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A B S T R A C T   

Over the past year, the AI community has constructed several deep learning models for diagnosing COVID-19 
based on the visual features of chest X-rays. While deep learning researchers have commonly focused much of 
their attention on designing deep learning classifiers, only a fraction of these same researchers have dedicated 
effort to including a segmentation module in their system. This is unfortunate since other applications in radi
ology typically require segmentation as a necessary prerequisite step in building truly deployable clinical models. 
Differentiating COVID-19 from other pulmonary diseases can be challenging as various lung diseases share 
common visual features with COVID-19. To help clarify the diagnosis of suspected COVID-19 patients, we have 
designed our deep learning pipeline with a segmentation module and ensemble classifier. Following a detailed 
description of our deep learning pipeline, we present the strengths and shortcomings of our approach and 
compare our model with other similarly constructed models. While doing so, we focus our attention on widely 
circulated public datasets and describe several fallacies we have noticed in the literature concerning them. After 
performing a thorough comparative analysis, we demonstrate that our best model can successfully obtain an 
accuracy of 91 percent and sensitivity of 92 percent.   

1. Introduction 

The artificial intelligence (AI) research community has recently 
invested considerable time and resources into developing deep learning 
models based on chest radiographs for the purpose of diagnosing coro
navirus disease 2019 (COVID-19). Many medical institutions are finding 
themselves in difficult positions when faced with countless numbers of 
patients presenting with symptoms of the illness. There is a need for new 
diagnostic models to alleviate this important need. Recently deep 
learning techniques have come to permeate “the entire field of medical 
image analysis” [1]. With deep learning methodologies, AI researchers 
have made considerable progress in improving the quality of automated 
diagnostic medical imaging systems. Because of their pioneering work, 
many promising directions are now opening up that could potentially 
help diagnose COVID-19. 

There are several kinds of COVID-19 tests that are currently on the 
market. Molecular tests (polymerase chain reaction tests), Antigen tests 
(rapid tests), and antibody tests (blood tests) have seen widespread use. 
Of these three tests, the real-time reverse transcription-polymerase 
chain reaction (RT-PCR) test is considered the present gold standard 

for diagnosing COVID-19 [2]. RT-PCR tests are not perfect however and 
reports have been made considering problems with the tests overall 
sensitivity [3]. Luo et al. [4] in a study including 4653 participants 
found that RT-PCR tests have a sensitivity of around 71%. Kucirka et al. 
[5] in a Johns Hopkins study reported that an RT-PCR test’s sensitivity 
has wide variability over the 21 days after a patient is first exposed. They 
also noted that “although the false-negative rate is minimized 1 week 
after exposure, it remains high at 21%” [5]. Kucirka et al. [5] therefore 
ultimately found that it takes about a week from the time of symptom 
onset, for RT-PCR testing to deliver the lowest false-negative rate. This 
leaves room for other tests that may work better over the time that 
RT-PCR tests are less accurate. Radiological testing is a leading 
contender in the research community for such a scenario. Research has 
been shown it to be useful over the time that a patient has obtained a 
negative RT-PCR test [6]. It can therefore be used in conjunction with 
other tests and possibly give more clarity regarding a patients current 
diagnosis. 

Many researchers have focused on using computerized tomographic 
(CT) scanners in diagnosing COVID-19 because of their ability to analyze 
three-dimensional information. As a modality for COVID-19 testing, 
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however, CT scanners are expensive resources to employ. For a system to 
be practical during a pandemic, a cheaper and faster solution needs to be 
available to deal with the sheer number of patients waiting for a test. 
Chest X-rays (CXRs) are the other alternative modality typically 
employed by radiologists in imaging thoracic illnesses such as COVID- 
19. Some advantages of chest X-rays for this particular application 
include the portability of an X-ray scanner, the requirement of only 
cleaning a single surface when reusing it on patients, the speed of the 
diagnostic measurements required, and the overall expense of the pro
cedure. Given these significant advantages, it is entirely practical for 
researchers to explore the use of X-ray technology in COVID-19 testing. 

Before discussing how a proposed deep learning pipeline can di
agnose COVID-19 in suspected patients, we first need to understand the 
features in a patients lungs that require imaging. Rousan et al.[7] in a 
study involving 88 patients, found that ground-glass opacities (GGO) 
were the most frequent finding in COVID-19 X-rays. The chest X-rays of 
normal patients generally show a black background within a patients 
lungs. In chest X-rays with GGOs, radiologists find lighter colored 
patches of haziness that are indicative of a possible pathology. Rousan 
et al.[7] also found that consolidation increases in severity in the X-rays 
of many COVID-19 patients up until approximately the second week of 
the illness. This aligns well with another study performed by Song et al. 
[8] who found that consolidations do indeed increase as the disease 
progresses. Consolidation in radiography represents areas of a patient’s 
lungs that are filled with extraneous liquids (pus, blood, and water) and 
solid materials (stomach contents or cells) that do not exist in healthy 
lungs. In comparing the number of COVID-19 X-rays with consolidation 
vs. GGOs, consolidation tends to occur less frequently. It is still, how
ever, the second most frequent visual cue mentioned in the radiological 
literature. Fig. 1 shows the chest X-rays of two older patients with 
COVID-19 showing the aforementioned symptoms. 

Many deep learning X-ray studies up until now have solely focused 
on classification in diagnosing COVID-19 in X-rays. While excellent 
research has occurred in this space, the number of articles dealing with 
COVID-19 X-ray segmentation has been quite limited. Segmentation is 
an important preprocessing technique that can shield a classifier from 
unnecessary pixel information when categorizing an image. In this way, 
many imaging-based studies in other computer vision applications have 
found that proper segmentation has increased the overall accuracies of 
their classifiers [9–11]. It is vital, therefore, to employ segmentation 
when training a COVID-19 classifier. The following lists the main con
tributions of our work:  

• Our pipeline employs an advanced segmentation network (ResUnet 
[12])  

• We have made available a COVID-19 X-ray classification dataset that 
is larger than all similar datasets we have found in the literature  

• Our overall pipeline makes use of majority voting and weighted 
average ensembles  

• We have included a thorough comparative analysis that benchmarks 
our model’s performance against other deep learning models in the 
literature 

Our work begins in Section 2 with an overview of various research 
studies that have constructed segmentation-classification deep learning 
pipelines to diagnose COVID-19. In Section 3, we thereafter present our 
proposed deep learning pipeline’s architecture, showing the internal 
details of our segmentation and classification modules. Following a 
discussion of our pipeline’s architecture, in Section 4 we present the 
experimental results of our overall system. In Section 4, we additionally 
present a detailed comparative analysis of our pipeline versus other 
well-constructed models in the literature. Concluding in Section 5, we 
discuss potential future directions for this research. 

2. Related works 

There are many papers in the literature that use deep learning clas
sification and segmentation for making medical predictions [13–17]. 
Our main focus in this review, however, is on COVID-19 X-ray articles 
that combine a segmentation unit and classifier [18–26]. We did so in 
order to see how our deep learning pipeline compares with the studies 
that are the most related to our own. There are several public datasets 
available in circulation for segmenting chest X-rays that have been cited 
in the articles below. There are also a number of public and private 
datasets mentioned in these articles that were prepared specifically for 
COVID-19 classification. The following works below are all studies that 
influenced how we ultimately implemented our final system. 

