

� �
; (7) 

σ̂2 ¼
1
n

Xn

i¼1
yi � f xi; θð Þð Þ

2
: (8) 

Using the BIC values of optimized models as a criterion 
for model selection, we can select a simple model with 
reasonably good agreement and a moderate number of 
peaks. We hereafter refer to this technique as BIC- 
fitting in this paper.

BIC-fitting can perform spectral fitting and model 
selection, but cannot obtain confidence intervals for 
fitting parameters. The purpose of this study is to 
extend the BIC-fitting method so that the confidence 
intervals of the fitting parameters can be obtained at 
the same time, using the results of simulation by the 
Bayesian EMC method.

Models used in spectral decomposition are singular 
models whose parameters and properties do not cor-
respond to each other [12,13]. In this case, the BIC 
may have penalty terms different from those in the 
exact evaluation of free energy, and the approximation 
of the BIC may affect the result of model selection. In 
Section 4, we compare the model obtained using the 
Bayesian EMC method with the model obtained from 
BIC-fitting, targeting the analysis of the measured XPS 
spectrum, and we discuss the effectiveness of BIC- 
fitting.

3. Simulation with artificial spectra

In the present study, we use the Bayesian spectral 
decomposition framework described in Section 2 to 
clarify the effects of the peak-to-peak distance in the 
true spectra and the S/N ratio of the data on the 
confidence interval of the estimated parameters. In 
this section, we discuss the simulations performed 
for verification.

3.1. Settings

In the simulation, we use spectral data artificially 
measured by computer simulation. For the data set 
D ¼ xi; yið Þf g

n
i¼1, we take the number of data n ¼ 301 
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and xi between [0.0, 3.0] in steps of 0.01. Assuming 
that the number of peaks K ¼ 2, we define the true 
spectral function f x; θð Þ used for data generation as 

f x; θ�ð Þ ¼
X2

k¼1
V x; h�k; μ

�
k;w

�
k; r
�
k

� �
: (9) 

Here, the true parameters θ� are h�1 ¼ h�2 ¼ 1:0;
w�1 ¼ w�2 ¼ 0:1, and r�1 ¼ r�2 ¼ 0:5. We also fix μ�1 ¼
1:0 and set μ�2 ¼ μ�1 þ Δ at various peak-to-peak dis-
tances Δ for discussion. We generate data in 32 patterns 
for the range 0:0 � Δ � 1:0. We add noise that follows 
a Gaussian distribution with zero mean and variance σ2 

to the data and prepare 14 patterns of σ values in the 
range [0.0005, 10.0]. Hence, the total number of 
prepared data sets is 32� 14 ¼ 448. Three examples 
of artificially measured spectral data are shown in 
Figure 1, where Figure 1(a–c) present spectral data 
with settings of S=N;Δð Þ ¼ 20:0; 0:5ð Þ, 20:0; 0:1ð Þ, 
and 0:2; 0:5ð Þ, respectively.

The S/N ratio of the data can be defined using the 
value of the noise level σ. The intensity of the true 
spectrum is h�1 ¼ h�2 ¼ 1:0, and the signal intensity is 
thus 1.0. In this study, we define the S/N ratio as 
S=N ¼ h�1=σ ¼ 1:0=σ. The range of the S/N ratios in 
the simulation is [0.1, 2000].

We perform a Bayesian estimation for all data sets. 
We assume that the candidate numbers of peaks K are 
one and two. The prior distribution p Kð Þ for the 
number of peaks is thus defined as 

p Kð Þ ¼ 0:5 if K ¼ 1 or 2ð Þ

0 otherwiseð Þ
:

�

(10) 

The prior distribution for each parameter is set as 

p h1ð Þ ¼ p h2ð Þ ¼ Gamma hi; 2:0; 1:0ð Þ; (11) 

p μ1
� �

¼ p μ2
� �

¼ N μi; 1:5; 0:2
� �

; (12) 

p w1ð Þ ¼ p w2ð Þ ¼ Gamma wi; 2:0; 0:5ð Þ; (13) 

p r1ð Þ ¼ p r2ð Þ ¼ U ri; 0:0; 1:0ð Þ; (14) 

where Gamma x; η; θð Þ,N x; ν; �ð Þ; and U x; xMin; xMaxð Þ

are respectively the gamma distribution, Gaussian distri-
bution, and uniform distribution: 

Gamma x; η; θð Þ ¼
1

Γ ηð Þθη xη� 1e� x=θ; (15) 

N x; ν; �ð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
1

2π�2

r

exp �
x � νð Þ

2

2�2

 !

: (16) 

U x; xMin; xMaxð Þ ¼
1

xMax� xMin
ifxMin � x � xMaxð Þ

0 otherwiseð Þ

�

:

(17) 

The prior distribution of the parameters of interest 
can be given by the analyst. However, it is possible to 

predict an appropriate distribution shape by consid-
ering the characteristics of the spectrum. For exam-
ple, the peak height and width must be positive. We 
can infer the approximate range of peak height and 
width values by looking at the structure of the spec-
trum. We have adopted the gamma distribution as 
the distribution function with those characteristics. 
On the other hand, the peak position can move either 
to the positive or negative side. We then adopted the 
Gaussian distribution without any special boundary 
in the prior distribution. Since it is clear that the peak 
position is between 1 and 2, we set a Gaussian dis-
tribution with an average of 1.5 and an STD of 0.2 as 
in Eq. (12). The Lorentz–Gauss mixing ratio can 

Figure 1. Three examples of artificially measured spectra with 
Gaussian noise. The solid line is the true curve f x; θ�ð Þ and the 
dots are the artificially measured spectral data: (a) S=N ¼ 20:0 
and Δ ¼ 0:5, (b) S=N ¼ 20:0 and Δ ¼ 0:1, and (c) S=N ¼ 0:2 
and Δ ¼ 0:5.
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range from 0 to 1 by definition. In this simulation, 
we decided not to impose any further constraints and 
adopted a uniform distribution for the Lorentz– 
Gauss mixing ratio.

