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A B S T R A C T   

On March 11, 2020 the World Health Organization (WHO) declared the state of global pandemic caused by the 
new SARS-CoV-2 (COVID-19). To date, no antivirals directed against SARS-CoV-2 or effective vaccines to combat 
the viral infection are available. Severe acute respiratory syndrome caused by SARS-CoV-2 is treated empirically 
with antivirals, anti-inflammatory, anticoagulants. The approval of an effective vaccine still takes time. In this 
state, it may be useful to find new therapeutic solutions from drugs already on the market. Recent hypotheses 
suggest that the use of AT-1 receptor antagonists (ARB) in combination with neprilisin inhibitors (NEPi) could 
indirectly provide clinical benefits to patients with SARS-CoV-2 and cardiac involvement. In this article we 
investigate and describe a possible innovative pharmacological approach for the treatment of the most severe 
stages of COVID-19 infection.   

Introduction 

Clinical aspects SARS-CoV-2 (COVID-19) infection 

A viral epidemic caused by a new coronavirus SARS-CoV-2 (COVID- 
19) began in Wuhan (China) in November 2019. The epidemic quickly 
turned into a global pandemic in March 2020 [1]. Knowledge of this 
viral infection is evolving rapidly, to date there are no direct antivirals or 
effective vaccines and therapeutic treatments are on empirical basis, 
antiviral, immunomodulants, antiflammatory, anticoagulants [2]. At 
the time of writing of this article, 1.21 Mln deaths and 47.4 Mln infected 
people have been reported [3]. SARS-CoV-2 is a family of RNA viruses 
that can infect humans and cause serious respiratory tract infections that 
can be fatal in some cases. Studies have shown that SARS-CoV-2 has 
about 80% of the SARS-CoV like genome, responsible for the 2003 
outbreak [4]. SARS-CoV-2 penetrates cells using the S protein through 
the angiotensin 2 conversion enzyme receptor (ACE-2) on the cell sur-
face, which is widely present in the epithelial cells of the respiratory 
mucosa [5]. ACE-2 is also a conversion enzyme with a key role in the 
renin-angiotensin (RAS) system. Clinical experts and scientists have 
described SARS-CoV-2 infection in three phases: the first asymptomatic 
or slightly symptomatic, the second moderately severe characterized by 

a pulmonary inflammatory state, the third very severe phase charac-
terized by a generalized inflammatory state affecting all tissues causing 
multi-organ dysfunction [6]. In the most severe stages of infection, 
COVID-19 lung lesions are characterized by diffuse alveolar damage 
with irregular inflammatory cellular infiltration consisting of mono-
cytes, macrophages and lymphocytes infiltrating the lung tissue and the 
presence of intravascular thrombosis [7]. Severe inflammatory pulmo-
nary infiltration prevents the exchange of alveolar gases, in addition, in 
more serious cases other organs may be damaged such as the heart or 
liver [8,9]. Systemic inflammation in the most severe stages of infection 
can cause cardiac damage such as pericarditis, acute coronary syn-
drome, electrophysiological disorders and the appearance of arrhyth-
mias. These aspects are further confirmed by studies showing that 
patients with a history of cardiovascular disease are at increased risk of 
COVID-19 complications [10]. In fact, in a recent study [11] it was 
found that 77% of deceased patients developed acute myocardial dam-
age [12]. Some molecular and pathophysiological bases have been hy-
pothesized, one of which is that the phenomenon of “cytokinic storm” 
[13,14] that occurs in the most severe stages of COVID-19 infection 
causes myocarditis which is the cause of acute heart failure, TNF-α and 
some other pro-inflammatory cytokines are able to induce typical 
cellular modifications of the decompensated heart, such as down- 
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regulation of the sarcoplasmic ATPasic calcium pump [15], or decou-
pling of beta-adrenergic receptors from activation of cyclic intracellular 
AMP [16] or death of cardiac cells. 