Rajaraman et al. [18] created a segmentation – classification deep 
learning pipeline to diagnose COVID-19 that included an ensemble of 
iteratively pruned CNNs. The authors trained several CNN models 
(VGG-16/VGG-19 [27], Inception-V3 [28], Xception [29], 
DenseNet-201 [30], etc.) after their dataset had been preprocessed by a 
U-Net [31] segmentation module that included a Gaussian dropout layer 
[32]. The authors of this paper tried to employ many different ensemble 
strategies and, in the end, found that weighted averaging produced the 
best results. The authors of this paper unfortunately listed Kermany 

Fig. 1. Lungs of 2 older COVID-19 patients revealing (a) bilateral consolidation and (b) ground glass opacities (white arrows) and linear opacity (black arrow) [7].  
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et al.’s [33] dataset as being contained in their dataset which likely 
contributed to exaggerated evaluation metrics. It is incorrect to bias a 
dataset with only certain categories of the dataset having images of 
children’s lungs. 

Alom et al. [19] designed an X-ray-based system that diagnoses 
COVID-19 with a NABLA-N segmentation network [34] and an Inception 
Residual Recurrent Convolutional Neural Network (IRRCNN). Their 
X-ray model is initially trained on a normal vs. pneumonia dataset first 
as more images are in the public sphere for making such a comparison. 
After obtaining acceptable performance on this separate task, they 
fine-tune their model on a smaller COVID-19 dataset. This 
segmentation-classification pipeline ultimately achieves a final test ac
curacy of 84.67 percent. The authors of this paper, unfortunately, used 
Paul Mooney’s chest X-ray dataset on Kaggle [35] to obtain pneumonia 
and normal images for training their classifiers. This contains images 
from Kermany et al.’s dataset [33] of children’s lungs. Their classifier 
was intended for identifying COVID-19 in adult lungs. Training a clas
sifier with children’s lungs that is intended for adult lungs is incorrect, 
however, and caused Alom et al.’s [19] classifier to be biased. They used 
normal images from children but COVID-19 images from adults in their 
dataset. Their normal vs. COVID-19 classifier, therefore, incorrectly 
could use the features of adult lungs to identify COVID-19. 

Yeh et al. [20] combined several public datasets as well as datasets 
from several private medical institutions when training their 
segmentation-classification pipeline. Unlike the two previous studies, 
the authors of this work look like they have constructed an unbiased 
dataset. They do, however, reference several private datasets that are 
unavailable to the research community. It is therefore impossible to 
directly compare our pipeline against their work. They initially trained a 
U-Net segmentation model [31] as a preprocessing step to exclude 
non-informative regions of CXRs from their model. Yeh et al. [20] 
trained this segmentation unit on the Montgomery County X-ray Set and 
the Shenzhen Hospital X-ray Set [36]. After training their segmentation 
unit, they obtained a dice similarity coefficient (DSC) of 88 percent. 
Following this preprocessing step, they trained a DenseNet-121 [30] 
classifier on segmented images and obtained a COVID-19 sensitivity of 
83.33% on their validation set. Their hold-out test set contained 306 
COVID-19 images and their final COVID-19 sensitivity on this test set 
corrected to 81.8 percent. 

Horry et al. [37] developed a segmentation–classification deep 
learning pipeline for diagnosing COVID-19 that was trained and tested 
on a relatively small preprocessed dataset. While Horry et al.’s [37] final 
curated dataset was not biased, it contained only 100 COVID-19 images, 
so it is difficult to ultimately know how well their work would translate 
to a larger number of images. Horry et al. [37] additionally removed 
images from their dataset which contained features they believed their 
model would have difficulty classifying. The authors’ segmentation 
model was not based on a deep learning model. They simply used 
OpenCV’s GrabCut function and reasoned that “that the lung area could 
be considered the foreground of the X-ray image” [37]. After pre
processing they trained five base models with their segmented images 
(VGG-16 [27], VGG-19 [27], Inception-V3 [28], Xception [29], and 
ResNet-50 [38]). Their best base model (VGG-19 [27]) ultimately ach
ieved an F1-score of 81 percent. 

Wehbe et al.’s [21] published deep learning pipeline that was trained 
on the largest COVID-19 X-ray dataset we have found reported in the 
literature. The authors developed their pipeline by working in collabo
ration with a private US medical institution. Their large classification 
dataset is therefore inaccessible to the public at this time. This dataset 
also appears to have not been improperly biased with the inclusion of 
incorrect data. The authors were aware of the need to divide their 
training and test sets by patient number. The authors chose to train their 
U-Net-based segmentation module [31] on the Montgomery [36] and 
JSRT [39] datasets. Wehbe et al. [21] in their study also created an 
ensemble model to detect COVID-19. Their final model contained a 
weighted average of 6 popular CNNs (Inception [28], Inception-ResNet 

[40] Xception [29], and ResNet-50 [38], DenseNet-121 [30], and 
EfficientNet-B2 [41]). An important reason to include this paper in our 
discussion is that the authors managed to perform an interesting study 
that up until now we have not seen reproduced elsewhere. The authors 
commissioned a study involving five radiologists to determine the 
effectiveness of experts in the field in differentiating COVID-19 from 
other illnesses. This is important when trying to approximate Bayes error 
prior to building a deep learning model. Wehbe et al.’s [21] compared 
the results of their model with the performance of expert radiologists 
and discovered their model to a minor extent outcompetes them. Their 
final binary weighted average model obtained a final accuracy of 82% 
on their test set. The expert radiologists manually obtained a consensus 
accuracy of 81% on the same images. These final results coincided very 
nicely with one another. 

Tabik et al. [22] created a dataset dubbed the “COVID-GR-1.0” 
dataset which was used in training their “COVID-SDNet” model in 
diagnosing COVID-19. Their dataset was divided in a novel fashion 
whereby COVID-19 positive patients were subdivided into four risk 
categories (normal-PCR+, mild, moderate, and severe). The authors 
created this dataset to see how many of weak COVID-19 cases would be 
analyzed by a prospective classifier correctly. More often than not, in 
COVID-19 datasets, there is an unequal number of severe COVID-19 
patients. Typically, patients who end up undergoing a radiological ex
amination end up being patients experiencing increased complications. 
COVID-GR-1.0 is a small but well-curated dataset that has utility in that 
it can be employed to determine a classifier’s efficacy on weak 
COVID-19 images. Tabik et al.’s [22] pipeline consisted of a segmenta
tion module and a classification module that performs “inference based 
on the fusion of CNN twins.” [22] The authors used a U-Net [31] seg
mentation module and trained it on the Montgomery County X-ray 
dataset [36], the Shenzhen Hospital X-ray datasets [36] and the RSNA 
Pneumonia CXR challenge dataset [42]. They calculated the smallest 
rectangle around each segmented image and added a border containing 
2.5% of the pixels around each rectangle to obtain their final masked 
images. The X-rays they segmented were, therefore, never fully masked. 
The authors did not want to exclude relevant information in these im
ages that could contain useful diagnostic information. After performing 
binary classification on their segmented COVID-GR-1.0 dataset, Tabik 
et al.’s [22] classifier obtained a COVID-19 sensitivity of 72.59%. 