As settings of the Monte Carlo method, we use 
50,000 Monte Carlo steps (MCSs) as a burn-in and 
then use 30,000 MCSs for sampling.

The inverse temperatures βm
� �M

m¼1 in the EMC 
method are defined as [14] 

βm ¼
0 m ¼ 1ð Þ

γm� M m�1ð Þ

�

: (18) 

The value of γ and the total number of inverse tem-
peratures M in the equation are set according to the 
level of noise σ added to the data (Table 1).

3.2. Results of Bayesian EMC method and 
derivation of approximated formula

We first show the results of model selection through 
Bayesian estimation. The results of model selection 
corresponding to the spectral data in Figure 1 are 
shown in Figure 2. The straight line represents the 
free energy F Kð Þ and the histogram represents the 
posterior probability p KjDð Þ. It is seen that the correct 
number of peaks K ¼ 2 is estimated in Figure 2(a), 
whereas K ¼ 1 is estimated in Figure 2(b). In the case 
of Figure 2(b), the peak-to-peak distance Δ is too small 
to extract information dividing the spectrum into two 
peaks at the given S/N ratio. In the case of Figure 2(c), 
there is no significant difference between p K ¼ 1jDð Þ

and p K ¼ 2jDð Þ, and we cannot estimate the number 
of peaks because the S/N ratio is too small. Therefore, 
by performing model selection, we expect that we can 
determine the peak-to-peak distance Δ and S/N ratio 
that are necessary for estimating the correct structure 
from the spectral data.

We then perform model selection for various peak- 
to-peak distances Δ and S/N ratios. Results are shown 
in Figure 3. The abscissa represents the S/N ratio and 
the ordinate represents the peak-to-peak distance Δ. 
The values in the figure indicate the posterior prob-
ability p K ¼ 2jDð Þ for K ¼ 2. It is seen that when S/ 
N < 0.5, the number of peaks cannot be estimated 
regardless of the peak-to-peak distance. Furthermore, 
we can clearly classify the region where K ¼ 1 or 2. 
We next discuss the posterior distributions for the 
parameters θ. The posterior probabilities for each 
parameter when Bayesian estimation is performed on 
the spectral data in Figure 1(a) are shown in Figure 4. 
The dashed lines in the figures indicate the true 

parameter values corresponding to the artificially 
measured spectral data. In the case of the peak posi-
tion, the histogram shows the differences in peak 
positions μ1 and μ2 from their true values μ�1 and μ�2, 
respectively. The results show that each parameter is 
estimated with good accuracy in that the distribution 
roughly includes the true value and appears similarly 
to a Gaussian distribution. As exceptions, the HWHM 
w1 and Lorentz–Gauss mixing ratio r1 for k ¼ 1 are 
distributed away from the true values. This might be 
due to the properties of the pseudo-Voigt functions 

Table 1. Settings of the inverse temperature βmf g
M
m¼1 corresponding to Eq. (18).

σ 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
S/N 2000 1000 500 200 100 50 20 10 5 2 1 0.5 0.2 0.1
γ 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
M 128 64 64 64 44 44 32 32 32 32 32 32 32 32

(a) 

(b) 

(c) 

Figure 2. (a)–(c) Results of model selection by Bayesian estima-
tion respectively corresponding to spectral data in Figure 1(a)–(c).
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and that there is large variability around the true 
values depending on the artificially measured spectral 
data. Details are given in Appendix B.

On the basis of the above results, we examine the STDs 
of the posterior distributions of various Δ values and S/N 
ratios to obtain the confidence intervals of these para-
meters. A plot of the relationship between the S/N ratio 
and the STD of the posterior distribution for Δ ¼ 0:5 is 

shown in Figure 5. The results suggest that estimation of 
the Lorentz–Gauss mixing ratio r is the most difficult 
because its STD is larger than the STDs of the other 
parameters. We also find that there is the relationship 
sj / σ between the STD sj j 2 r; μ; h;wf gð Þ and the S/N 
ratio for any peak parameter. An exception is that the 
Lorentz–Gauss mixing ratio deviates from the relation-
ship for S/N < 101. We believe that this is because the STD 

Figure 3. Results of model selection for various peak-to-peak distances Δ and S/N ratios. The values in the figure indicate the 
posterior probability p K ¼ 2jDð Þ for K ¼ 2.

Figure 4. Posterior distribution of each parameter when Bayesian estimation is performed on the spectral data in Figure 1(a). 
Dashed lines indicate the true parameter values used to generate the spectral data.

Science and Technology of Advanced Materials 21 (2020) 407                                                                                                      H. SHINOTSUKA et al.



of r in the posterior distribution cannot exceed the STD 
in the prior distribution defined by Eq. (14) 
1=

ffiffiffiffiffi
12
p

¼ 0:2887
� �

. The STD as a function of the peak- 
to-peak distance Δ for S/N = 100.0 is shown in Figure 6. 

The results indicate that the STD is stable for all para-
meters when Δ > 0.4. Conversely, when Δ � 0:4, the STD 
is larger for smaller Δ, indicating that the estimation is 
unstable. The estimation thus becomes unstable when Δ 
is small because the two peaks overlap. According to this 
analysis, peak overlap begins to affect parameter estima-
tion when Δ is less than about 4 times the HWHM.