Cytokinic storm and heart failure 

The most severe stages of COVID-19 infection are characterized by a 
hyperinflammatory state caused by a cytokinic storm. The term in-
dicates a massive and sudden release of cytokines that generate an un-
controlled and generalized inflammatory response [17–19] causing 
organ damage. The data clearly indicate an uncontrolled and sudden 
release by immuno effector cells of large amounts of proinflammatory 
cytokines such as IFNα, IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, TGF-β 
[20] and chemokines such as CXCL10, CXCL8, CXCL9 [21–24]. An in-
crease in pro-inflammatory cytokines in particular may be responsible 
for cardiac damage. Several studies show that TNF-α plays a central role 
in myocardial contractility depression through various time-dependent 
mechanisms. The cardiodepressant effect of TNF-α is the consequence 
of a signaling dependent on nitric oxide synthase (NOS), a high con-
centration of nitric oxide (NO) leads to [25] an inotropic negative effect 
[26] and a profound systolic and diastolic dysfunction [27]. TNF-a also 
induces apoptosis in cardiac myocytes [28], which contributes to the 
thinning of the left ventricular wall [29,30]. At molecular level, sus-
tained overexpression of TNF-a activates both intrinsic and extrinsic 
apoptotic pathways and leads to progressive loss of antiapoptotic pro-
teins [31]. IL-6 is a powerful mediator of myocardial depression, which 
in turn improves the cardiodepressant effects of TNF-a and IL-1 [32]. 
The inotropic negative effect of IL-6 is the result of JAK2/STAT3 
mediated activation of iNOS [33]. IL-1 also produces a prolonged 
decrease in myocardial contractility [34] Finally IL-18 stimulates 
proinflammatory cytokines with known cardiodepressant effects, i.e., 
TNF-a, IL-1a, IL-1b, IL-6, and also IL-18 has been shown to induce the 
synthesis of NO, which mediates myocardial dysfunction. In addition, 
cardiac damage induced by COVID-19 may further intensify a local in-
flammatory reaction and excessive production of reactive oxygen spe-
cies (ROS). Finally, through different mechanisms of action, the 
proinflammatory cytokines described above mediate contractile 
dysfunction and myocytic cardiac apoptosis with cardiac damage 
(Figs. 1 and 2) [35,36]. 

Natriuretic peptide system, biological effects 

Natriuretic peptides are a family of structurally related hormonal 
factors. Atrial natriuretic peptide (ANP) and type B natriuretic peptide 
(BNP) are secreted by the atria and cardiac ventricles. Type C natriuretic 
peptide (CNP) is the most highly expressed natriuretic peptide in the 
brain, but is also highly expressed in chondrocytes and endothelial cells. 
Neutral neprilisin endopeptidase (NEP) is the enzyme that metabolizes 
natriuretic peptides. Natriuretic peptides mediate different physiolog-
ical effects through interaction with specific guanylyl cyclase receptors 
(GC) that stimulate intracellular cGMP production. The main physio-
logical effects are natriuresis / diuresis and peripheral vasodilation, 
inhibition of the renin-angiotensin-aldosterone system (RAAS) and 
sympathetic nervous system (SNS). Recent evidence associates natri-
uretic peptides with other important functions, in particular, some 
studies have demonstrated an antifibrotic and anti-inflammatory action. 
The natriuretic peptide type C (CNP), a member of the family of natri-
uretic peptides, through selective binding to the transmembrane re-
ceptor guanylyl cyclase (GC)-B, mediates different biological effects in 
various organs [37]. CNP is expressed in a wide variety of tissues, such 
as vascular endothelium, heart, bones and adrenal glands [38–41]. CNP 
plays an important role in the regulation of local vascular tone and has 
been shown to have mainly cardioprotective, antihypertrophic [42] and 
antifibrotic [43] effects. Recently, CNP has been shown to have pro-
tective effects against inflammatory and fibrotic reactions [44,45]. Tests 
in vivo have revealed that CNP attenuates acute lipopolysaccharid- 
induced lung lesions (LPS) [46]. CNP also regulates the secretion of 
inflammatory cytokines [47,48]. In the inflammatory phase, expression 
levels of various chemokines, cytokines and growth factors are high and 
these mediators exert their profibrotic activity through the activation 
and proliferation of fibroblasts [49]. Considering the pathophysiological 
importance of fibroblast activation in pulmonary fibrosis [50], and the 
above mentioned biological effects, it is suggested that there is a direct 
effect on pulmonary fibroblasts by natriuretic peptides. These insights 
suggest the use of therapeutic agents that increase the concentration of 
these peptides in the most severe stages of COVID-19 infection when a 
fibrotic pulmonary state and a cardiac fibrotic tissue is present. In as-
sociation with evidence of antihyperproliferative effects, the studies also 
show direct antifibrotic effects mediated by the action of natriuretic 