Teixeira et al. [23] designed a segmentation–classification pipeline 
used to diagnose COVID-19 that consisted of a U-Net [31] and Incep
tionV3 [28] CNN. Their U-Net [31] segmentation module was trained on 
images and masks that were hand-picked from a mixture of public 
datasets [36,39,43]. The number of images and mask pairings they 
chose in the Darwin V7 labs [43] segmentation dataset (489) was 
significantly lower than the total number of pairings available in that 
dataset (6504). This approach looks as though it allowed them to train 
their U-Net [31] to have a higher dice similarity coefficient (0.982) than 
other segmentation units we have seen in the literature for this task. For 
classification they otherwise used the RYDLS-20 dataset [44]. They had 
developed this dataset in a previous work and further added images to it 
to create a new “RYDLS-20-v2” dataset. They attempted to use several 
classifiers but ultimately found that using an InceptionV3 [28] CNN 
resulted in giving them their best overall multiclass performance 
metrics. 

Oh et al. [24] published a novel “patch-based deep neural network 
architecture with random patch cropping” [24] for detecting COVID-19. 
Their model initially begins with a preprocessing step whereby a fully 
convolutional DenseNet-103 segments incoming chest X-rays. The au
thors thereafter use a ResNet-18 on the segmented images for classifi
cation. The authors generate 100 randomly cropped patches from the 
previously segmented chest X-rays and feed those patches through 
ResNet-18s as well. In this process, the authors have selected a sufficient 
number of lung patches to ensure that the entire surface area of the 
segmented lungs is covered. The authors of this paper unfortunately 
selected images from Kermany et al. [33] to include in their work and 
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thereby biased their classifier. 
Abdullah et al. [25] implemented a segmentation – classification 

pipeline that used a unique segmentation unit and ensemble model for 
classification. Their segmentation unit, the Res-CR-Net, is a new kind of 
segmentation model the authors introduced in a previous study [45] that 
does not contain the same encoder-decoder structure that the popular 
U-Net [31] contains. According to the authors, the Res-CR-Net [45] 
“combines residual blocks based on separable, atrous convolutions [46, 
47] with residual blocks based on recurrent NNs [48] ” Abdallah et al. 
[45]. The authors trained their Res-CR-Net [45] on several open-source 
sets of masks and images [36,39,43]. They acquired their classification 
dataset from the Henry Ford Health System (HFHS) hospital in Detroit. 
This private dataset contained 1417 COVID-negative patients and 848 
COVID-positive patients. The authors used this dataset to train a unique 
hybrid convnet called the “CXR-Net” that contains a Wavelet Scattering 
Transform (WST) block [49,50], an attention block containing two 
MultiHeadAttention layers [51,52], and several convolutional residual 
blocks. This segmentation-classification pipeline ultimately achieved an 
accuracy of 79.3% and an F1 Score of 72.3% on their test set. 

Wang et al. [26] created a deep learning segmentation - classification 
pipeline for COVID-19 detection and severity assessment. After a CXR 
standardization module the authors included a common thoraic disease 
module that was used to determine whether a patient is suffering from 
pneumonia. This is followed by segmentation and classification mod
ules. Wang et al.’s [26] lung segmentation network was trained on X-ray 
scans that were resized to 512 × 512 images. They chose to use a 
DeepLabv3 segmentation architecture [47] after additionally training a 
U-Net [31] and Fully Convolutional Network [53]. Their DeepLabv3 
segmentation architecture in the left lung field obtained a DSC of 0.873, 
in the right lung field obtained a DSC of 0.910, in the periphery of the 
left lung field obtained a DSC of 0.864, and in the periphery of the right 
lung field obtained a DSC of 0.893. Across all categories this averages 
out to a total DSC of 0.885. Following this segmentation operation the 
authors performed COVID-19 detection and severity assessments. Dur
ing training their COVID-19 detection module was trained on 1407 
COVID-19 X-rays, 5515 viral pneumonia X-rays and 10,961 “other” 
pneumonia X-rays. They evaluated their model on a test set with 164 
COVID-19 CXRs and 630 other pneumonia CXRs. In the task of differ
entiating between COVID-19 and other X-rays they ultimately obtained 
an accuracy of 91% and a COVID-19 sensitivity of 92%. 

3. Proposed network architecture 

3.1. Segmentation dataset 

To train our segmentation model, we looked at the datasets used in 
our literature review and decided to use the Darwin V7 Labs dataset 
[43]. We opted in favor of this dataset for three reasons. The first reason 
was its overall size. The Darwin V7 Labs dataset [43] is significantly 
larger (6504 images/masks) than most lung segmentation datasets. This 
being the case, we were able to train a robust segmentation unit that 
could accurately operate on a wide range of chest X-rays. Our second 
reason for using the dataset involved considerations involving the re
gions of the chest X-rays that its masks cover. Most masks in popular 
lung segmentation datasets include only the lungs. The Darwin V7 Labs 
[43] masks, however, included space next to the lungs. This left room for 
the heart to not be excluded. Initially, we did not give the heart and its 
size any consideration. Eventually, we came to realize, however, that 
cardiomegaly (an enlarged heart) is found in 29.9% of COVID-19 pa
tients [54]. This symptom would not show up with most 
general-purpose lung segmentation masks. Our third reason for using 
the Darwin V7 Labs dataset [43] was that its masks were created for 
patients with a variety of conditions. Some masks were created for 
normal patients and others were created for patients exhibiting a variety 
of lung pathologies including COVID-19, bacterial pneumonia, viral 
pneumonia, Pneumocystis pneumonia, fungal pneumonia, and 

Chlamydophila pneumonia. 
Some preprocessing was required on the Darwin V7 labs dataset [43] 

to create a model that operated correctly on the segmentation unit we 
later created. The segmentation unit we chose for this study was a 
ResUnet [12], and this segmentation unit was designed for 256 × 256 
images/masks. We needed to perform some data wrangling using the 
JSON files that were included with the dataset to ensure that images 
smaller than 256 × 256 were excluded. The JSON files provided with the 
Darwin V7 Labs dataset [43] had a field indicating which kind of X-ray 
each image was. We, therefore, were able to automate a process 
whereby we removed all of the lateral X-rays that were sparsely hidden 
throughout the dataset. Our dataset, therefore, solely contained post
eroanterior (PA) X-rays. After preprocessing, we were left with 6377 
masks/image pairings. We finally divided this preprocessed Darwin V7 
Lab dataset [43] into the 80% training / 20% validation split shown in 
Table 1. 

3.2. Classification datasets 

In medical imaging, the ability of a model to generalize to new ex
amples typically is limited by the size of the training set. Because 
research into imaging COVID-19 is relatively recent, there is only 
approximately a year’s worth of images that have been collected for 
classification purposes. For this reason, most published studies cannot 
present a model that can be deployed in a clinical setting. This study is 
no different, although in the work presented here we have taken sig
nificant steps forward in remediating several mistakes we have wit
nessed in the datasets of most papers. 