As a result of simulations for various artificial spec-
tral data, we found the following features. First, when 
the peak-to-peak distance Δ is large (especially 
Δ> 0:4), the STD of any parameter has the relation 
sj ¼ Bjσ. Next, when sj=Bjσ was plotted against the 
peak-to-peak distance Δ for each parameter, we 
found that any curve with an arbitrary noise level σ 
can be approximated by a single curve. Also, as Δ 
decreases,sj diverges to positive infinity. Although 
a function with such characteristics is not unique, it 
can be expressed as a power function + baseline as one 
of the candidates. However, it is necessary to adjust the 
position of the asymptote where the values diverge, the 
curvature of the curve, and the position where it 
reaches the baseline. Considering such requirements, 
we suggest an approximated formula as follows: 

sj Δ;
σ
h0

� �

¼
σ
h0

Bj
Δ � Ej

Dj

� �Cj

þ 1

( )

;

j ¼ r; μ; h;wf g;

(19) 

where h0 is the true peak height and Δ ¼ Δ=w0 is the 
peak-to-peak distance scaled by the HWHM of the 
true peak w0. Considering the characteristics of each 
peak parameter j ¼ r; μ;A;wf g, we define the scaled 
STDs as 

~sr ¼ sr;~sμ ¼
sμ

w0
;~sh ¼

sh

h0
;~sw ¼

sw

w0
; (20) 

and performed regression using Eq. (19). The fitting 
parameters in Eq. (19) are Bj;Cj;Dj;Ej

� �
. Figure 7 

shows schematic diagrams of values obtained using 
Eq. (19). Figure 7(a) shows ~s as a function of S/N 
¼ h0=σð Þ for B ¼ 10:0; 1:0; 0:1 and 0:01, where the 

Figure 5. STD of the posterior distribution as a function of the 
S/N ratio for Δ = 0.5. Triangles and inverted triangles are 
respectively the STDs of the parameters for the first 
and second peaks.

Figure 6. STD as a function of the peak-to-peak distance Δ for 
S/N = 100.0. Triangles and inverted triangles are respectively 
the STDs of the parameters for the first and second peaks.

(a) (b)

Figure 7. Schematic diagrams of values obtained using Eq. (19). (a) Scaled STD ~s as a function of S/N ¼ h0=σð Þ for B ¼
10:0; 1:0; 0:1 and 0:01, where the peak-to-peak distance Δ is sufficiently large: Δ ¼ 10:0; C ¼ � 3:0;D ¼ 2:0 and E ¼ 0:0. (b) ~s 
as a function of the peak-to-peak distance Δ for several conditions of C;D; Ef g when we set the prefactor of Eq. (19) σB=h0 ¼ 1.
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peak-to-peak distance Δ is sufficiently large. Figure 7 
(b) shows ~s as a function of the peak-to-peak distance 
Δ for several conditions of C;D;Ef g, when we set the 
prefactor of Eq. (19) σB=h0 ¼ 1. By adjusting the 
parameters B;C;D and E, we can express the STD 
of any peak parameter. A description of how to 
optimize the features and parameters of these func-
tions is given in Appendix D. In the present experi-
ments, we fix Dj ¼ 2:5. Although there is no reason 
to fix the value of Dj and it was decided heuristically, 
we confirmed that the fitting result was very good as 
shown in Figure 8. Using the same value for all 
parameters simplifies the formula and improves 
usability. The remaining three features Bj;Cj; and 
Ej are used for regression, and we obtained them as 
shown in Table 2. The regression results are shown 
in Figure 8. The results show that approximate 
regression is achieved under all conditions. In addi-
tion, the range of operable S/N ratios of this equation 
differs between peak parameters; the ranges are pre-
sented in Appendix D.

As will be described later in detail, even when the 
Bayesian EMC method is not used, the confidence 
interval of the peak parameter can be estimated by 
using Eq. (19), after we obtain a fitted spectrum by an 
optimization method such as the BIC-fitting method.

As a further use of this formula, when the S/N 
ratio of the measured spectrum is known, we can 

estimate the peak-to-peak distance that achieves 
a certain confidence interval. Alternatively, when 
the peak-to-peak distance of the measured spec-
trum is known from the chemical shift, we can 
estimate the S/N ratio required to obtain the desired 
confidence interval of the parameter. This makes it 
possible to use Eq. (19) in experimental planning 
such as the setting of measurement time and energy 
resolution for individual measurements.

4. Simulation using a real spectrum

In this section, we analyze real XPS spectra to 
confirm the practicability of the approximated for-
mula in the previous section. As an example of 
a real spectrum, we select a valence spectrum of 
SiO2 from the XPS spectrum databases provided in 
COMPRO software [15] (Figure 9). The binding 
energy EB varies from −10 to 40 eV with an energy 
step of 0.1 eV, resulting in 501 data points. There is 
a strong peak assigned to O2s in the vicinity of 
EB ¼ 27 eV. There is a peak structure derived from 
the hybridization of O2p, Si3s, and Si3p at EB ¼

10 � 18 eV. We apply the Bayesian EMC method 
and BIC-fitting to this spectrum.

4.1. Model function with background

A real spectrum has a background. In addition to the 
superposition of the peaks of the pseudo-Voigt func-
tion of Eq. (1), the Shirley background b x; IS; IEð Þ is 
added to the model function [5]: 

f x; θð Þ ¼
XK

k¼1
V x; hk; μk;wk; rk
� �

þ b x; IS; IEð Þ;

(21) 

(b)(a)

(d)(c)

Figure 8. Results of regression using the fitting function in Eq. (19) of the STDs of the posterior distributions for each parameter. 
Parameters are the (a) Lorentz–Gauss mixing ratio rk , (b) peak position μk , (c) peak height hk , and (d) HWHMs of the peaks wk .