Fig. 1. The proinflammatory cytokine TNF-alpha can induce apoptosis of cardiac myocytics inducing cardiac damage.  
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peptides. In particular, some studies associate the peptide BNP with an 
important inhibitory effect on NALP3 the activation of inflammation, 
which is related to the BNP-induced reduction of NF-kB and ERK1/2 
activation. The data indicate a powerful anti-inflammatory and immu-
nomodulatory role for this peptide [51]. These mediated effects 
described above suggest that natriuretic peptides may play an important 
role in COVID-19 infection. 

NT-proBNP in patients with severe COVID-19 

BNP is synthesized as a prehormone (proBNP), upon release into the 
bloodstream it is divided in equal proportions into biologically active 
BNP and biologically inactive NT-proBNP. Stress and myocardial dam-
age are the main release stimuli for BNP and NT-proBNP, studies have 
shown that increased cytokines and an inflammatory state are important 
additional factors inducing hormone secretion [52]. BNP is degraded by 
plasma through endopeptidase neprilisin (NEP), NT-proBNP is excreted 
primarily by renal excretion. BNP and NT-proBNP are important bio-
markers for the evaluation of cardiac function [53,54]. As described 
above, cardiac lesions are a common condition among patients hospi-
talized with COVID-19. A recent study has shown that the NT-proBNP 
marker has increased significantly in more severe cases of COVID-19, 
suggesting a relationship between high plasma levels of NT-proBNP, 
cardiac damage, and risk of death in patients with severe COVID-19. 
The explanation for the increase in NT-proBNP in severe COVID-19 is 
probably due to cardiac complications resulting from up-regulation of 
the sympathetic and angiotensin system (RAS), cytokinic cascade and 
systemic inflammation. In particular, cytokine storm [55,56] could 
probably play an important role in cardiac damage [57] and the increase 
of NT-proBNP. In addition, RAS overactivation with reduced ACE-2 
concentration, as evidenced in the most severe stages of COVID-19 
infection, may lead to increased synthesis of Ang II with proin-
flammatory and profibrotic effects (mediated by AT-1 receptors) that 
facilitates the secretion of NT-proBNP [58,59]. Pending well-structured 
and thorough studies, to assess whether the NT-proBNP marker can be a 
useful diagnostic test to assess the severity of COVID-19 infection, all the 
considerations expressed suggest a therapeutic pharmacological solu-
tion with the action of increasing the concentration of circulating 
natriuretic peptides, decrease the concentration of NT-proBNP, increase 
RAS via ACE-2 axis with increased synthesis of Ang 1–7 and Ang 1–9 
with antifibrotic and anti-inflammatory effects, and decrease the effects 
of Ang II on the AT-1 receptor [60–63]. 