When we first started gathering data, we initially realized that 
publicly available datasets generally have very little metadata available. 
That being the case, we decided to build a classifier that works on images 
alone. While doing so, we came to realize that the classification datasets 
in many studies have been incorrectly assembled. The majority of papers 
that have focused on differentiating COVID-19 from similar illnesses 
have cited using Kermany et al.’s [33] images in their dataset. As we 
have previously mentioned in our related works section, this dataset is 
composed of children that are suffering from various forms of bacterial 
and viral pneumonia. Since the lungs of small children have different 
features than adult lungs, we realized these images should not be 
included in our final classification dataset. This dataset likely poses more 
of a problem in biasing classifiers that are trained on nonsegmented 
images. The bones of adults are fused and the bones of children are not 
fused. This is feature can easily be picked up by a CNN. Kermany et al.’s 
[33] dataset, however, still would pose an issue even with a segmenta
tion unit as the spatial features of adult lungs would differ from those of 
children’s lungs. The classifiers in studies that include this dataset, 
therefore, can pick up features both internal and external to the lungs 
that are inconsistent between adults’ and childrens’ lungs. This has, 
unfortunately, lead to the unfair biasing of several COVID-19 classifiers 
in the literature. 

Another difficulty facing many studies is the lack of metadata 
accompanying images. At least some metadata is required alongside 
images to ensure that X-rays from individual patients do not get mixed in 
the training and test/validation sets. This problem of data leakage, we 
believe, is an issue in some studies we have reviewed. We find it 
disconcerting that most studies do not mention how they ensured the 
separation of patients’ X-ray scans between training and test sets. An 
enthusiasm surrounding finding the most images possible has resulted in 
a large number of images being harvested from medical research papers. 

Table 1 
Number of images/masks in the preprocessed Darwin V7 labs dataset [43].   

Number of image/mask pairings 

V7 Labs preprocessed training set 5102 
V7 Labs preprocessed test set 1275  
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Wang et al. [55] last year released a popular ‘COVIDx5’ dataset [55] that 
has been able to avoid this pitfall. They also did not include Kermany 
et al.’s dataset [33] in their COVIDX dataset [55], and improperly bias 
their classifier which many studies have done. We additionally used this 
dataset because it was larger than many existing datasets and included 
14,258 CXR images. In total, this consisted of 617 COVID-19 images, 
8066 normal images, and 5575 pneumonia images. 

We added more COVID-19 images to the COVIDx5 dataset [55] 
because of the large COVID-19 class imbalance that existed within it. We 
hoped it would help to reduce overfitting in our classifier. We therefore 
added 922 COVID-19 images from the MIDRC-RICORD-1C database 
[56] and 2474 images from the BIMCV dataset [57]. In total, we con
structed a dataset that contains 4013 COVID-19 images, 8066 normal 
images, and 5445 pneumonia images. The images from the COVIDx5 
dataset [55] had the necessary metadata needed to allow us to split these 
images into three sets (80% training/ 10% validation/ 10%test) without 
creating data leakage. The MIDRC-RICORD-1C dataset [56] and BIMCV 
dataset [57] were released long after the COVIDx5 dataset [55], and 
none of these datasets had any relation with one another. It was there
fore possible to split the COVID-19 images within these datasets into 
three sets without creating data leakage between them. The BIMCV [57] 
COVID-19 images were entirely used in the training set and the COV
IDx5 [55] COVID-19 images were entirely split evenly between the 
validation and test set. The MIDRC-RICORD-1C [56] COVID-19 images 
were used in all three sets. The MIDRC-RICORD-1C [56] images came 
with metadata. Fortunately, the metadata allowed us to be able to divide 
the images from the MIDRC-RICORD-1C [56] dataset by patient be
tween our training and validation/test sets. In this way we were able to 
create the datasets shown in Tables 2 and 3. We created both multiclass 
(3-class) and binary datasets to later compare our 
segmentation-classification pipeline with models that are reported in 
various other papers. It was important to produce our large COVID-19 
dataset with both validation and test sets to help mitigate concerns 
that have been brought up by Wehbe et al. [21] concerning overfitting. 

In addition to the above dataset that we created, we also directly 
tested our model on another dataset that was used in Tabik et al.’s [22] 
study. We wanted to test our segmentation-classification against Tabik 
et al.’s [22] pipeline because their model worked on many of the same 
principles ours did. Their model used a segmentation algorithm that 
leaves more pixels surrounding the lungs in the images they segment. It 
has been difficult to find segmentation-classification pipelines like our 
own with unbiased and correctly constructed datasets. We were unable 
to find a study to directly compare ourselves against that uses a 
segmentation-classification pipeline and has a larger public dataset. 
Tabik et al.’s [22] study used a very conservative dataset that was meant 
to measure the performance of a deep learning model on weaker 
COVID-19 cases. Their “COVID-GR-1.0” binary dataset has 426 
COVID-19 patients and 426 normal patients. The authors originally split 
this dataset into a 80% training / 20% test split. The dataset split in this 
format is shown in Table 4. 

3.3. System design 

We set out to construct our deep learning segmentation-classification 
pipeline by first choosing an appropriate segmentation module to pre
process our classification dataset. We tested the preprocessed Darwin V7 
Labs dataset [43] on a host of different segmentation modules including 
the popular U-Net [31], the ResUnet [12], the ResUNet-a [58], the 

TransResUNet [59] and U-Nets containing VGG and DenseNet back
bones. Before training, we required the images in our preprocessed V7 
Labs dataset [43] to undergo additional preprocessing in the form of 
image augmentation. During augmentation, we set the rotation range to 
180 degrees, width/height shift ranges to 30%, shear range to 20%, 
zoom range to 20%, and set horizontal flips to true. We ultimately found 
that our best results on the preprocessed Darwin V7 Labs dataset [43] 
were obtained using Zhang et al’s ResUnet [12]. We therefore decided to 
move forward using this segmentation module in our pipeline. The 
ResUnet [12] on our preprocessed V7 Labs dataset ultimately obtained a 
dice similarity coefficient of 95.04% after 45 epochs. This segmentation 
module uses a 7-level architecture shown in Fig. 2 and Table 5. Its ar
chitecture can be understood by dividing it conceptually into three main 
parts. The first part of the architecture is an encoder that fits the images 
input into the module into smaller and more compact representations. 
The last main segment of this architecture is the decoder which “re
covers the representations to a pixel-wise categorization, i.e., semantic 
segmentation” [12]. The second middle part of the classifier serves as a 
bridge between the encoder at the ResUNet’s [12] input and the decoder 
at the ResUNet’s [12] output. 

Having discussed the segmentation portion of the deep learning 
pipeline, we now move on to discussing the models that we have con
structed for classifying COVID-19 images. All of our models were trained 
in TensorFlow2.5. We ran our algorithms on an Intel Xeon CPU (2.30 
GHz) using 26 GB RAM and a Tesla P100-PCIE-16GB GPU. We trained 
our preprocessed multiclass training set on a DenseNet-201 [30], a 
ResNet-152 [38], and a VGG-19 [27]. Each of these models was set to 
pretrained ImageNet weights. While designing each of these models we 
added an extra dense layer and dropout layer to the end of each model. 
The DenseNet-201’s [30] extra dense layer contained 128 neurons. The 
ResNet-152’s [38] extra dense layer contained 1024 neurons. The 
VGG-19’s [27] extra dense layer contained 4096 neurons. Each of the 
activation functions in these dense layers was set to a ReLU activation. 
The dropout layer added to the end of each model was set to a dropout 
rate of 10 percent. This helped each model to avoid overfitting and deal 
with the limited size of our dataset. We constructed both binary and 
multiclass versions of all of these classifiers. For the binary version of 
each classifier, we replaced the final softmax layer of each classifier with 
a single neuron containing a sigmoid activation function. For the mul
ticlass version of each of these classifiers, our final layers contained 
three neurons each and had a softmax activation function. 

