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In response to T-cell-dependent antigens, mature B cells in the secondary lymphoid
organs are stimulated to form germinal centers (GCs), which are histological structures
deputed to antibody affinity maturation, a process associated with immunoglobulin gene
editing by somatic hypermutation (SHM) and class switch recombination (CSR). GC B
cells are heterogeneous and transition across multiple stages before being eliminated by
apoptosis or committing to post-GC differentiation as memory B cells or plasma cells. In
order to explore the dynamics of SHM and CSR during the GC reaction, we identified GC
subpopulations by single-cell (sc) transcriptomics and analyzed the load of
immunoglobulin variable (V) region mutations as well as the isotype class distribution in
each subpopulation. The results showed that the large majority of GC B cells display a
quantitatively similar mutational load in the V regions and analogous IGH isotype class
distribution, except for the precursors of memory B cells (PreM) and plasma cells (PBL).
PreM showed a bimodal pattern with about half of the cells displaying high V region
germline identity and enrichment for unswitched IGH, while the rest of the cells carried a
mutational load similar to the bulk of GC B cells and showed a switched isotype. PBL
displayed a bias toward expression of IGHG and higher V region germline identity
compared to the bulk of GC B cells. Genes implicated in SHM and CSR were
significantly induced in specific GC subpopulations, consistent with the occurrence of
SHM in dark zone cells and suggesting that CSR can occur within the GC.
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INTRODUCTION

Germinal centers (GCs) are histological structures, which form
in the secondary lymphoid organs in response to antigenic
challenge. They represent the site of antibody affinity
maturation, based on the acquisition of mutations in the
immunoglobulin variable regions followed by selection based
on the affinity for the antigen (1). The GC has been traditionally
divided into two histological and functionally distinct
compartments: the dark zone (DZ), representing the site where
cells proliferate and immunoglobulin somatic hypermutation
(SHM) occurs, and the light zone (LZ), where affinity-based
selection takes place (2–4). More recent insights in GC biology,
mostly based on single cell (sc)-RNAseq analyses of mouse and
human cells, clearly showed that the GC reaction is better
explained by a continuum of cell states between the DZ and
the LZ (5, 6). Indeed, about one third of GC B cells display a
transcriptomic and phenotypic profile that is intermediate
between DZ and LZ features (7–10). In addition, a small subset
of cells in the GC are primed to become memory B cells or
plasma cells. These precursors of post-GC effector B cells are
clearly distinct and recent sc-RNAseq studies have further
expanded their transcriptome characterization (7, 10–13).

Mature B cells rely on their B cell receptors (BCR) for survival
and for affinity selection prior to differentiation into memory B
cells and plasma cells (14–16). Affinity maturation starts with the
introduction of mutations in the variable regions of the
immunoglobulin genes by SHM, a mechanism occurring in DZ
GC B cells (17, 18). GC B cells appear to be selected based on the
newly acquired affinity, with high-affinity cells preferentially
differentiating into plasma cells and low-affinity cells into
memory B cells (19, 20). The process of affinity maturation
relies on multiple rounds of SHM in the DZ followed by selection
in the LZ, with cells recirculating between the two compartments
(4, 21, 22).

Antibody effector functions are instead determined by the
isotype class that is defined by the expressed IGH constant
region. The expression of the IGHD and IGHM constant
chains can be replaced by different constant regions through
the mechanism of class switch recombination (CSR) (23). The
original notion that CSR occurs in the GC LZ has been
challenged by several observations in mice suggesting that B
cells undergo CSR before entering the GC reaction (24–26).
More recent data in human cells were consistent with CSR
occurring before GC formation, although not excluding that
CSR may happen also in the GC (10).

We have recently investigated the transcriptome of GC B cells
by sc-RNAseq profiling and identified a number of functionally
linked subpopulations (7). We have now extended this analysis
to track the consequences of SHM, CSR and affinity selection in
each of the GC subpopulations by paired transcriptomic and
antibody repertoire analyses at the single cell level. The results
highlight a remarkably homogeneous distribution of mutational
patterns across multiple DZ, LZ and intermediate cells, with the
exception of cells committed to memory or plasma
cell differentiation.
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METHODS