Table 2. Values of the fitted parameters 2 Bj; Cj;Dj; Ej
� �

in Eq. 
(19).

Parameter Bj μj Dj (fixed) Ej

r 1.708 −4.626 2.5 −1.394
μ 0.324 −3.271 2.5 −0.216
h 0.355 −5.756 2.5 −0.540
w 0.504 −3.158 2.5 −0.760
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b x; IS; IEð Þ ¼ IS � IEð Þ
Q

P þ Q
þ IE; (22) 

where IS and IE are respectively the intensity of the 
spectrum on the high-binding-energy side and the 
low-binding-energy side in the analysis range. P and 
Q are respectively the areas of peak intensity from the 
high-binding-energy side to x and the area of the peak 
intensity from the low-binding-energy side to x.

4.2. Settings of the Bayesian EMC method and 
BIC-fitting

In carrying out the Bayesian EMC method, we set the 
candidate number of peaks as K ¼ 1; 2; . . . ; 8. We set 
the prior distributions of each peak parameter as 

p hkð Þ ¼ Gamma hk; 4:0; 70:0ð Þ; (23) 

p μk
� �

¼ U μk; � 10:0; 40:0
� �

; (24) 

p wkð Þ ¼ Gamma wk; 2:0; 2:0ð Þ; (25) 

p rkð Þ ¼ U rk; 0:0; 1:0ð Þ; (26) 

p ISð Þ ¼ N IS; 80:0; 132:25ð Þ; (27) 

p IEð Þ ¼ N IE; 150:0; 132:25ð Þ: (28) 

The values of the inverse temperature βm
� �M

m¼1 in the 
EMC method are M ¼ 24 and γ ¼ 1:5 in Eq. (18). As 
a setting of the Bayesian EMC method, 80,000 MCSs 
are used for the burn-in and a subsequent 80,000 
MCSs for the sampling. The computational conditions 
in BIC-fitting are the same as those in the litera-
ture [5].

4.3. Results and discussion

By the Bayesian EMC method, we can estimate the 
number of peaks as previously mentioned. By plotting 
the marginal likelihood Z Kð Þ and free energy F Kð Þ as 
a function of the number of peaks K, as shown 
in Figure 10(a), we estimated that K ¼ 4 with 
a probability of 97%. BIC-fitting can also be used to 
estimate the number of peaks. Figure 10(b) shows the 
BIC values as a function of the number of peaks K, and 
the model with the smallest BIC is found at K ¼ 4. 
Considering the properties of the singular model, the 
results of model selection using the BIC and free 
energy are not always in agreement [12,13], but in 
the case of this real spectrum, the same number of 
peaks are selected with the two methods. Note that the 
computation by the Bayesian EMC method takes 

(a) (b)

Figure 9. Fitted spectra from Bayesian estimation (a) and BIC-fitting (b) for the experimental valence spectrum of SiO2. Open 
circles are the experimental spectrum, the orange line is the fitted spectrum, the green line is the background, and the black lines 
are all peaks above the background.

(a) (b)

Figure 10. Results of model selection through Bayesian estimation (a) and BIC-fitting (b) for the experimental valence spectrum of 
SiO2. The red circle in (b) indicates the model with the minimum BIC.
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10.5 h, whereas BIC-fitting is completed in less than 
3 min.

Figure 9(a) shows the fitted spectrum of the opti-
mum solution obtained from the sampling results for 
K ¼ 4 by the Bayesian EMC method. The spectrum 
obtained by BIC-fitting is shown in Figure 9(b). We 
find that both methods reproduce the original spec-
trum well, and that the positions and shapes of indi-
vidual peaks are similar. It is note that BIC-fitting 
derived models equivalent to the optimal solutions 
obtained using the Bayesian EMC method, despite 
the limited search space for the solutions.

Using the sampling results of the Bayesian EMC 
method, we obtain the confidence interval from 
a posterior probability of each parameter. Principal 
component analysis (PCA) is performed to find the 
trend of sampled model groups. Figure 11 shows 
a two-dimensional heat map of the first and second 
principal components obtained by PCA with respect 
to the peak positions of the four peaks. Most models 
belong to the group enclosed by a red circle in the 
figure, and optimum solutions are included in this 
group. Models with features different from those of 
the optimal solution also appear with a posterior prob-
ability as high as 0.2%. We decide to exclude such 
minority models obtained using the PCA results and 
then evaluate the posterior probability.

We here focus on two peaks near the binding energies 
EB ¼ 10 and 16 eV. These two peaks are similar in height 
and overlap each other. We set the IDs of the two peaks to 
k ¼ 1 and 2. Specifically, Figure 12 shows the posterior 
probability densities of their peak parameters 

μk; hk;wk; rk
� �

k ¼ 1; 2ð Þ. Looking at Figure 12, the 
shapes of the distributions are almost Gaussian for 
the peak position, height, and width, indicating that the 
sampling was performed appropriately. The distribution 
of the Lorentz–Gauss mixing ratio is widely scattered 
within the defined region, which suggests that the ratio 
is difficult to estimate. The mixing ratio is related to the 
shape of the tail of the pseudo-Voigt function. Our results 
suggest that the shape of the tail of the peak is difficult to 
estimate, because the noise of the target spectrum is 
relatively high. The results of evaluating the STDs of the 

Figure 11. Two-dimensional histogram of PC1 and PC2 
obtained by PCA of EMC sampling.