The Hypotheses/theory 

Potential role of Sacubitril/valsartan 

The Sacubitril/valsartan combination is the first of a new class of 
drugs with therapeutic indication for the treatment of symptomatic 
chronic heart failure with reduced ejection fraction [64]. Sacubitril is a 
neprilisin inhibitor (NEPi), valsartan an angiotensin II receptor antag-
onist (ARB). Based on the above considerations, the association sacu-
bitril/valsartan could be an important therapeutic solution to combat 
COVID-19 infection and reduce cardiac induced damage. The use of 
the sacubitrile/valsartan association could be of clinical benefit for 
several reasons, in particular the antagonism on the AT-1 receptor 
mediated by valsartan would lead to increased AT-2 receptor occupation 
by Ang II with antifibrotic, anti-inflammatory, antihyperproliferative 
and vasodilator effects with potential benefits on both lung lesions 
caused by fibrotic tissue and cardiac damage caused by COVID-19. In 
addition, the actions of Ang-II on the AT-1 receptor, which mediates 
vasoconstrictive, profibrotic and hyperproliferative effects, are blocked. 

Finally, angiotensin II can cause increased inflammation through the 
production of IL-6, TNF-α and other inflammatory cytokines mediated 
by AT-1. [65–67] It is known that in the more severe stages of COVID-19 
infection there is a decrease in ACE-2 which plays a protective role. ACE- 
2 synthesizes Ang 1–7 and Ang 1–9 with known anti-inflammatory, 
vasodilator, antifibrotic and antihyperproliferative effects [68–70]. 
The antagonism on AT-1 receptors by valsartan leads to a compensatory 
increase of ACE-2 and a higher stimulation of MAS receptors [71]. 
Finally, after ARB administration the response to hypertrophic growth 
induced by TNF-a is significantly attenuated [72] (Fig. 3). The beneficial 
effects of NEPi are attributable to the decrease in the degradation of 
natriuretic peptides. Natriuretic peptides cause vasodilation by stimu-
lating the guanylate cyclase receptor to produce cGMP. In addition, 
sacubitrile administration is known to decrease NT-proBNP, which in 
severe cases COVID-19 is increased. In patients with COVID-19, with 
and without symptoms attributable to pneumonia, there is evidence of a 
significant increase in NT-proBNP, regardless of left ventricular 
dysfunction. Indeed, studies show that NT-proBNP levels are also the 
result of acute renal lesions and pro-inflammatory molecules such as 
interleukin-1 and C-reactive protein [73], In addition, natriuretic pep-
tides act to suppress hyperactivation of the sympathetic system and 
decrease endothelin secretion. In addition, as mentioned above, natri-
uretic peptides also exert anti-inflammatory, antifibrotic and 

Fig. 2. Pro-inflammatory cytokine IL-1 mediates inotropic negative effect and contractile cardiac dysfunction.  
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antihypertrophic effects. In particular, some evidence shows direct anti- 
inflammatory effects mediated. In particular, some studies associate the 
BNP peptide with an important inhibitory effect on the activation of 
inflammatory NALP3, which is related to the reduction of NF-kB and 
ERK1/2 activation induced by BNP [74]. In addition, for this class of 
drugs acting on RAS, there is a potential indirect protection against 
SARS-CoV-2. In fact, patients with cardiovascular diseases are at high 
risk of pneumonia, studies show that the use of drugs that block RAS 
decreases this risk [75]. 

Conclusions 

In severe COVID-19 patients, in addition to lung damage, there may 
be significant cardiac involvement, which is responsible for worsening 
the clinical condition of the host. The main cardiac manifestations can 
be edema, pericarditis, myocarditis, cardiac fibrosis, and impairment of 
contractile function and cardiac electrophysiology. Many pharmaco-
logical agents, when used appropriately, may be helpful in preserving 
cardiac homeostasis or reducing induced COVID-1 cardiac damage by 
decreasing mortality. Based on the evidence described and in relation to 
the hypotheses suggested by us, the use of the sacubityl/valsartan as-
sociation in patients with COVID-19, especially in the most severe cases 
with induced cardiac damage, could be of therapeutic benefit, with 
cardioprotective, anti-inflammatory and antifibrotic effects that can also 
combat lung damage, through an increase in the natriuretic peptide 
system and a decrease in the effects of AT-1 receptor-mediated Ang-II. 
Well-structured clinical studies are needed to confirm these hypotheses. 
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