Cell Isolation
Palatine tonsils were obtained at the Children’s Hospital of
Columbia-Presbyterian Medical Center as residual material
from three anonymous patients who had undergone elective
tonsillectomy due to chronic tonsillitis in compliance with
Regulatory Guideline 45 CFR 46.101 (b) (4) for Exempt
Human Research Subjects of the U.S. Department of Health
and Human Services and according to protocols approved by the
Columbia University Institutional Ethics Committee. Tonsil
specimens were placed on ice immediately after surgical
removal. Mononuclear cells (MNC) were isolated by
disaggregating tissues in RPMI 1640 medium (Gibco) followed
by Ficoll-Isopaque (GE Healthcare) density centrifugation (27).
MNC were stained using the following antibodies: anti-CD38-PE
(clone HB7, BD Biosciences), anti-IgD-FITC (clone IA6-2, BD
Biosciences), anti-CD3-FITC (clone UCHT1, Beckman Coulter),
anti-CD184 (CXCR4)-Brilliant Violet 421 (clone 12G5,
BioLegend), anti-CD83-APC (clone HB15e, BioLegend). Total
GC (CD38+/IgD-/CD3-), DZ (CD38+/IgD-/CD3-/CXCR4high/
CD83low) and LZ (CD38+/IgD-/CD3-/CXCR4low/CD83high) B
cells were sorted using an Influx cell sorter (BD Biosciences).
Data rendering was performed using FlowJo (TreeStar).
Single-Cell Gene Expression
and V(D)J Profiling
Cell suspensions were diluted at the concentration of 1,000 cells/
ml and analyzed using the ChromiumNext GEM Single Cell 5’ kit
v1.1, the Chromium Next GEM Single Cell V(D)J Enrichment
Kit Human B cell, and the Chromium Controller (10x
Genomics), following the manufacturer’s instructions.
Sequencing was performed on the NovaSeq6000 System
(Illumina). The FASTQ files were aligned to the human
GRCh38 reference genome using the 10x Genomics Cell
Ranger software v3.1.0 to create unique molecular identifier
(UMI) count tables of gene expression for each sample using a
pipeline that we developed previously (7). UMI counts were
normalized by library size. To annotate cell contig identifier with
V(D)J information, the FASTQ files were aligned to the human
GRCh38 reference genome using the 10x Genomics Cell Ranger
software v3.1.0. The international ImMunoGeneTics
information system (IMGT) (28) and the IMGT/HighV-
QUEST function were used to assess the V-region identity
percentage. The reads were run with IMGT/HighV-QUEST
program version 3.5.20 and IMGT/V-QUEST reference
directory release 202031-2 (http://www.imgt.org).

A secondary filter step kept only those cells that had both
expression and V(D)J information for exactly one heavy and one
light chain and were classified by Cell Ranger as productive, full
length, with high confidence annotation, and a UMI count
greater than 3. We further removed cells with a C-gene
classification of IGHD. The mRNA libraries from each
specimen displayed a median of 6,052 reads/cell and of 2,112
genes/cell.
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Cell Ranger software v3.1.0 (10x Genomics) was also used
to identify clonotypes that were defined as: (i) same V(D)J
regions and (ii) identical concatenated heavy+light CDR3
nucleotide sequences.

Counts from different patients were merged by log normalizing
and scaling the data using the “NormalizeData” and “ScaleData”
functions in the Seurat R package (29) along with the
“CellCycleScoring” function to regress out the cell cycle effect
using the default G2M and S gene sets. The “vars.to.regress”
feature of the ScaleData function was used to remove the batch
and cell cycle effects. The merged data was dimensionally reduced
using Principal Component Analysis (PCA) to get the top 50
principle components using the Scikit-learn Python package (30)
PCA function (parameters : n_components=50, and
random_state=PCA_RANDOM_STATE).

UMAP 2D projections were created from the PCA data using
the UMAP Python package (parameters: n_neighbors=10,
mist_dist=0.1, spread=1, and metric=‘correlation’) (31).

The single-cell expression profiles were clustered with the
PhenoGraph Python package (32) on the PCA data using the
default parameters to build a k-nearest neighbor graph with 20
nearest neighbors (k=20).

The MAST R package was used to test for differentially
expressed genes between individual clusters or pairs of
clusters (33).

Pseudo-Temporal Trajectory Analysis
Pseudo-time analysis was performed using the Slingshot R
package (34) on the dimensionally reduced data with cells
labeled by their PhenoGraph cluster. The cluster trajectories
were plotted on top of the merged UMAP projection with nodes
placed in the centroid of each cluster.

Gene Set and Pathway
Enrichment Analysis
Pathway enrichment analysis was performed using a
hypergeometric test assessing P(X>=N) with a Benjamini-
Hochberg false discovery rate correction on the KEGG
(c2.cp.kegg.v6.2), BioCarta (c2.cp.biocarta.v6.2), and Hallmark
(h.all.v7.0) collections from the Molecular Signature Database
(MSigDB) v6.2 (http://software.broadinstitute.org/gsea/msigdb/
index.jsp) (35) as well as the Staudt Lab Signature Database (36).

Statistical Analysis
The MAST R package was used to identify differentially
expressed genes in each cluster identified in the sc-RNAseq
data. For the gene set and pathway enrichment analysis, a
hypergeometric test with a Benjamini-Hochberg false discovery
rate correction was used.

Detailed information of the statistical test, number of
replicates/samples (defined as n) used in each experiment, and
measurement precision are reported in the figure legends.
Significance was associated to a p ≤ 0.05.