Figure 12. Posterior probability densities of peak parameters μk; hk;wk; rkf g k ¼ 1; 2ð Þ for two peaks located at about EB ¼ 10 and 
16 eV for the valence spectrum of SiO2.
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posterior probability distributions of these peaks are 
given in Table 3.

The confidence interval of the parameters of the 
two peaks is obtained, using the peak parameters 
obtained by the approximated formula (19) and BIC- 
fitting. It is only necessary to know the estimated peak 
parameters without using the Bayesian EMC method. 
The approximated formula assumes that the heights 
and widths of the two peaks are identical, but this is 
not so for real spectra. In applying the approximated 
formula to the real spectrum, we decide to use the 
average of the two peak heights for h0 and the average 
of peak widths for w0. The STD of noise σ is estimated 
as the root mean square of the residual between the 
original spectrum and the fitted spectrum. We further 
use the peak-to-peak distance Δ obtained from the 
fitted spectrum.

From the peak parameters of the two peaks 
obtained by BIC-fitting, we have h0 ¼ 53:8;w0 ¼ 2:7;
Δ ¼ 6:17; σ ¼ 10:3. The estimated S/N ratio is there-
fore 5:2.

The estimated confidence interval is given in the 
right-hand column of Table 3. The approximated for-
mula reproduces well the actual confidence interval 
obtained from the posterior distribution. The S/N 
ratio is less than 10, and the Lorentz–Gauss mixing 
ratio r is thus outside the applicable range of the 
approximated formula (19), and the confidence inter-
val of r cannot be calculated. The results confirm that 
we can estimate a confidence interval comparable to 
that estimated by the Bayesian EMC method using the 
gradient method and the approximated formula (19) 
when the fitting is good. The approximated formula 
(19) is also applicable to the case where the heights of 
the two peaks are more different. Details are shown in 
Appendix E.

Approximated formula (19) was derived assuming 
that the spectrum consists of two pseudo-Voigt func-
tions. These simplified two functions mean the nearest 
neighbor two peaks of the spectrum consists of more 
than two peaks. Whereas, we must be careful when 
a target peak is sandwiched between two peaks that are 
almost equally spaced because the tails of the target peak 
are overlapping with those of the other two peaks. The 
Lorentz–Gauss mixing ratio contributes to the shape of 
the tail of the peak. Therefore, it is difficult to estimate the 
Lorentz–Gauss mixing ratio of an inner target peak 

whose both tails are not clearly distinguished. By 
using the Bayesian EMC method, in principle, we may 
be able to obtain the confidence intervals of arbitrary 
parameters even when a target peak is sandwiched 
between two peaks and we have to consider what para-
meter should be used to make a model formula of STD. 
This will be a future work.

5. Conclusions

We developed a BIC-fitting method with confidence- 
interval estimation in spectral decomposition. By 
adopting the Bayesian EMC method, we may be able 
to not only estimate the number of peaks but also 
optimize peak parameters, such as the Lorentz– 
Gauss mixing ratio, in addition to the peak intensity, 
peak position, and peak width. Using this method, we 
may also be able to obtain the confidence interval 
through the STD of the Bayesian posterior distribu-
tion. We set various peak-to-peak distances and S/N 
ratios to generate data on a computer, and then 
applied Bayesian estimation to obtain the behavior of 
model selection and the STD of Bayesian posterior 
distributions for each peak parameter through com-
puter simulation. As a result, an approximated for-
mula expressing the relationship between the obtained 
STD and the peak-to-peak distance or S/N ratio was 
derived. In terms of practical use, we confirmed the 
usefulness of the approximated formula for a real 
valence spectrum of SiO2. The confidence interval of 
each parameter was estimated using the peak para-
meter obtained by BIC-fitting, and it was confirmed 
that the value agreed well with the confidence interval 
obtained directly from the posterior probability 
obtained using the Bayesian EMC method. In short, 
even with low-cost optimization methods such as BIC- 
fitting, we can now estimate confidence intervals of 
fitting parameters that are comparable to those esti-
mated by high-cost Bayesian EMC methods. Using the 
approximated formula derived in this study, we may 
be able to estimate the S/N ratio required to obtain the 
desired parameters with the desired confidence inter-
val, which will be useful in experimental planning such 
as the setting of measurement time and energy resolu-
tion for individual measurements.

In this study, we treated the peak shapes of the XPS 
spectra as pseudo-Voigt functions. In practice, the 
suitable basis function is a Voigt function defined by 
the convolution of a Lorentzian function derived from 
the natural widths and a Gaussian function derived 
from a device. We will consider peak fitting based on 
convoluted Voigt functions in our future work.
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Table 3. Calculated confidence intervals of the posterior dis-
tribution for all peak parameters and those estimated using 
Eq. (19).

Parameter

Confidence 
interval for 
peak k = 1

Confidence 
interval for 
peak k = 2

Confidence interval esti-
mated using Eq. (19) and 

the BIC-fitting model

μ 0.22 0.21 0.34
h 2.35 3.69 5.48
w 0.33 0.32 0.40
r 0.12 0.27 �
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Appendix A. Bayesian spectral deconvolution

In this section, we describe Bayesian spectral decomposition used to fit the spectral data and estimate the number of peaks.