Prior to training our DenseNet-201 [30], ResNet-152 [38], and 
VGG-19 [27] CNNs, we noticed that a class imbalance existed in our 
multiclass and binary datasets. There were lower amounts of COVID-19 
images in comparison to the other categories of images in our datasets. 
We, therefore, needed to weigh the loss functions of our classifiers to 
correct for this imbalance. We did this because we wanted sure that all of 
our categories were evenly represented. Prior to training our classifiers, 
we additionally used image augmentation on the segmented images 
from our ResUNet [12] to prevent overfitting in our classifiers. There is 

Table 2 
Number of images in our multiclass training and test sets.   

COVID-19 Normal Pneumonia 

Multiclass Training Set 3209 7262 4771 
Multiclass Validation Set 402 402 402 
Multiclass Test Set 402 402 402  

Table 3 
Number of images in our binary training and test sets.   

COVID-19 Non-COVID-19 

Binary Training Set 3209 12033 
Binary Validation Set 402 402 
Binary Test Set 402 402  

Table 4 
Number of images in the COVID-GR-1.0 training and test sets [22].   

COVID-19 Normal 

COVID-GR-1.0 Training Set 340 340 
COVID-GR-1.0 Test Set 86 86  
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Fig. 2. ResUnet architecture [12].  
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often limited data in most medical imaging problems, and we noticed 
this helped us to improve the accuracy of our classifiers. Using Kera’s 
ImageDataGenerator class, we set the rotation range to 15%, the 
width/height range to 15%, the shear range to 15%, the zoom range to 
15%, and horizontal flips to true. Our training and test set batch sizes 
were set to 32. In addition to segmenting and augmenting our classifi
cation datasets, we also normalized our data. In doing so, we ensured 
that the scaled data in each batch had a mean of zero and a standard 
deviation of one. 

After our initial preprocessing steps, we trained the final fully- 
connected layers of each classifier alone for five epochs. We used the 
ADAM optimizer during this training and kept the ADAM optimizer set 
to its default settings. After performing this training, for each classifier 
we progressively unfroze each model’s layers and fine-tuned our models 
at a fixed learning rate of 1 × 10− 5 until each model hit its highest 
possible validation accuracy. Prior to unfreezing progressive layers in 
our models, we froze the moving mean and moving variance of the 
batches in our models’ batchnormalization layers to keep these pa
rameters fixed to their pretrained ImageNet weights. After training each 
of our CNNs to their optimal validation accuracies, we constructed a 
majority voting ensemble and a weighted average ensemble that com
bined all of our classifiers together. We constructed both a binary 
version and a multiclass version of each type of ensemble classifier. An 
illustration showing our overall deep learning pipeline and can be 
observed in Fig. 5. The ensembles used in our deep learning pipeline are 
illustrated in Figs. 3 and 4. 

4. Experimental results 

4.1. Performance evaluation 

Within the COVID-19 deep learning literature, we have found that 
most studies report common evaluation metrics. To compare our models 
against the literature we have reviewed, we have chosen to report the 
accuracy, sensitivity, specificity, F1-Score, precision, recall, negative 
predictive value (NPV), positive predictive value (PPV), and area under 
the receiver operating characteristic curve (AUC-ROC) of our deep 
learning pipeline. 

We first set out to train our multiclass and binary DenseNet-201 [30], 
ResNet-152 [38], and VGG-19 [27] models for five epochs. On each 
model, we obtained a validation accuracy that ranged between 70 and 
80 percent. This largely mirrored the performance of expert radiologists 
who had their expertise measured in a research study led by Wehbe et al. 
[21]. We performed this initial work using our multiclass and binary 
training sets before moving on to test ourselves against Tabik et al.’s 
[22] model (which was trained on the “COVID-GR-1.0” dataset). During 
this initial stage, we worked toward increasing the accuracy of all three 
of these classifiers by unfreezing each model during training 
progressively. 

On our multiclass dataset set, we obtained final validation set ac
curacies of 82.16% on our DenseNet-201 [30], 84.25% on our 
ResNet-152 [38], and 81.09% on our VGG-19 [27]. Likewise, on our 
multiclass dataset set, we obtained final test set accuracies of 82.42% on 
our DenseNet-201 [30], 81.84% on our ResNet-152 [38], and 77.53% on 
our VGG-19 [27]. The test accuracies we obtained all saw a decrease of 
2% - 4% from their corresponding validation set accuracies. When we 
ensembled all three classifiers into majority voting and weighted 
average ensembles, we saw an increase in performance on our validation 
and test sets. For our weighted average ensemble, we obtained a vali
dation set accuracy of 87.40% and a test set accuracy of 84.07%. For our 
majority voting ensemble, we obtained a validation set accuracy of 
87.14% and a test set accuracy of 84.00%. In both instances, we found 
that the test set accuracies of both ensembles outperformed our best 
individual classifier (DenseNet-201 [30]) by more than 1.5%. The 
overall performance of our three classifiers and our ensembles on our 
multiclass validation and test sets can be seen in Table 6. Our binary 
classifiers were trained in the same way as our multiclass classifiers. The 
overall performance of our three classifiers and our ensembles on our 
binary validation and test sets can be seen in Table 7. Tables 8–11 show a 
larger suite of statistics generated on the multiclass and binary test sets 
using both our weighted average and majority voting ensembles.  
Figs. 6–9 show the corresponding confusion matrices generated by our 
weighted average and majority voting ensembles on our multiclass and 
binary test sets. Fig. 10 shows the AUC-ROC curves generated by our 
weighted average ensembles. 

After training and testing our segmentation-classification pipeline on 
our datasets, we also tested our binary pipeline directly against Tabik 

Table 5 
ResUnet architecture [12].  

Unit level Conv layer Filter Stride Output size 

Input    224× 224× 3 
Encoder Lev 1 Conv 1 3× 3/64 1 224× 224× 64 
Encoder Lev 1 Conv 2 3× 3/64 1 224× 224× 64 
Encoder Lev 2 Conv 3 3× 3/128 2 112× 112× 128 
Encoder Lev 2 Conv 4 3× 3/128 1 112× 112× 128 
Encoder Lev 3 Conv 5 3× 3/256 2 56× 56× 256 
Encoder Lev 3 Conv 6 3× 3/256 1 56× 56× 256 
Bridge Lev 4 Conv 7 3× 3/512 2 28× 28× 512 
Bridge Lev 4 Conv 8 3× 3/512 1 28× 28× 512 
Decoder Lev 5 Conv 9 3× 3/256 1 56× 56× 256 
Decoder Lev 5 Conv 10 3× 3/256 1 56× 56× 256 
Decoder Lev 6 Conv 11 3× 3/128 1 112× 112× 128 
Decoder Lev 6 Conv 12 3× 3/128 1 112× 112× 128 
Decoder Lev 7 Conv 13 3× 3/64 1 224× 224× 64 
Decoder Lev 7 Conv 14 3× 3/64 1 224× 224× 64 
Output Conv 15 1× 1 1 224× 224× 1  

Fig. 3. Weighted average ensemble.  
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et al.’s [22] COVID-SDNet model. The details of their publicly available 
“COVID-GR-1.0” dataset [22] are provided in Section 3.2. It should be 
noted that Tabik et al.’s [22] dataset is smaller than ours and composed 

in a fashion whereby the authors collaborated with radiologists to 
intentionally incorporate weaker COVID-19 images into their dataset. 
This being the case, lower performance metrics should be expected out 

Fig. 4. Majority voting ensemble.  