Data Availability
Single-cell gene expression data are available from the Gene
Expression Omnibus (GEO) database under accession number
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GSE188617 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE188617).

Code Availability
All analyses and visualizations were performed in R and Python
using the following open-source tools as described above: 10x
Genomics Cell Ranger software v3.1.0 (https://support.
10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/installation), Seurat (https://satijalab.org/seurat/),
PhenoGraph (https://github.com/jacoblevine/PhenoGraph),
UMAP (https://github.com/lmcinnes/umap), MAST (https://
bioconductor.org/packages/release/bioc/html/MAST.html),
DESeq2 (https://bioconductor.org/packages/release/bioc/html/
DESeq2.html), Slingshot (https://bioconductor.org/packages/
re lease/bioc/html/s l ingshot .html/) , the Sciki t- learn
implementations of PCA, the Matplotlib contour function,
featureCounts (https://bioconductor.org/packages/release/bioc/
html/Rsubread.html) , Lifel ines (https:/ /github.com/
CamDavidsonPilon/lifelines/), seaborn (https://seaborn.pydata.
org/index.html), and GSEA (https://www.gsea-msigdb.org/gsea/
index.jsp). Figures were created with the svgwrite package
(https://pypi.org/project/svgwrite/).
RESULTS

Identification of GC B Cell Subpopulations
by Single-Cell Transcriptomic Analysis
Human GC B cells were isolated from tonsil tissue of three
donors by cell sorting CD3-/IgD-/CD38+ cells. In addition, DZ
(CD3-/IgD-/CD38+/CXCR4high/CD83low) and LZ (CD3-/IgD-/
CD38+/CD83high/CXCR4low) subpopulations were purified in 2
of the 3 donors (Figure S1A). Single-cell transcriptomic analysis
was performed in parallel with immunoglobulin sequencing
using the 10x Genomics Single Cell Immune Profiling Platform
(Figure S1B). Upon data quality filtering, we obtained 40,772
cells that had good quality data for both the transcriptome and
the immunoglobulin sequences. The transcriptome libraries were
analyzed by the 10x Genomics computational pipeline, followed
by dimensional reduction using the Uniform Manifold
Approximation and Projection (UMAP) algorithm (31), and
cluster identification by the PhenoGraph algorithm (32)
(Figure S1B).

Confirming our previous observations (7), 99% of the cells
were assigned to clusters that displayed features of DZ, LZ or
Intermediate GC B cells as well as clusters representing the
precursors of plasma cells and memory B cells (Figure 1A). The
cluster identities were confirmed by annotation of the cluster-
specific gene signatures, which included hallmarks of these
subpopulations such as CXCR4 and AICDA (DZ), CD83 and
BCL2A1 (LZ), CCR6 and CELF2 (PreM), PRDM1 and FKBP11
(PBL) (Figure 1B and Table S1). Consistent with a recent report
(10), we also identified a cluster of cells (named “FCRL2/3”)
displaying some similarities with the memory B cell precursors
and characterized by high expression of FCRL2 and FCRL3
(Figures 1A, B and Table S1). As expected, the DZ-sorted
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A

B

D
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FIGURE 1 | Identification and characterization of germinal center (GC) B cell subpopulations by single-cell (sc)-transcriptomic analysis. (A) UMAP projection of sc-
RNAseq profiles of 40,772 cells including GC (CD3−, IgD−, CD38+), dark zone (DZ, CD3−, IgD−, CD38+, CD83lo, CXCR4hi) and light zone (LZ, CD3−, IgD−, CD38+,
CD83hi, CXCR4lo) cells isolated from three donors. Clusters in the UMAP plot were identified by PhenoGraph and color-coded according to different cell states: DZ,
Intermediate (INT), LZ, and committed to post-GC differentiation (FCRL2/3; memory precursors, PreM; plasma blasts, PBL). The right panel displays the UMAP
projection labeled to display the cells belonging to each cluster. The number of cells in each cluster is provided in parenthesis. (B) Heat map displaying the relative
expression, as z-scored fold change (log2), of selected hallmark genes in the GC B cell clusters identified in (A). (C) Pseudo-time analysis inferred trajectories that
were projected onto the UMAP with cluster nodes placed in the centroid of each cluster. (D) Pathway enrichment analysis for the gene signatures associated with
the clusters identified in (A). Selected pathways from KEGG (KG), Hallmark (HM) and Staudt Lab Signature Database (SigDB) that were significantly enriched
(hypergeometric test with Benjamini-Hochberg correction, q < 0.05) are shown in gray. Clusters are organized in four groups (DZ, LZ, memory precursors MP, PBL)
based on their similarities, as identified in (C).
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cells were mostly associated with the sc-identified DZ clusters,
LZ-sorted cells with the LZ compartment and with cells
committed to post-GC differentiation, while the GC-sorted
cells contributed to all sc-clusters but with a significant
preference toward DZ and INT clusters (Figure S1C).