A.1 Bayesian estimation

Bayesian estimation is a framework in which the process of generating data in a probabilistic model is formulated and an 
estimation is made by tracing back the causal relationship using the Bayesian theorem. We first define a probabilistic model. It 
is assumed that the spectral data y are generated by adding noise ε to the spectrum function f x; θð Þ: 

y ¼ f x; θð Þ þ ε: (A � 1) 
We assume that ε follows a Gaussian distribution with zero mean and variance σ2, and the conditional probability p yjx; θð Þ of 
the spectral data y is then formulated as 

p yjx; θð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2πσ2
p exp �

1
2σ2 yi � f xi; θð Þf g

2
� �

: (A � 2) 

Assuming that data yif g
n
i¼1 are independent and identically distributed, using the error function E θð Þ, we obtain the 

probability of the data set D ¼ xi; yið Þf g
n
i¼1 as 

p Djθð Þ ¼
Yn

i¼1
p yijxi; θð Þ / exp �

n
σ2 E θð Þ

� �
: (A � 3) 

For the Gaussian probability model, the maximum likelihood estimation method that maximizes p Djθð Þ is equivalent to the 
well-known least-squares method.

In the Bayesian estimation, we regard not only the data D but also the parameter set θ and the number of peaks K as 
random variables; i.e., we construct a model of the simultaneous probability distribution p D; θ;Kð Þ: 

p D; θ;Kð Þ ¼ p Djθ;Kð Þp θjKð Þp Kð Þ
/ exp � n

σ2 E θð Þ
� �

p θjKð Þp Kð Þ: (A � 4) 

Here, p Kð Þ and p θjKð Þ are prior distributions, and they should be set in advance.
We estimate the parameter θ using the posterior distribution p θjD;Kð Þ: 

p θjD;Kð Þ ¼
p D;θ;Kð Þ

p D;Kð Þ
¼

p D;θ;Kð Þ

ò p D;θ;Kð Þdθ

¼
exp � n

σ2E θð Þð Þp θjKð Þ

ò exp � n
σ2E θð Þð Þp θjKð Þdθ

¼ 1
Z Kð Þ exp � n

σ2 E θð Þ
� �

p θjKð Þ;

(A � 5) 

where 

Z Kð Þ ¼ ò exp �
n
σ2 E θð Þ

� �
p θjKð Þdθ: (A � 6) 

This technique for obtaining the parameter θ that maximizes the posterior distribution p θjD;Kð Þ is a maximum a posteriori 
(MAP) estimation, and the parameter θ at this time is called the MAP estimator. Bayesian estimation has the advantage that 
both the optimum value of the parameter and the confidence interval can be evaluated by obtaining the width of the posterior 
distribution p θjD;Kð Þ.

We use the posterior probability p KjDð Þ to estimate the number of peaks K. This can be done by adopting the procedure of 
probability marginalization: 

p KjDð Þ ¼
p D;Kð Þ

p Dð Þ ¼
ò p D;θ;Kð ÞdθP

k
ò p D;θ;Kð Þdθ

¼
ò exp � n

σ2E θð Þð Þp θjKð Þp Kð Þdθ
P

k
ò exp � n

σ2E θð Þð Þp θjkð Þp kð Þdθ
¼

p Kð ÞZ Kð ÞP
k

p kð ÞZ kð Þ
;

(A � 7) 

where 
P

k represents the sum of the numbers of peaks k. The denominator in Eq. (A-7) does not depend on K because it is 
the sum of all peaks k. We thus obtain 

p KjDð Þ / p Kð ÞZ Kð Þ: (A � 8) 
Therefore, to obtain the posterior probability p KjDð Þ with respect to the number of peaks, we need to calculate Z Kð Þ. The 
Bayesian free energy is defined as 

F Kð Þ ¼ � log Z Kð Þ
¼ � log ò exp � n

σ2 E θð Þ
� �

p θjKð Þdθ: (A � 9) 

If p Kð Þ is uniformly distributed, the maximization of the posterior probability p KjDð Þ is equivalent to the minimization of the 
Bayesian free energy F Kð Þ. The number of peaks K can therefore be estimated by minimizing the Bayesian free energy.

Science and Technology of Advanced Materials 21 (2020) 414                                                                                                      H. SHINOTSUKA et al.



A.2 Exchange Monte Carlo method

How to evaluate a posterior probability p θjD;Kð Þ is a problem when calculating the spectral decomposition through Bayesian 
estimation. In the case of spectral decomposition, the posterior distribution for the parameter θ is difficult to handle because the 
distribution does not become a known distribution, such as a Gaussian distribution. As an example, it is difficult to determine 
the MAP estimators because of the presence of local solutions. Furthermore, when we attempt to determine the confidence 
interval of the parameter θ, it is necessary to determine the shape of the distribution itself, which is much more difficult.

The exchange Monte Carlo (EMC) method [8] solves the above problems. In this study, the method described below is 
called the Bayesian EMC method, which is a Markov-chain Monte Carlo method. We prepare a plurality of distributions, 

pβ θjDð Þ ¼
1

Zβ Kð Þ
exp �

nβ
σ2 E θð Þ

� �

p θjKð Þ; (A � 10) 

Zβ Kð Þ ¼ ò exp �
nβ
σ2 E θð Þ

� �

p θjKð Þdθ; (A � 11) 

in which the inverse temperature β is introduced into the posterior distribution, and simultaneously perform sampling in 
parallel. That is, the target distribution becomes the simultaneous distribution 

p θ1; . . . ; θMð Þ ¼
YM

m¼1
pβm

θmjDð Þ: (A � 12) 
Here, the inverse temperature βm

� �M
m¼1 is 0 ¼ β1 < β2 < � � � < βM ¼ 1 and M is the number of prepared temperatures. θm is 

the fitting parameters for inverse temperature βm. For βM ¼ 1, pβM
θMjDð Þ matches the posterior distribution p θjD;Kð Þ.

