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cardiovascular risk from computed tomography
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Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible

on all computed tomography (CT) scans of the chest, this information is not routinely

quantified as it requires expertise, time, and specialized equipment. Here, we show a robust

and time-efficient deep learning system to automatically quantify coronary calcium on rou-

tine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct

asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE,

ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events,

independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high

correlation with manual quantification, and robust test-retest reliability. Our results

demonstrate the clinical value of a deep learning system for the automated prediction of

cardiovascular events. Implementation into clinical practice would address the unmet need of

automating proven imaging biomarkers to guide management and improve population health.
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Cardiovascular disease is the most common preventable
cause of death, accounting for up to 45% of the mortality
in Europe1 and 31% in the United States2. Effective life-

style and pharmacological prevention is available, but identifying
those who would benefit most remains an ongoing challenge3.
Traditional risk factors, such as age and sex, have limited accu-
racy for predicting cardiovascular disease among individuals.
Hence, efforts are needed to further improve cardiovascular risk
prediction and stratification on an individual basis4.

One of the strongest known predictors for adverse cardiovas-
cular events is coronary artery calcification, which can be quan-
tified on computed tomography (CT)5,6. The CT coronary
calcium score is a measure of the burden of coronary athero-
sclerosis and is one of the most widely accepted measures of
cardiovascular risk5,6. Coronary calcium scoring has been
recommended by the guidelines for risk stratification, specifically
in the setting of primary prevention in asymptomatic
individuals7,8. In symptomatic patients, the presence of coronary
calcium is associated with future cardiovascular events in the
stable chest pain setting9 and low likelihood of acute coronary
syndrome in patients with acute chest pain10. Additionally,
showing patients their coronary calcium provides a “teachable
moment” to empower them to make informed, individualized
decisions, and to improve long-term compliance for preventative
therapy and lifestyle changes including smoking cessation11,12.

While the calcium score has been traditionally measured on
specialized electrocardiography (ECG)-gated cardiac CT, it can
also be measured on nearly every standard CT scan of the chest
performed without contrast8. However, the measurement requires
radiological expertise, time, and specialized coronary calcium
quantification equipment. As a result, this essentially free avail-
able information is usually not reported. An automated system
for quantifying calcium on medical imaging could help put this
actionable information into the hands of patients and their
physicians.

Recent strides in artificial intelligence, deep learning in parti-
cular, have shown its viability in several medical applications such
as medical diagnostic and imaging, risk management, or virtual
assistants. Especially in medical imaging there is a large potential
as deep learning can successfully be used for identifying
and segmenting objects within the 3-dimensional (3D) image
space13–16. A major advantage is that deep learning can automate
complex assessments that previously could only be done by
radiologists, but now is feasible at a scale with a higher speed and
lower cost. This makes deep learning a promising technology for
automating cardiovascular event prediction from imaging. Before
clinical introduction can be considered, however, the general-
izability of these systems needs to be demonstrated as they need
to be able to predict cardiovascular events of asymptomatic and
symptomatic individuals across multiple clinical scenarios, and
work robustly on data from multiple institutions.

Here, we present a deep learning system that automatically and
accurately can predict cardiovascular events by quantifying the
presence and extent of coronary calcium. The system was eval-
uated in 20,084 individuals from four well-established prospective
cohorts and randomized controlled trials—a healthy asympto-
matic community-dwelling sample from the Framingham Heart
Study (FHS)17, older asymptomatic heavy smokers in the
National Lung Screening Trial (NLST)18, a symptomatic stable
chest pain population evaluated for suspected coronary artery
disease in the outpatient setting in the Prospective Multicenter
Imaging Study for Evaluation of Chest Pain (PROMISE)19, and a
symptomatic acute chest pain population presenting to the
emergency department in the Rule Out Myocardial Infarction
using Computer Assisted Tomography (ROMICAT-II)20 trial.
Overall, the association between the algorithm’s prediction and

adverse cardiovascular events was tested in individuals who were
imaged using different CT scanners, applying a variety of CT scan
protocols, including ECG-gated and non-gated CT scans. Accu-
racy compared to the gold standard of expert human readers was
assessed in 5521 subjects across all four cohorts. Our results
demonstrate that deep learning methods can automate cardio-
vascular risk predictions from medical images acquired in several
clinical scenarios. These observations provide a rationale to
implement this technique in both screening and hospital settings
to improve population health, at high speed and low costs.