In order to infer the relationships across clusters, we applied a
pseudo-time analysis that confirmed the proximity of the distinct
DZ or LZ clusters, pointed to the relationship between the INT-1,
including DZ re-entry cells, and the DZ clusters, and placed INT-
3 cells at the switch point toward memory precursors and
FCRL2/3 cells (Figure 1C). Based on the pseudo-time order
and the transcriptional signatures, we identified four major
groups of clusters that were labeled as “DZ” (all DZ and the
INT-1 clusters), “LZ” (the LZ-like INT-2 and INT-4 clusters and
all the LZ clusters), “MP” (the INT-3, PreM and FCRL2/3
clusters) and “PBL” (the PBL-1 and PBL-2 clusters). Of note,
although we define cells that display transcriptional similarities
with memory B cells as “memory precursors”, we cannot
completely exclude that some of them are indeed differentiated
memory B cells re-entering the GC reaction or early activated GC
B cells which, by retaining some features of naïve B cells, are
misclassified as memory-like. In addition, the “PBL” clusters
identify GC B cells that acquired transcriptional profiles
consistent with commitment to the plasma cell lineage, but we
cannot estimate whether these cells will become short-lived
plasmablasts or plasma cells.

Pathway enrichment analysis was performed on the
transcriptional signatures of each cluster using multiple
signature databases (KEGG, Hallmark and the Staudt Lab
Signature Database, SigDB). The results confirmed similarities
to the centroblast signature for the DZ group and to the
centrocyte signature for the other clusters, while more refined
signatures highlighted the clusters associated with post-GC
differentiation (Figure 1D and Table S2). Several transcriptional
signatures associated with transcription factors active at specific
stages of the GC reaction were consistently identified in the
expected clusters: TCF3 in DZ cells (DZ-1), MYC in activated
LZ cells (LZ-2 and LZ-3), KLF2 in cells committed to memory B
cell differentiation (INT-3 and PreM), XBP1 in plasma blasts
(PBL-2) (Figure 1D and Table S2).

Overall, this collection represents the largest dataset of human
GC B cell sc-transcriptomic data to date and provides a detailed
characterization of GC B cell subpopulations, in line with
previous studies by us (7) and others (8–13).
Tracking the Immunoglobulin Variable
Region Mutation Load in GC B Cell
Subpopulations
Analysis of the mutations physiologically introduced by the SHM
mechanism in the variable (V) regions of the heavy and light
immunoglobulin chains was performed at single-cell level using
the 10x Genomics Single Cell Immune Profiling Platform. As
expected, the majority of GC B cells carried mutations in their
immunoglobulin V regions (germline identity median: 95.5%;
range: 71-100%) (Figures 2A, B and Table S3). Only 2% of cells
Frontiers in Immunology | www.frontiersin.org 5
expres sed comple te ly unmuta ted BCRs (germl ine
identity=100%; Figure 2C). The overall mutational load was
variable with a minority of cells (15%) displaying high germline
identity (>98%), while 32% of cells carried very heavily mutated
V regions (germline identity <94%) (Figure 2C). The clusters
associated with the DZ and LZ compartments, as defined by the
analysis of the sc-transcriptome (Figure 1), displayed an overall
similar range of mutations (Figures 2A, B), with a few clusters
(DZ-1, INT-2 and LZ-1) biased toward a higher mutational load
by displaying a significant enrichment for cells with a germline
identity lower than 94% (Figure 2D).

The clusters associated with the memory precursors (“MP”
group: FCRL2/3, INT-3 and PreM) were enriched in cells
displaying a very low mutational load (germline identity
>98%), with the INT-3 population being almost exclusively
represented by cells with a germline identity >98% (Figure 2D).
Although the PreM cluster was significantly enriched for
unmutated cells, which accounted for 36% of the cells in this
cluster, 51% of the PreM cells were significantly mutated
(germline identity <98%; range: 83-98%; median: 95.1%)
(Figures 2A, B, D).

About 75% of the cells in the PBL clusters carried a mutated
BCR (germline identity <98%; range: 82.3-98%; median: 95.8%).
Nonetheless, the PBL clusters were overall depleted for heavily
mutated cells (germline identity <94%), which represented less
than 17% of the population compared to the average 34%
detected in the DZ and LZ groups (Figure 2D).