The algorithm of the EMC method comprises two updates.
Metropolis sampling for each temperature. For each inverse temperature βm, we sample θm from the distribution of pβm

θjDð Þ

using the Metropolis algorithm.
State exchange between adjacent temperatures. We exchange states between adjacent temperatures and set 

θm; θmþ1f g ! θmþ1; θmf g. We determine whether to exchange on the basis of the probability 

p θm $ θmþ1ð Þ ¼ min 1; vð Þ; (A � 13) 

v ¼ pβm θmþ1jDð Þpβmþ1 θmjDð Þ

pβm θmjDð Þpβmþ1 θmþ1jDð Þ

¼ exp βmþ1 � βm
� �

E θmþ1ð Þ � E θmð Þð Þ
� � (A � 14) 

As a result, the parameter θM obtained from the M-th inverse temperature βM can be regarded as sampling from the posterior 
distribution p θjD;Kð Þ. Thus, by repeating the above procedure sufficiently many times and recording θM, we obtain a sample 
sequence from the posterior distribution p θjD;Kð Þ and we can determine the MAP estimators and confidence interval.

There are two advantages of the EMC method. The first is that heating and annealing effects can be introduced by 
stochastically exchanging samples between adjacent temperatures during the sampling of each distribution. We thereby 
escape local solutions and efficiently search for global solutions. This is an important advantage for the accurate estimation of 
MAP estimators and confidence intervals. The second is that the free energy F Kð Þ can also be calculated using the results of 
the EMC method. We introduce the inverse temperature β into the free energy: 

f βð Þ ¼ � log
ð

exp �
nβ
σ2 E θð Þ

� �

p θjKð Þdθ: (A � 15) 

At the high-temperature limit β ¼ 0, it holds that f βð Þ ¼ 0. The desired free energy F Kð Þ ¼ f β ¼ 1ð Þ is expressed as 

F Kð Þ ¼ f β ¼ 1ð Þ ¼

ð1

0
dβ
@f
@β
; (A � 16) 

@f
@β ¼

ò n
σ2E θð Þ exp � nβ

σ2E θð Þð Þp θjKð Þdθ

ò exp � nβ
σ2E θð Þð Þp θjKð Þdθ

¼ ò n
σ2 E θð Þpβ θjDð Þdθ; n

σ2 E θð Þpβ θjDð Þ:

(A � 17) 

F Kð Þ is therefore an integral of the expected value n
σ2 E θð Þpβ θjDð Þ under the probability distribution pβ θjDð Þ with respect to 

the inverse temperature β in the range from 0 to 1. In addition, because the results of the EMC method provide samples at 
each inverse temperature βm, the expected value n

σ2 E θð Þpβm θjDð Þ can be calculated. Therefore, by using the piecewise quadrature 
method, we can calculate the free energy and perform model selection [6,16].

Appendix B. Effects of changes in the data set

We here discuss how the data set affects the posterior distribution of parameter θ shown in Figure 4. Specifically, we 
generate five data sets in which only the noise (initial random seed) is changed under the same condition as that in 
Figure 1(a), and we then perform Bayesian estimation for each data set. The results of model selection and the 
posterior distributions of the parameters w1;w2; r1; and r2 are shown in Fig. A-1. The results for the zero seed are the 
same as those in Figure 2(a) and 4. It is seen that the results of model selection are stable regardless of the data set. In 
Fig. A-1, deviation from the true values for w1 and r1 in Figure 4 is strongly affected by the noise added to the data. 
To reduce this deviation, spectral data must be measured so that the S/N ratio improves. It also seems that the 
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deviations from the true values are correlated between parameters. For example, there is a negative correlation between 
w1 and r1; when w1 shifts to a larger value, the corresponding r1 shifts to a smaller value. We have discussed this result 
in detail in Appendix C.

Appendix C. Correlation structure in the posterior distribution of the parametersp θjDð Þ

The two-dimensional distribution of parameters θ is shown in Fig. A-2. The diagonal components of the figure show the 
histogram of the posterior distribution for each parameter. The lower off-diagonal components show two-dimensional 
distributions, whereas the upper off-diagonal components represent correlation coefficients defined by 

ρX;Y ¼
cov X;Yð Þ

sXsY
; (A � 18) 

where sX and sY are respectively the STDs of X and Y data, whereas cov X;Yð Þ is the covariance between X and Y data. μ is 
almost uncorrelated with other parameters, whereas the parameters h;w, and r are strongly correlated with each other. This 
correlation is considered to be an intrinsic property of the model that comes from the constraint that the change in the 
spectral shape is small. Considering the various correlations, it may be possible to estimate a property derived from a spectral 
parameter, such as a peak area intensity.

Appendix D. Features of the regression function and the optimization method of the parameters

The functional form of Eq. (19) with fitting parameters B;C;D; and E is 

s Δ;
σ
h0

� �

¼
σ
h0

B
Δ � E

D

� �C

þ 1

( )

(A � 19) 

σ=h0 is the reciprocal of the S/N ratio. B is associated with the asymptote of the value of the STD at which the scaled peak-to- 
peak distance Δ is sufficiently large. C is a negative value related to the curvature of the function. The larger the Cj j value, the 
more rapidly the STD increases as Δ decreases. D is a parameter for adjusting the scale in the Δ-axis direction. E is the position 
of the asymptote on the Δ axis, and the normal deviation ~s diverges to positive infinity as Δ approaches E; i.e., the domain of 
this function is Δ> E.

(a) 

(b) 

(c) 

(d) 

(e) 

Figure A-1. Results of model selection and posterior distributions p wkjD; Kð Þ and p rkjD; Kð Þ. (a)–(e) only differ in the initial random 
seeds used in generating the spectral data sets under the same conditions as those in Figure 1(a).