Fig. 5. Proposed network architecture for COVID-19 classification.  

Table 6 
The performance of our classifiers on our multiclass dataset.  

Classifier Val. Acc. Test Acc. Val. COV. Sen. Test COV. Sen. 

DenseNet-201 82.16% 82.42% 84.32% 82.09% 
ResNet-152 84.25% 81.84% 82.59% 76.86% 
VGG-19 81.09% 77.53% 81.34% 75.62% 
Weighted Avg. Ens. 87.40% 84.07% 85.32% 81.34% 
Maj. Voting Ens. 87.14% 84.00% 86.07% 81.84%  

Table 7 
The performance of our classifiers on our binary dataset.  

Classifier Val. Acc. Test Acc. Val. COV. Sen. Test COV. Sen. 

DenseNet-201 89.55% 88.43% 88.81% 85.82% 
ResNet-152 85.70% 82.09% 91.04% 84.82% 
VGG-19 89.55% 84.55% 89.30% 83.08% 
Weighted Avg. Ens. 91.17% 91.17% 91.79% 91.79% 
Maj. Voting Ens. 90.67% 88.18% 91.29% 87.06%  
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of this dataset. These two datasets have been designed to deal with 
separate problems and a detailed discussion concerning these differ
ences is presented in the following section. Table 12 shows how our 
models compared against Tabik et al.’s [22] COVID-SDNet model. 

Every deep learning expert working in computer vision understands 
that it is necessary to validate the final version of a classifier after it has 
been trained. In medical imaging, saliency maps are widely employed on 
computer vision models to ensure that these models are correctly 
identifying important features in an image. In radiology, it is common 
for deep learning models to incorrectly focus on necklaces, medical 
devices, and the text within X-ray scans. The reason we included a 

segmentation unit in our study was to ensure that our model’s CNNs 
were rejecting unnecessary image details outside of the boundaries of 
the lungs. We used a Grad-CAM [60] in this study to ensure that our 
segmentation module was doing its job correctly in assisting our models 
to pick up the correct features of COVID-19. A Grad-CAM [60] functions 
by using the final feature maps in the last convolutional layer of a CNN 
to signal regions of importance within an image. We were interested in 
studying our CNNs that were trained on segmented images. We therefore 
devised a plan to compare them with CNNs that were trained on non
segmented images. Fig. 11 shows the performance of our a 
DenseNet-201 [30] after being trained on segmented and nonsegmented 

Table 8 
Weighted average ensemble performance metrics after training on our multiclass training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 327 737 67 75 0.88 0.81 0.92 0.83 0.94 0.81 
Normal 362 742 55 40 0.92 0.90 0.93 0.87 0.95 0.88 
Pneumonia 325 734 70 77 0.88 0.81 0.91 0.82 0.91 0.81  

Table 9 
Majority voting ensemble performance metrics after training on our multiclass training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 329 729 75 73 0.88 0.82 0.91 0.81 0.91 0.82 
Normal 362 754 50 40 0.93 0.90 0.94 0.88 0.95 0.89 
Pneumonia 322 736 68 80 0.88 0.81 0.92 0.83 0.90 0.81  

Table 10 
Weighted average ensemble performance metrics after training on our binary training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 369 364 38 33 0.91 0.92 0.91 0.91 0.92 0.91 
Non-COVID-19 364 369 33 38 0.91 0.91 0.92 0.92 0.91 0.91  

Table 11 
Majority voting ensemble performance metrics after training on our binary training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 350 359 43 52 0.88 0.87 0.89 0.89 0.87 0.88 
Non-COVID-19 359 350 52 43 0.88 0.89 0.87 0.87 0.89 0.88  

Fig. 6. Confusion matrix from weighted average ensemble after training on our 
multiclass training set. 

Fig. 7. Confusion matrix from majority voting ensemble after training on our 
multiclass training set. 
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X-rays. Our DenseNet-201 [30] was one of the three CNNs that we used 
in constructing our majority voting and weighted average ensembles. 
Part (b) of Fig. 11 shows the performance of our DenseNet-201 [30] on a 
test image after it was trained without a segmentation module. The red 
parts of the heatmap indicate the primary parts of the image that the 
DenseNet-201 [30] focused on when determining a patient has 
COVID-19. The orange/yellow portions of the heatmap represent areas 
of medium importance. The green/blue areas of the Grad-CAM [60] 
heatmap represented areas that were the least important diagnostically 
in determining that a patient is COVID-19 positive. Unfortunately, 
portions of the red and orange/yellow parts of the heatmap in part (b) of 
Fig. 11 are focused on areas outside of the lungs. The area that the 
Grad-CAM [60] partially focused on in the upper right-hand side of the 
image was a problem. This area should have been irrelevant to a 
COVID-19 diagnosis. When our DenseNet-201 [30] was trained on 
segmented images however, its behavior improved as is shown in part 
(d) of Fig. 11. We monitored the performance of our model in this way to 
ensure that our model was picking up the features of COVID-19 that we 

highlighted in Section 1. 

4.2. Discussion 

Wehbe et al. [21] conducted an important study that measured the 
performance of practicing radiologists on a private COVID-19 vs. 
non-COVID-19 dataset. In our work, we took it upon ourselves to build a 
COVID-19 dataset of comparable size. We wanted to measure our 
pipeline’s ability to compete with the radiologists in their study and 
their model. We were more specifically interested in comparing our 
pipeline’s COVID-19 sensitivity with the radiologists in Wehbe et al.’s 
[21] study given the problems concerning RT-PCR test sensitivity we 
have read about in scientific journals. The radiologists’ consensus 
sensitivity in Wehbe et al.’s study [21] was 70%. All of our ensembles, 
including those trained on the weaker images in the “COVID-GR-1.0” 
dataset [22], obtained a higher COVID-19 sensitivity. The COVID-19 
sensitivity of the five expert radiologists in Wehbe et al.’s [21] study 
versus that of our ensembles’ can be seen in Table 13. 