In order to identify genes the expression of which correlates
with the V-region mutational load, we compared cells with low
(germline identity >98%) and high (germline identity <96%)
number of mutations in each of the cluster subgroups. A subset
of differentially expressed genes displayed the same trend in
multiple groups, regardless of their GC state and isotype class
(Figures 2E, S2). Among them, genes involved in the BCR
signaling pathway (CD72, CR2, CD22, BANK1, TCL1A) and
the BCR-responsive MEF2C transcription factor displayed
higher expression in cells with a low mutational load (germline
identity >98%). Consistent with the fact that cells with high V-
region germline identity may display lower affinity for the
antigen, several of these markers were previously shown to be
expressed at higher level in low-affinity mouse GC B cells
compared to high-affinity cells (20). Conversely, and as
previously reported (10), the B cell maturation marker CD27
was expressed at higher levels in cells with a high mutational load
(germline identity <96%). In addition, cells with a high
mutational load (germline identity <96%) displayed higher
expression of CUX1 , a repressor of immunoglobulin
transcription (37), of the SWI/SNF member SMARCB1, and of
genes encoding the mitochondrial Complex I (Figure 2E).

In order to identify the presence of clones originating from
the same B cell precursor, clonotype analysis was performed on
each donor separately. Although the large majority of cells
(62.3%-85.8%) displayed unique clonotypes, clones with the
same clonotype were identified in all patients (Figure S3). The
number as well as the size of the clones were variable across
patients but overall proportional to the number of cells
January 2022 | Volume 12 | Article 818758
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analyzed (Figure S3). Clonal populations displayed no
significant enrichment relative to the GC B cell subpopulations:
they were uniformly distributed, proportionally to the size of
each cluster.

In conclusion, our analysis provides a detailed overview of the
V-region mutational pattern in GC B cells that highlights a
Frontiers in Immunology | www.frontiersin.org 6
remarkably homogeneous distribution of mutational loads
across different subpopulations, supports the presence of two
PreM populations characterized by low and high germline
identity, respectively, and demonstrates the lower V-region
mutational load of cel ls committed to plasma cel l
differentiation relative to the bulk of GC B cells.
A

C

E

D

B

FIGURE 2 | Tracking the immunoglobulin variable region mutation load in GC B cell subpopulations. (A) UMAP projection in which cells in each cluster are labeled
based on the germline identity of the variable (V)-regions of the heavy and light immunoglobulin chains. The color scale reflects the percentage of the V-region
germline identity with a range from 100% (peach) to 94% or less (dark blue). The number of cells belonging to each cluster is provided in parenthesis. Clusters are
organized in four groups (DZ, LZ, memory precursors MP, PBL) based on their similarities. (B) Violin plots showing the distribution of the V-region germline identity in
each GC cluster. (C) Distribution of GC B cells into five subgroups based on the V-region germline identity. (D) Stacked bar plot showing for each GC cluster the
percentage of cells within the V-region germline identity subgroups (top panel). Enrichment (middle panel) and depletion (bottom panel) analyses of the mutational
load in the GC clusters (hypergeometric test with Benjamini-Hochberg correction, q < 0.05). (E) Differential gene expression analysis between cells with high (>98%)
and low (<96%) V-region germline identity in each of the major GC groups (DZ, LZ, MP and PBL). The size of the dot indicates the percentage of cells with detectable
expression, and the color reflects the relative gene expression shown as the z-scored average (log2) normalized expression within a group.
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Immunoglobulin Isotype Class Distribution
in GC B Cell Subpopulations
The GC data obtained with the 10x Genomics Single Cell
Immune Profiling Platform also allowed the identification of
the IGH constant region expressed in each cell. Except for IGHE,
all IGH isotype classes were detected in each of the GC B cell
Frontiers in Immunology | www.frontiersin.org 7
clusters (Figure 3A and Table S3). Among them, the IGHG class
(including IGHG1, IGHG2, IGHG3, and IGHG4) was the most
common, accounting for about 43% of the cells, followed by
IGHA (33%, including IGHA1 and IGHA2), with IGHM cells
representing the remaining 24% of the total GC B
cells (Figure 3B).
A D

B

C

E

FIGURE 3 | Immunoglobulin isotype distribution in GC B cell subpopulations. (A) UMAP projection in which cells in each cluster are labeled based on the
immunoglobulin isotype class type: IGHM (orange), IGHG (light blue), or IGHA (dark green). The number of cells belonging to each cluster is provided in parenthesis.
(B) Distribution of GC B cells based on their expression of isotype subclasses. (C) Stacked bar plots showing for each GC cluster the percentage of cells within the
immunoglobulin isotype classes (top panel). Enrichment (middle panel) and depletion (bottom panel) analyses of the immunoglobulin isotype classes in the GC
clusters (hypergeometric test with Benjamini-Hochberg correction, q < 0.05). (D) Differential gene expression analysis between unswitched (IGHM) and switched
(IGHG) cells in each of the major GC subgroups (DZ, LZ, MP and PBL). The size of the dot indicates the percentage of cells with detectable expression, and the
color reflects the relative gene expression shown as the z-scored average (log2) normalized expression within a group. (E) Violin plot showing the distribution of the
V-region identity in cells expressing unswitched (IGHM) or switched (IGHG and IGHA) immunoglobulin isotype classes.
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The DZ, LZ and the related intermediate cells (DZ and LZ
groups) displayed an overall similar distribution with IGHG and
IGHA representing on average 42% (range 39-45%) and 35%
(range 34-37%) of the cells, respectively (Figure 3C). A few
clusters showed a bias in favor of either class with a significant
enrichment for IGHG observed in the DZ re-entry cells (INT-1)
and in a subset of the LZ cells (LZ-1 and LZ-3), while IGHA-
expressing cells were enriched in DZ-1, DZ-3, INT-2 and LZ-2
(Figure 3C). IGHM-positive cells represented 21% (range 14-
29%) of the DZ, LZ and the associated intermediate
compartments, while they became dominant (median: 74%;
range 54-81%) in cells related to the memory precursors
(FCRL2/3, INT-3 and PreM clusters) and depleted in the PBL,
which were instead enriched for IGHG cells (median:
71%) (Figure 3C).