Results
We developed a deep learning system to automatically identify
individuals at high risk for cardiovascular disease and tested the
system’s performance in four large independent held-out cohorts
with a variety of clinical presentations and CT scanning techni-
ques. Figure 1 provides an overview of the test cohorts and
analyses. Clinical characteristics of the test cohorts can be found
in Table 1.

Development of the deep learning system. The FHS is a long-
term cardiovascular cohort study including asymptomatic per-
sons originally from the city of Framingham in
Massachusetts17,21. The Offspring and Third Generation FHS
cohorts received ECG-gated non-contrast cardiac CT and were
included in our analysis. We developed the deep learning system
in the first cohort of FHS participants to have cardiac CT (FHS-
CT1), including 1636 individuals. The deep learning system was
trained to identify and quantify coronary artery calcium (CAC)
based on manual segmentations performed by expert CT readers
(Fig. 1a). To localize and segment the heart in a given CT scan,
two consecutive deep learning networks were trained using 129
cardiac ECG-gated CTs with volumetric heart segmentations
provided by expert readers. These networks were tested in an
independent subset of our test cohorts including 1857 cardiac
gated and low-dose chest screening CT (Supplementary Fig. 2a).
In this test cohort the heart localization network was able to
predict the heart center with an accuracy of 9 ± 7 mm, while the
heart segmentation network achieved a Dice coefficient of 0.90 ±
0.059. Supplementary Table 4 provides details about the results of
the two networks in the sub-cohorts. Next, the system auto-
matically identified and segmented the coronary calcium and
computed the CAC scores, and stratified them into clinically
relevant categories of very low (CAC= 0), low (CAC= 1–100),
moderate (CAC= 101–300), and high (CAC > 300). The system
could analyze each image on an average of 1.938 s per scan on a
graphics processing unit (GPU) system. Resulting CAC scores
were evaluated in the test cohorts in terms of agreement with
expert readers as well as predicting the risk of cardiovascular
events on follow-up (Fig. 1b).

Automated coronary calcium scoring in lung cancer screening.
To evaluate the value of coronary calcium in heavy smokers
having lung cancer screening CT, we applied our deep learning
system to 14,959 participants in the low-dose chest CT arm of the
NLST. NLST low-dose chest CT was performed at 33 institutions
with a variety of CT scanners using a non ECG-gated low-dose
chest CT protocol18.

We investigated the association between our deep learning
system’s calcium score and incident atherosclerotic cardiovascu-
lar disease (ASCVD) death in lung cancer screening eligible
individuals with a median follow-up time of 6.7 years.
Kaplan–Meier analysis and Cox regression showed significant
differences between all four calcium risk groups (Fig. 2a).
Adjusted for age, sex, diabetes, heart disease, hypertension, and
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stroke, the hazards ratio (HR) for cardiovascular disease
compared to the reference (very low risk) group was 1.57 (95%
CI= 0.96–2.57, P= 0.069) for the low-risk group, 2.79 (95%
CI= 1.70–4.57, P < 0.001) for the moderate-risk group, and 3.87
(95% CI= 2.45–6.11, P < 0.001) for the high-risk group (Table 2).

Risk predictions in stable and acute chest pain patients. Fur-
thermore, we tested our deep learning system in outpatients with
stable chest pain enrolled and randomized to ECG-gated cardiac
CT in the Prospective Multicenter Imaging Study for Evaluation
of Chest Pain (PROMISE). In 4021 patients acquired at 193

Fig. 1 Overview of the deep-learning framework, the training and test cohorts, and the implemented evaluation steps. a The deep-learning framework
was trained and tuned on 1636 computed tomography (CT) scans from Framingham Heart Study (FHS)-CT1. In four consecutive steps a coronary calcium
risk score was calculated in a fully automatic fashion. Independent testing was performed on 20,084 CT scans from four different clinical cohorts. b The
performance of the framework was evaluated with respect to its clinical value and robustness. c CT scans of three representative patients of FHS-CT2
outlined with the deep learning system heart (blue contours) and coronary calcium (orange contours). FHS-CT117, FHS-CT217 Framingham Heart Study,
(CT1) participants from the seventh examination cycle of the Offspring Cohort or first examination cycle of the Third Generation Cohort (2002–05) and
(CT2) participants from the second examination cycle of the Third Generation Cohort (2008–11), NLST18 National Lung Screening Trial, PROMISE19