As can be seen in Table 13, when we compare our ensemble models 
with the performance of the radiologists in Wehbe et al.’s [21] study, we 
outperform even the best radiologist’s COVID-19 sensitivity. In 
Table 13, another item that stands out is the difference in sensitivity 
between the ensemble we trained on our binary dataset versus the 
ensemble we trained on the COVID-GR-1.0 dataset [22]. This discrep
ancy can be explained by the higher number of weak COVID-19 images 
that were intentionally placed by radiologists in the “COVID-GR-1.0” 
dataset [22]. Tabik et al. [22] created the “COVID-GR-1.0” dataset to 
measure the performance of their classifier on COVID-19 images that are 
more difficult to classify. Even after we trained our ensemble model on 
this extremely conservative dataset, we still managed to obtain a higher 
sensitivity than the radiologists in Wehbe et al.’s [21] study. This 
demonstrated the robustness of our technique. The COVID-GR-1.0 
dataset intentionally contained a larger proportion of COVID-19 posi
tive images that were difficult for radiologists to identify correctly. 
Many of the datasets currently available in the literature are constructed 
from the images of hospitalized patients. The COVID-19 severity of 
X-rays from patients who have been hospitalized is often worse than the 
severity seen in X-rays from patients who have not been hospitalized. 
Many COVID-19 X-ray datasets in the literature, therefore, have a larger 
proportion of severe COVID-19 images. These datasets may not always 
be representative of the population at large. That was an issue Tabik 
et al.’s [22] dataset was attempting to correct for. Our final results after 
training with Tabik et al.’s [22] dataset showed that our overall pipeline 
maintained good performance when working with a more conservative 
dataset. 

When we constructed our binary dataset, we built our dataset so as to 
respond to a criticism that Wehbe et al. [21] mentioned in their paper 
concerning the size of public datasets. Wehbe et al.’s [21] study found 
that the consensus accuracy and sensitivity of expert radiologists are 
81% and 70% respectively. After training their ensemble model, Wehbe 
et al. [21] found that their system achieved a test accuracy of 82% and 
test sensitivity of 75%. Many other studies however have reported 
performance metrics that are much higher than this. Wehbe et al. [21] 
explained this by showing how models with extremely high metrics 
often have very small COVID-19 datasets. They posited that if the 
number of COVID-19 images in these other studies increased, these 
models would see a correction. They believed that early COVID-19 deep 
learning models were overfitting on small COVID-19 datasets. We 
therefore set out to construct a larger COVID-19 dataset than any other 
public COVID-19 dataset we have seen in the literature thus far. We felt 
that it was additionally important to create separate validation and test 
sets in order to ensure that overfitting does not occur. To protect against 
overfitting, we also ensured that each of our CNNs in our pipeline had 
dropout layers in their second last layers. 

Wehbe et al.’s [21] criticism of small public datasets was not the only 
concern we have ended up discovering when using public datasets. We 

Fig. 8. Confusion matrix from weighted average ensemble after training on our 
binary training set. 

Fig. 9. Confusion matrix from majority voting ensemble after training on our 
binary training set. 
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later realized that many public datasets include images from Kermany 
et. al.’s [33] dataset which contains the chest X-rays of young children 
suffering from various forms of pneumonia. It is incorrect to take a 
model that was trained on children’s X-rays and deploy it on adult 
X-rays. When we attempted to use such a dataset for training one of our 
CNNs, we obtained extremely high-performance metrics (accu
racy/sensitivity between 98% and 100%). We noticed that several deep 
learning segmentation-classification pipelines [18,19,24] made this 
mistake. In addition to this, we have come to discover that some authors 
may have unintentionally biased their classifiers by mixing multiple 
images from individual patients in their training and test sets. This ul
timately results in an incorrect biasing of a deep learning model as the 
image in the test set often has similar features to the image in the 
training set that was derived from the same patient. If this biasing oc
curs, deep learning models often lock onto more closely related features 
than they would have otherwise been trained to recognize. To summa
rize, the following three main issues are, therefore, sometimes found 
with COVID-19 datasets in the literature:  

1. COVID-19 datasets have often been too small which has caused 
overfitting to occur in deep learning models  

2. Many datasets have been constructed with pneumonia X-rays 
collected from children. Models based on these datasets were later 
then deployed on adult lungs  

3. Some datasets may contain separate images from the same patients 
in both the training and test sets 

In Table 14 we compare our work with other segmentation- 
classification pipelines that have not made the mistake of incorrectly 

biasing their datasets. Our best three-class and two-class ensemble 
models should only be compared against the first four classifiers in 
Table 14. Our three-class and two-class ensembles were trained on a 
dataset that we built after gathering as many COVID-19 images as 
possible. The authors of the first four papers in Table 14, composed their 
datasets in the same way. The COVID-GR-1.0 dataset [22], however, was 
trained intentionally on weak COVID-19 images resulting in a classifier 
that should be treated in isolation. In comparing our segmentation unit 
with Yeh et al.’s [20] U-Net [31] segmentation model, our ResUNet [12] 
achieved a dice similarity coefficient that was 7 percent higher. In terms 
of dataset size, our COVID-19 dataset contained over 3000 more 
COVID-19 images. Yeh et al. [20] had a smaller dataset, therefore, and 
were more likely to have overfit their model. Our model was, therefore, 
more likely to face downward pressure in our performance metrics. Our 
three-class model, however, was still capable of obtaining the same 
COVID-19 sensitivity as Yeh et al.’s [20] model. It likely was able to do 
so with the help of better segmentation and the use of a majority voting 
ensemble. This indicates that on datasets that are constructed with as 
many COVID-19 images as possible, a three-class model (COVID-19 vs. 
Normal vs. Pneumonia) can reasonably achieve a COVID-19 sensitivity 
of 82%. Our two-class weighted average ensemble outperformed Wehbe 
et al.’s [21] classifier by a substantial margin. This may have been 
caused by a difference in our approach to segmentation. Wehbe et al.’s 
[21] classifier was trained to crop out the smallest rectangle that a pa
tient’s lungs can fit within. Our segmentation unit was trained on a set of 
masks that removed more pixels than Wehbe et al.’s [21] segmentation 
unit. We chose to not segment out the pixels showing the heart. Car
diomegaly (an enlarged heart) is a common symptom of COVID-19. 
Leaving the heart in our classified images allowed us to pick up this 
feature and likely assisted us to increase the performance metrics of our 
classifier. Our weighted average ensemble also outperformed Abdullah 
et al.’s [25] model despite our having a segmentation unit that 
under-performed Abdullah et al.’s Res-CR-Net [45] by one percent. We 
obtained a two-class accuracy that was 12 percent better than Abdullah 
et al.’s [45] classification model. We believe this is a result of our having 
constructed an extremely robust weighted average classification 
ensemble. Our best 2-class pipeline’s accuracy and sensitivity matched 

Fig. 10. AUC-ROC graphs of (a) Our multiclass weighted average ensemble trained on our multiclass training set and (b) Our binary weighted average ensemble 
trained on our binary training set. 

Table 12 
Our binary models vs. COVID-SDNet on the COVID-GR-1.0 dataset [22].  

Classifier Val. Acc. Val. COV. Sen. 

Weighted Avg. Ens. 76.74% 77.91% 
Maj. Voting Ens. 76.16% 73.26% 
COVID-SDNet 76.18% 72.59%  
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the accuracy and sensitivity of the Wang et al.’s [26] best classification 
model published in Nature. We should mention, however, that their 
pipeline was trained with half as many COVID-19 images. This made 
their model more vulnerable to possible overfitting. 