Differential expression analyses comparing switched and
unswitched cells in each of the major subgroups (DZ, LZ, MP
and PBL) identified genes displaying consistent, significant
difference in at least two of the groups (Figure 3D). A few
genes displayed higher expression in the unswitched cells,
including the BCR-associated signaling molecule BLK,
lymphotoxin beta LTB, and the transcription factors BACH2
and FOXP1. Conversely, a much larger set of genes was induced
in the switched cells including genes involved in antigen
presentation (SCIMP, IFI30, and several HLA molecules), BCR
signaling (CD22, CD53, MEF2C) and focal adhesion (ITGB2,
FERMT3, VASP, ARPC5, ARPC5L1) (Figure 3D). In addition,
we identified TOX, a high mobility group box protein that has
been reported to be upregulated in switched memory B cells (38),
to be induced in the large majority of switched cells in the GC
including DZ, LZ and PreM (Figure 3D). Of note, the genes
displayed in Figure 3D are associated with the specified isotype
class regardless of the mutational load in the variable regions.
However, since low IGV mutational load tends to correlate with
expression of unswitched IGH (Figures 3E, S4), a large fraction
of genes that are differentially expressed between switched and
unswitched cells are also associated with the IGHV mutational
load. In order to dissect these two aspects (mutational load vs
isotype) the differential expression analyses were performed
separately, according to the IGHV mutational load, and the
results are reported in Figure S5. Consistent with previous
observations (39), CXCR5, a chemokine receptor associated
with LZ migration (2), was expressed at higher levels in
IGHM-posi t ive ce l l s that displayed high germline
identity (>98%). Among the genes expressed at higher level in
IGHM cells with high IGV mutational load (germline identity
<96%) we detected FCRL2, which although representing a
hallmark of a specific GC subpopulation (FCRL2/3), also
appeared to be expressed in a small fraction of other
populations (Figure S5).

Overall, these results indicate that the large majority of GC
B cells show a similar pattern of isotype distribution
dominated by switched cells; however, cells committing to
memory B cell or plasma cell differentiation display unique
repertoires characterized by enrichment for IGHM and
IGHG, respectively.
Frontiers in Immunology | www.frontiersin.org 8
GC Precursors of Memory B Cells and
Plasma Cells Display Immunoglobulin
Repertoires Distinct From the Other GC B
Cell Populations
Asdescribed above, PreMandPBLshowedanoverall lower fraction
of cells carrying highly mutated V-regions with only 18% of PreM
and 17% of PBL displaying a V-region germline identity < 94%
compared to 34% of the bulk GC B cells (Figure 4A). Whereas in
PreM the skewing could be due to the increased fraction of cells
displaying high germline identity, this does not apply to PBL.

PBL and PreM express distinct IGH isotype classes: IGHM is
predominantly associated with PreM (54%) and IGHG with PBL
(71%) (Figure 4B). PBL and plasma cells have already been
shown to predominantly express an IGHG isotype and it has
been suggested that the signaling pathways related to IGHG may
contribute to plasma cell differentiation (10, 25, 40, 41).

Although significantly enriched for IGHM-expressing cells,
46% of PreM cells expressed IGHG (30%) or IGHA (16%),
consistent with the presence of at least two types of memory
precursors: unswitched and switched (Figure 4B). While PBL
mostly expressed IGHG isotypes in cells with high or low
mutational load, PreM displayed a strong correlation between
V-region germline identity and IGH isotypes with low
mutational load paired with IGHM expression and high
mutational load associated with a switched isotype (Figure 4C).