Science and Technology of Advanced Materials 21 (2020) 416                                                                                                      H. SHINOTSUKA et al.



The fitting parameters are optimized using the trust region reflective algorithm [17]. The parameters are optimized so as to 
minimize the square error on a logarithmic scale with a constraint condition. We fix D ¼ 2:5, as described in the text, and 
impose the constraints 0<B<1; � 1<C< 0 and � 5<E< 0. We also assume that the range of peak-to-peak distances to be 
optimized is Δ � 0:4. The ranges of the S/N ratio to be optimized are S=N � 10:0 for r, S=N � 1:0 for μ, S=N � 2:0 for h, and 
S=N � 5:0 for w.

We perform the optimization using the curve_fit function in the SciPy library of Python3.6.

Appendix E. Application of approximated formula (19) to a combination of a large peak and a weak 
peak

In a real spectrum, it is common for a satellite peak to overlap a main peak. Therefore, assuming an application to a real 
spectrum, we simulated the case where the heights of the two peaks are different. First, artificial spectra were generated under 
two conditions, and the posterior distribution obtained by Bayesian EMC was investigated in detail. Next, we systematically 
changed the peak height and investigated whether the approximation formula (19) for the confidence interval of the 
parameter can be applied.

First, we show two calculation examples. Two artificial spectra were generated under two conditions as shown in 
Figs. E-1 (a) and (b). The conditions for the artificial spectra are as follows. The peak heights are h�1; h�2

� �
¼ 1:0; 0:5ð Þ

for Fig. E-1(a) and h�1; h�2
� �

¼ 1:0; 0:1ð Þ for Fig. E-1(b). Other peak parameters are common, the peak positions are 
ðμ�1; μ

�
2Þ ¼ 1:0; 1:2ð Þ, the HWHMs are w�1 ¼ w�2 ¼ 0:1, and the Lorentz–Gauss mixing ratios are r�1 ¼ r�2 ¼ 0:5. The 

background is not taken into consideration. The STD of Gaussian noise is σ ¼ 0:02. We applied the Bayesian EMC 
method to each spectrum. As a result, a model with two peaks was selected for both spectra. The fitted results of 
Bayesian estimation for each spectrum are shown in Figs. E-1 (a) and (b).

Figures E-2 and E-3 show the posterior distributions of the fitting parameters corresponding to the spectra in Figs. E-1 (a) and 
E-1 (b), respectively. Figure E-2 shows that each parameter is estimated with good accuracy in that the distribution roughly 
includes the true value and appears similarly to a Gaussian distribution. The confidence interval of the parameters of the second 
peak is broader than that of the first peak, except for the confidence interval of peak height. The small second peak has a relatively 

Figure A-2. Two-dimensional distribution of parameters θ. The diagonal components of the figure show the histogram of the 
posterior distribution of each parameter. The lower off-diagonal components are two-dimensional distributions, whereas the 
upper off-diagonal components show the coefficients of correlation between two parameters. The dotted lines indicate the true 
parameter values used to generate the spectral data.
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low S/N ratio because the Gaussian noise is uniformly applied to the entire spectral range. As a result, the parameters of 
the second peak became more difficult to estimate, and their confidence intervals became wide. On the contrary, the posterior 
distributions of two peak heights have similar confidence intervals because the Gaussian noise is uniformly applied. Figure E-3 
shows that the posterior distributions of the second peak parameters are unclear. It is, thus, difficult to estimate the parameters of 
a small peak. This is probably because the height of the second peak is small and it is very strongly affected by noise.

Next, to investigate the applicability of approximated formula (19), we prepared artificially measured spectra in which 
the height of the second peak was systematically changed. The conditions of the spectra were almost the same as those in 
Fig. E-1 (a), but the heights of the second peak were changed as h�2 ¼ 0:1; 0:2; 0:3; . . . ; 1:0. We applied the Bayesian EMC 
method to each spectrum and calculated the confidence intervals for each fitting parameter after filtered by PCA as in 
Section 4. Figure E-4 shows the confidence intervals as a function of the height of the second peak h�2. We also plotted the 
values of confidence intervals calculated using approximated formula (19) using the true peak parameters. From this figure, 
it is confirmed that even if the heights of the two peaks are different, the approximated formula (19) can reproduce the 
actual confidence intervals obtained by the Bayesian EMC method. However, when h�2 ¼ 0:1, the confidence interval of the 
parameter of the second peak does not agree well with the approximated formula. Note that it is difficult to apply the 
approximated formula (19) when the parameters are difficult to estimate owing to the strong effect of noise.

(a) (b) 

Figure E-1. Two examples of artificial spectra that have two peaks with different heights: (a) h�1 ¼ 1:0; h�2 ¼ 0:5, (b) 
h�1 ¼ 1:0; h�2 ¼ 0:1. The other parameters are the same. Open circles are the artificial spectrum, the orange line is the fitted 
spectrum, and the black lines are the peak components.

Figure E-2. Posterior distribution of each parameter when Bayesian estimation is performed on the spectral data in Fig. E-1(a). The 
dashed lines indicate the true parameter values used to generate the spectral data.
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Figure E-3. Posterior distribution of each parameter when Bayesian estimation is performed on the spectral data in Fig. E-1(b). The 
dashed lines indicate the true parameter values used to generate the spectral data.

Figure E-4. Confidence intervals of peak parameters as a function of the height of the second peak h2 for peaks 1 (a) and 2 (b). (sim) 
indicates values simulated by the Bayesian EMC method, (approx) indicates values calculated with the approximated formula (19).
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