Prospective Multicenter Imaging Study for Evaluation of Chest Pain, ROMICAT-II20 Rule out Myocardial Infarction using Computer Assisted Tomography
II, ECG electrocardiographic, CT computed tomography, ASCVD atherosclerotic cardiovascular disease, ACS acute coronary syndrome.

Table 1 Baseline characteristics of subjects in the four test cohorts.

Characteristicsa FHS-CT2 (n= 663) NLST (n= 14,959) PROMISE (n= 4021) ROMICAT-II (n= 441)

Woman—n (%) 372 (56.1) 6,110 (40.9) 2,047 (50.9) 235 (53.3)
Age - years 57.2 ± 11.4 61.5 ± 5.1 60.6 ± 8.0 53.7 ± 8.0
Body mass index—kg/m2 28.6 ± 5.5 27.9 ± 5.1 30.4 ± 5.9 29.3 ± 5.2
Arterial hypertension—n (%) 219 (33.1) 5321 (35.6) 2614 (65.0) 233 (52.8)
Diabetes—n (%) 31 (4.87) 1427 (9.5) 838 (20.8) 74 (16.8)
Hypercholesterolemia—n (%) 236 (35.6) n/a 2734 (68.0) 198 (44.9)
Former or current smoker—n (%) 202 (31.7) 14,959 (100) 2078 (51.7) 220 (49.9)
Framingham risk score 0.10 ± 0.1 n/a 0.22 ± 0.2 n/a
TIMI risk score n/a n/a n/a 0.13 ± 0.3

FHS-CT217 Framingham Heart Study, participants from the second examination cycle of the Third Generation Cohort, NLST18 National Lung Screening Trial, PROMISE19 Prospective Multicenter Imaging
Study for Evaluation of Chest Pain, ROMICAT-II20 Rule Out Myocardial Infarction using Computer Assisted Tomography II, TIMI thrombolysis in myocardial infarction. n/a: Data were not available.
aCharacteristics are presented as mean ± standard deviation, if not stated otherwise.
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North American sites, there was a graded association between
extent of deep learning calcium score and cardiac events, defined
as the composite of death, myocardial infarction, or hospitaliza-
tion for unstable angina over median 25 months (P < 0.001)
(Fig. 2b)19. After adjustment for Framingham Risk Score (FRS),
HRs for cardiac events showed significant increases in hazard
across the low, moderate, and high risk versus the reference (very
low risk) group (Table 2).

The last test cohort included patients presenting with acute
chest pain to the emergency department enrolled in the Rule Out
Myocardial Infarction Using Computer Assisted Tomography II
(ROMICAT-II) trial. In 441 patients who had ECG-gated cardiac
CT at nine sites, there was a similar association between the deep
learning calcium score and acute coronary syndrome at 28 days
(Fig. 2c)20. After adjustment for thrombolysis in myocardial
infarction (TIMI) risk score, again patients with increasing deep
learning calcium score were at increased risk, reflected in HRs
significantly greater than 1 for each of low, moderate, high risk
versus the reference (very low risk) group (Table 2). HRs increase
as the risk category increases.

Comparison of automated deep learning and manual results.
We compared the deep learning calcium scores to manually
measured calcium scores in 5521 test cohort patients from FHS-
CT2 (n= 663), NLST (n= 396), PROMISE (n= 4,021) and
ROMICAT-II (n= 441). There was a very high22 Spearman’s
correlation of 0.92 (P < 0.0001) and substantial agreement23

between automatically and manually calculated calcium risk
groups (Fig. 3a). Most differences occurred between adjacent risk
categories. For a detailed comparison of the calcium scores in
each test cohort, as well as concordance tables and kappa values,
see Supplementary Figures 3, 4, and 5 and Supplementary
Tables 1 and 3. Furthermore, an in-depth outlier analysis was
performed and can be found in the Supplementary Note 1.