These two subgroups of PreM displayed similar expression of
GC PreM markers such as CCR6, BANK1, RASGRP2 and CELF2.
However, a subset of genes was differentially expressed and
included genes that were related to the V region mutational
load (i.e. TCL1A, CD72, CR2, CD27, CD82) or isotype classes (i.e.
SCIMP, ZYX, TOX, BACH2) (Figure 4D). Of note, these
signatures were detected in multiple GC subpopulations, in
addition to PreM, suggesting that some of the differences were
driven only by the antibody repertoire (Figure 2E, 3D, 4D).
Nonetheless, intrinsic differences were also detected between
these two PreM subpopulations, with the group associated with
high germline identity and unswitched IGH showing overall
higher expression of BCR components (CD79A and CD79B), of
the quiescence-associated gene BTG1, and of the S1PR1 receptor
that favors migration toward the marginal zone (Figure 4D).
Switched and highly mutated PreM displayed higher expression
of TNFRSF13B, of the activation marker GPR183, of the
tetraspan molecules CD82 and CD53, and of MHC class I
molecules (HLA-A, HLA-B, HLA-C, B2M).

Overall, these results are consistent with current evidence
supporting the development of distinct memory B cell populations
with lowandhighmutational load,which are primed for earlyGCre-
entry or for long lasting memory, respectively (42, 43).

Expression of Genes Implicated in
Somatic Hypermutation and Class Switch
Recombination Is Induced in Specific GC
B Cell Populations
The mechanism of SHM introduces mutations in the
immunoglobulin variable regions to enhance the diversity of
January 2022 | Volume 12 | Article 818758

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Corinaldesi et al. Germinal-Center B Cell Single-Cell Transcriptomics
the encoded receptor. This process is known to occur in the DZ
and it starts with a cytosine deamination process catalyzed by
AICDA followed by error-prone repair mechanisms (44).
Consistently, AICDA was induced in the DZ clusters, while the
N-glycosylase UNG and the endonuclease APEX2, known to play
a role in SHM (45, 46), were co-expressed at the highest levels in
the DZ-3, consisting almost exclusively of cells in S-G2-M, and in
the INT-1 population that identifies the cells exiting or re-
entering the DZ, suggesting that the repair process may extend
beyond the DZ compartment (Figure 5A). The expression
pattern of these key players support the current view of SHM
occurring in the DZ compartment.

Although the process of CSR has been dissected in detail at
the molecular level (23), in which cells it occurs remains elusive.
Several lines of evidence in mouse and human cells suggested
that CSR occurs in B cells before entering the GC reaction (10,
24–26). Here, we detected high expression of genes involved in
Frontiers in Immunology | www.frontiersin.org 9
CSR, including APEX1 (47), UNG (48–50), XRCC5/6 (51, 52),
POLD2, POLE3, and BATF (53), in a few GC subpopulations,
suggesting that a subset of cells may undergo CSR in the GC. In
particular, BATF that is required for the expression of germline
transcripts and for effective CSR (53), was highly induced in a
fraction of LZ-2 and in the majority of LZ-3 cells (Figure 5A). In
addition, APEX1 was upregulated in the majority of LZ-2 and
LZ-3 populations, which represent the most activated LZ cells,
and in the INT-1 population, which includes the DZ exit/re-
entry cells (Figure 5A and Table S1). INT-1 cells expressed high
levels of AICDA, which remained clearly expressed in the LZ-
related intermediate populations (INT-2 and INT-4), but was
significantly downregulated in the LZ cells (Figure 5A). The
subset of LZ GC B cells with the highest expression of CSR-
related genes, is represented by cells that, based on their
transcriptome changes, are undergoing strong T-cell mediated
activation and display down-regulation of BCL6, known to
A D

B

C

FIGURE 4 | PBL and PreM display unique immunoglobulin repertoires. (A) Stacked bar plot showing for the indicated cell populations, GC (DZ+LZ groups), PreM
and PBL (PBL1+PBL2 clusters), the percentage of cells within the V-region germline identity subgroups. (B) Stacked bar plots showing for the indicated cell
populations the percentage of cells within the immunoglobulin isotype classes. (C) Stacked bar plots showing for the PreM and PBL populations the percentage of
cells within the immunoglobulin isotype classes in the fractions with high (≥98%) and low (<98%) V-region germline identity. (D) Heat map displaying the differentially
expressed genes between PreM cells with high (≥98%) and low (<98%) V-region germline identity. The size of the dot indicates the percentage of cells with
detectable expression, and the color reflects the relative gene expression shown as the z-scored average (log2) normalized expression. Only genes displaying a fold
change ≥1.2 and detectable expression in at least 25% of the cells in either group are depicted.
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impair CSR to IGHE (54, 55), and induction ofMYC, a marker of
positive selection and a transcriptional target of BCL6 (56, 57)
(Figure 5A). These activation signals are known to associate with
CSR and may contribute to the opening of specific
switch regions.

In the INT-1 and LZ-2 subpopulations, the CSR-related genes
displayed a tendency for higher expression in IGHM-positive
cells compared to switched cells, suggesting a preferential
induction of genes associated with the CSR machinery in
IGHM-positive cells (Figure 5B). Conversely, the LZ-3
population displayed a homogenous higher expression of most
CSR-related genes, regardless of the class isotype.