It should be noted that there are instances where using a segmen
tation unit can reduce a model’s accuracy. While segmentation units 
should generally always help a classifier’s accuracy, we have noticed in 
our work that classifiers without a segmentation unit can lock onto 
features of an image that are external to the lungs. Sometimes this helps 
to increase a CNN’s ability to classify particular images. For instance, if 
one category of images has more text than another you might notice the 
Grad-CAM [60] heatmaps for that category focusing on text. Our seg
mentation unit removed this possibility from happening and ultimately 

allowed us to boost our model’s accuracy in a more honest fashion. Our 
Grad-CAM [60] heatmaps in Fig. 11 additionally showed an improve
ment in discovering relevant COVID-19 features when we used our 
segmentation unit. 

The approach to creating datasets that is followed by the vast 

Fig. 11. Example of a segmented and non-segmented Grad-CAM heatmap produced by our DenseNet-201.  

Table 13 
The COVID-19 sensitivity of five expert radiologists in Wehbe et al.’s study [21] 
vs. our classifiers.  

Group/Individual/Classifier COV. Sens. 

The Consensus of Expert Radiologists 70% 
The Best Radiologist 76% 
The Worst Radiologist 60% 
Weighted Avg. Ensemble (Our Binary dataset) 91.79% 
Weighted Avg. Ensemble (COVID-GR-1.0 dataset [22]) 77.91%  

Table 14 
Performance of similar segmentation-classification pipelines without dataset 
composition issues.  

Research paper Seg. DSC Acc. COV. Sens. 

Yeh et al. [20]    
3-class 0.88 – 82% 
Wehbe et al. [21]    
2-class – 82% 75% 
Abdullah et al. [25]    
2-class 0.96 79% – 
Wang et al. [26]    
2-class 0.89 91% 92% 
Tabik et al. [22]    
2-class (COVID-GR-1.0 dataset) 0.885 76% 73% 
Ours    
Best 3-class Ens. (Maj. Vot.) 0.95 84% 82% 
Best 2-class Ens. (Wei. Avg.) 0.95 91% 92% 
2-class (COVID-GR-1.0 dataset) 0.95 77% 78%  
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majority of research papers is to obtain as many COVID-19 images as 
possible. During the early stages of the coronavirus pandemic, there was 
a lack of COVID19 images and many papers were being published that 
likely were overfitting on datasets containing only a couple of hundred 
COVID-19 images. Tabik et al. [22] published their paper when fewer 
COVID-19 images existed and therefore their paper only contained 426 
COVID-19 images. The authors of this paper obtained the help of an 
expert radiologist. This radiologist located PCR positive images that did 
not have the visual features of COVID-19. They infused their dataset 
with such images and wanted to see the effect this would have. They 
eventually found that their classifier could identify COVID-19 in 85 to 97 
percent of moderate to severe images. Mild COVID-19 images, however, 
could only be diagnosed correctly 46 percent of the time. They did not 
publish the accuracy of their classifier on Normal PCR positive images. 
We have to imagine that the accuracy for Normal PCR positive images 
was even lower. In total, their classifier had a final accuracy of 76 
percent and COVID-19 sensitivity of 73 percent. When our binary 
weighted average ensemble was trained on their dataset, it achieved a 
77 percent accuracy and a 78 percent COVID-19 sensitivity. We there
fore achieved a COVID-19 sensitivity that was 5 percent better than 
Tabik et al’s [22] model on their dataset. 

Tabik et al.’s [22] dataset was the only dataset that we could obtain 
that allowed us to directly compare our pipeline with another author’s 
segmentation-classification pipeline. It has been difficult to find publicly 
available datasets such Tabik et al.’s [22] where the authors have made 
clear how they segmented and classified their images. Tabik et al. [22] 
did not report a dice similarity coefficient because they segmented their 
images in such a way so as to create a small cropped rectangle around 
the lungs. This is similar in principle to how we segmented our images. 
We chose the Darwin V7 Labs dataset [43] for training our segmentation 
unit because the masks in this dataset left more room around the lungs to 
show the heart. We believe that if a segmentation unit were to remove 
these pixels, that COVID-19 symptoms like cardiomegaly could go un
observed by a classifier. We believe that our weighted average ensemble 
is ultimately what allowed us to achieve an improved accuracy and 
improved COVID-19 sensitivity when comparing our model with Tabik 
et al.’s [22] model. Our segmentation unit also likely helped as well, as it 
rejected a greater number of superfluous pixels around the lungs in 
comparison to Tabik et al.’s [22] segmentation methodology. 

Unfortunately, at this time, public COVID-19 datasets that have been 
made available are somewhat incomplete. Public COVID-19 datasets are 
composed of images that previously came with corresponding positive 
RT-PCR tests. We know, however, that there are occasionally false- 
positive images, depending on when individual RT-PCR tests are per
formed. Sometimes, if a patient obtains a negative RT-PCR test, they will 
come back later and obtain a positive test. We, therefore, have datasets 
with RT-PCR-positive patients, but each image’s COVID-19 status has 
not been perfectly validated. There are occasional errors. This may have 
affected our work and the work of other papers we have reviewed. Our 
classifiers’ results, therefore, while promising, perhaps should not be 
clinically deployed until better external labeling processes have been 
followed in building COVID-19 datasets. Many deep learning models 
perform well in the lab before being deployed in a clinical setting. Our 
models would need to be tested alongside other administered COVID-19 
tests in order to compare their efficacy against competing technologies. 

5. Conclusion 

The two-class and three-class datasets that we have constructed 
contain the largest number of publicly available COVID-19 images that 
we have found in the literature. In training our segmentation- 
classification pipeline we were ultimately able to design several en
sembles that generated promising results. Our best two-class weighted 
average ensemble ultimately achieved a 91 percent COVID-19 accuracy 
and 92 percent COVID-19 sensitivity. We were also able to out-compete 
a segmentation-classification pipeline that we directly compared our 

pipeline against [22]. While our models show promising characteristics 
in terms of our Grad-CAM heatmaps and performance metrics, our 
models are still not ready to be implemented in a clinical setting. 

For a deep learning pipeline such as ours to be advanced into a 
clinical setting, the medical community and AI experts require further 
collaboration. To the best of our knowledge, no study has been per
formed whereby every single incoming patient at a medical facility was 
tested for COVID-19 with an X-ray and RT-PCR test simultaneously. The 
COVID-19 images that can be found in public datasets tend to come from 
patients that were showing increased complications in relation to their 
illness. In private datasets, the same problem likely exists as well since 
radiological evaluations are typically reserved for patients showing a 
concerning trend in the development of their illness. It is important to 
find out the proportion of incoming patients at a medical clinic that are 
COVID-19 positive after blind X-rays get administered to every patient. 
Anyone wanting to clinically implement a deep learning system such as 
ours may also benefit from blindly administering competing molecular 
tests (RT-PCR tests), antigen tests, and antibody tests on the same pa
tients during this data-gathering stage. In our future work, we aim to 
extend our pipeline with categorical and numerical data to improve the 
ability of our pipeline to diagnose COVID-19. This additional metadata 
concerning each patient’s age, sex, and relevant background details 
could really help to improve the performance metrics of our deep 
learning model. We also hope to eventually construct a deep learning 
pipeline capable of discovering the prognosis of COVID-19 patients. We 
believe that our pipeline is a promising step forward towards radiolog
ically automating the detection of COVID-19. With a little more time and 
resources invested in these data-gathering processes, we believe that a 
clinically viable deep learning model is possible that allows for a truly 
better standard of care. 
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