To show the predictive value of the automatically calculated
calcium score we computed the AUCs for event prediction in
NLST, PROMISE, and ROMICAT-II (Supplementary Table 2)
and compared them to AUCs from manually derived calcium
scores (Supplementary Table 5). We used random effects meta-

analysis to estimate combined predicted and manual AUCs. The
combined predicted AUC= 0.74 was statistically not different to
the combined manual AUC= 0.75 (P= 0.544).

Test–retest reliability. A test–retest analysis was performed
separately on the manual and on the deep learning risk scores on
a subset of randomly selected 252 image pairs from FHS-CT1.
Each image pair was taken consecutively within the same setup
and within 1-min to 1-h time difference. The results showed a
great stability between the automatically calculated calcium scores
for each image per pair achieving an intra-class correlation (ICC)
of 0.993 (P < 0.001), compared to the ICC of manual calculated
calcium scores of 0.997 (P < 0.001). Manual and automatic
test–retest repeatability is shown in Fig. 3b, c.

Discussion
In this investigation, we demonstrate that a deep learning-based
coronary calcium scoring system accurately stratifies the risk for
cardiovascular events across 19,421 individuals with distinct
presentations enrolled in four large clinical studies. Risk predic-
tion was robust across multiple clinical scenarios, including a
primary prevention asymptomatic setting with non-gated chest
CT (NLST)18, as well as dedicated ECG-gated cardiac CT in
stable (PROMISE)19 and acute (ROMICAT-II)20 chest pain set-
ting. The deep learning calcium score in 5521 participants had
high correlation with human expert readers and demonstrated
robust test–retest reliability. Persons with a calcium score of zero
are at very low risk24, with increasing risk in the ordinal calcium
score tiers identified by the deep learning system25–27. Based on
the 2018 ACC/AHA guidelines7, in persons at intermediate risk
(defined as ≥7.5% to <19.9% 10-year risk of cardiovascular events
based on risk factors), a calcium score of 0 indicates very low risk
and unlikely benefit from statin therapy, while a high calcium
score (≥100 or ≥75th centile for age/sex) indicates that a statin
should be considered7. Despite these recommendations, a dedi-
cated coronary calcium scoring CT is not yet covered by Medicare
and most US insurance companies, and for this reason, there is a
great deal of interest in deriving the calcium score from routine
chest CTs, which are far more common8,28,29.

Fig. 2 Outcome analysis for deep learning predicted calcium scores. Kaplan–Meier survival analysis of CAC risk groups for a cardiovascular disease-
related death for 14,959 subjects of the National Lung Screening Trial (NLST)18 and b all-cause mortality, myocardial infarction and unstable angina for
4021 subjects of the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE)19. A two-sided log rank test was used to calculate the
p values (*p value ≤ 0.05; ***p value ≤ 0.001) in panels (a) and (b). c Thirty-day acute coronary syndrome (ACS) rate across CAC groups for 441 subjects
from the Rule Out Myocardial Infarction using Computer Assisted Tomography II (ROMICAT-II)20 trial. The shaded area corresponds to the 95%
confidence interval of the 30-day ACS rate across CAC groups. A two-sided Fisher’s exact test was used to estimate differences in the ACS rate between
the very low risk group and the low, moderate, and high risk groups (***p value≤ 0.001). CAC coronary artery calcium, ASCVD atherosclerotic
cardiovascular disease, ACS acute coronary syndrome. CAC risk groups: Very low: 0; Low: 1–100; Moderate: 101–300; High: >30021.
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Traditionally, coronary calcium scoring requires special soft-
ware, manual measurement by trained experts and dedicated
ECG-gated cardiac CT. As a consequence, the calcium score is
often not reported on routine noncardiac chest CT, despite the
fact that calcium scores on non-gated CT have reasonably good
agreement with dedicated calcium scoring CT30,31. Our auto-
mated calcium scoring system addresses this need by reliably and
accurately extracting the calcium score in both cardiac CT and
chest CT. The system calculates the calcium score in under 2 s,
without human input. Our approach has several innovations:
first, we developed a unique deep learning system to measure
CAC on routine cardiac ECG-gated and non-gated chest CT,
spanning a broad clinical spectrum including acute and stable
chest pain as well as asymptomatic individuals having lung cancer
screening. Our analysis of individuals from well-known NIH-
sponsored observational cohorts and randomized controlled trials
with prospective follow-up for cardiovascular events and death is
the largest to date to demonstrate the clinical value of automated
calcium scoring. Second, we demonstrate the prognostic value for
risk of cardiovascular disease when the deep learning calcium
score is applied to four different trials and longitudinal cohorts
spanning the range of clinical scenarios in which coronary cal-
cium would be useful. As our deep learning system does not
require human input, this makes it an ‘end-to-end’ solution for
accurate and time-efficient cardiovascular risk assessment in
clinical settings32,33. Third, we share our rigorously validated
deep learning system to the public, allowing for accelerated
adoption of these technologies by both academic and commercial
entities.