Consistent with the possibility that CSR may occur during the
GC reaction, about 21% of the identified clonotypes (with at least
5 cells, Figure S3) included cells harboring different isotypes.

Overall, these data are consistent with the presence of SHM
activity in DZ GC B cells, suggest that CSR may occur in a subset
Frontiers in Immunology | www.frontiersin.org 10
of LZ cells, and highlight the possibility that both processes may
take place in cells exiting and/or re-entering the DZ (INT-
1 population).
DISCUSSION

Our single cell analysis of the transcriptome and antibody
repertoire provides a snapshot of GC B cells in the context of
chronic antigenic stimulation. To date, this dataset is the largest
collection of sc-transcriptomic data specifically focused on GC B
cells, representing a valuable resource for other studies in the
field. Consistent with previous observations from us (7) and
others (8–13), our transcriptomic analysis identified multiple
subpopulations expanding the classic DZ/LZ view into a gradient
of states including intermediate subpopulations, which appeared
to be related to either the DZ, the LZ or cells committing to post-
GC differentiation. In addition, GC precursors of memory B cells
and plasma cells were promptly identified by their
unique transcriptome.

The paired analysis of the transcriptome and antibody
repertoires provided substantial evidence that the large
majority of GC B cell subpopulations display similar patterns
of V-region mutational load and isotype class distribution. This
observation suggests that, at steady-state, GC B cells have the
same probability to undergo SHM and that the overall isotype
representation remains uniform across distinct DZ, intermediate
and LZ subpopulations with a dominant presence of switched
cells. Conversely, cells committed to post-GC differentiation
displayed unique and distinct behaviors.

Consistent with previous observations on mature memory B
cells in the periphery (58–60), GC memory B cell precursors
appeared to be split in two subgroups based on both their V-
region germline identity and switched or unswitched isotype
class. On one side, memory precursors with high germline
identity and expressing prevalently IGHM are likely to
differentiate in the subset of memory B cells, which will re-
enter future GC-reactions (43). On the other, about 50% of
memory precursors were switched and displayed an IGV
mutational pattern similar to PBL: these cells may generate the
memory B cell population that, during secondary immune
responses, is able to differentiate into antibody-secreting
plasma cells (42).

As expected, plasma cell precursors were mostly mutated and
largely expressed IGHG. However, PBL displayed an IGV
mutational pattern distinct from the majority of GC B cells
and characterized by an overall under-representation for cells
with very high mutational load. Considering that plasma
cells exiting the GC secrete high-affinity antibodies, these
observations suggest that high affinity may not be necessarily
achieved by a high load of V-region mutations. Regarding the
isotype class, we observed a significant enrichment for IGHG
expression in cells committed to plasma cell differentiation, in
line with the fact that IGHG-positive GC B cells have been shown
to undergo differentiation into plasma cells more efficiently than
IGHM-positive cells (39, 41).
A

B

FIGURE 5 | Expression pattern of genes implicated in SHM and/or CSR in
GC B cell populations. (A) Heat map displaying the expression of genes
implicated in SHM and CSR across the GC populations, identified by sc-
transcriptomics. (B) Heat map displaying the expression of the same genes
analyzed in (A), in unswitched (IGHM) and switched (Rest) cells in the INT-1,
LZ-2 and LZ-3 GC clusters. The size of the dot indicates the percentage of
cells with detectable expression, and the color reflects the relative gene
expression shown as the z-scored average (log2) normalized expression
within a cluster.
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Historically, the GC compartment has been considered the
site where SHM and CSR occur in the context of T-cell
dependent immune responses. Our observations are consistent
with the large body of data demonstrating that SHM occurs in
DZ GC B cells. GC B cells have also been thought to undergo
CSR, a mechanism acting in concert with SHM to give rise to a
diverse repertoire of high-affinity antibodies of multiple isotype
classes. However, evidence in mouse and human cells suggested
that CSR mostly occurs in B cells before entering the GC reaction
(10, 24–26). In addition, constant region-based positive selection
has been proposed to occur in the GC, independently of CSR
(41). Although our data do not address the events occurring in
pre-GC B cells, they detected abundant expression of genes
associated with the CSR machinery in selected GC
subpopulations, including LZ cells and GC B cells exiting and/
or re-entering the DZ (INT-1). These data support the presence
of the CSR machinery in a small subset of activated GC B cells
and suggest that CSR may also occur during the GC reaction.

In conclusion, these data, together with the analysis of the
overall B cell compartment in the secondary lymphoid organs
(10), provide a framework to integrate observations at single-cell
level from mouse models (11–13) and to address still open
questions regarding the physiology of the GC reaction,
including the fate decision of post-GC effector cells, as well as
the pathologies associated with this compartment.
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