Although other studies have investigated deep learning algo-
rithms for automated coronary calcium quantification34–42, they
used smaller cohorts or proprietary technologies. For example,
previous publications for fully automatic coronary calcium assess-
ment proposed models focused on either ECG-gated cardiac34 or
non-gated chest CT35. Shadmi et al.40 trained slice based U-Net and
FC-DenseNet networks to segment coronary calcium with high
accuracy in a subset of NLST, optimizing their model for non-gated
CT only. Lessmann et al. presented a two-stage approach for cal-
cium scoring37 as well as a deep learning method35 in a smaller
subset of NLST. Martin et al.42 tested in their study a prototype
commercial deep learning system for coronary calcium segmenta-
tion on a small data set from a single institution and scanner and
their median computing time per scan was slightly slower (2.7 s). A
combined solution capable of analyzing cardiac and non-gated
chest CT as presented in our investigation has only been proposed
by de Vos et al.36 and van Velzen et al.41. The approach proposed
by de Vos et al.36 predicted the calcium score directly using direct
regression on 2D CT slices only, and their test cohort was sub-
stantially smaller compared to our present analysis, less diverse and
from the same sites as their training cohort36. Van Velzen et al.41

have shown the automation of CAC measurements compared to
manual assessments in several clinical scenarios, using a two-step
approach to find calcification candidates and subsequently detecting
calcifications, again using smaller testing cohorts compared to our
present study. Our analysis of 20,084 individuals from well-known
observational cohorts and randomized controlled trials with pro-
spective follow-up for cardiovascular events and death is by far the
largest to date to demonstrate the predictive value of automated
calcium scoring. Furthermore, we demonstrate strong robustness of
the system by a high correlation with manual scoring in 5521 sub-
jects and high test–retest reliability in data from 252 individuals. We
also share our deep learning system, including the trained models,
with the community, without restrictions.

To overcome different fields of view of CT scans in tested
cohorts and to reduce the amount of data that has to be processed
to assess coronary calcium, many approaches implement aT
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preprocessing step to find a region of interest (ROI) around the
heart. Often, traditional image-processing techniques are used to
find the ROI38–40, but also 2D deep learning networks were
successfully used to segment the heart and estimate a bounding
box43. The benefit of our 3D heart segmentation step is not to
find a rectangular ROI, but to narrow the region for coronary
calcium segmentation to the heart itself.

A strength of our investigation was that we tested our system in
populations from large clinical trials and longitudinal cohorts
with well-adjudicated cardiovascular disease events. This is
essential, as before clinical introduction can be considered, the
generalizability of these automated systems needs to be demon-
strated as they need to be able to predict cardiovascular events of
asymptomatic individuals across multiple clinical scenarios and
work robustly on data from multiple institutions. Overall, we
included over 20,000 persons drawn from over 200 sites. The
available health outcomes and risk factors varied between data-
sets, reflecting the diverse mix of asymptomatic and symptomatic
individuals. Nevertheless, the deep learning calcium score was an
independent predictor of adverse cardiovascular events in all
cohorts. The majority of FHS (100%)44, NLST (91%)18, PRO-
MISE (77%)45, and ROMICAT-II (66%)46 participants were non-
Hispanic whites. Although the manual calcium score has proven
to be an important predictor of cardiovascular events across race
and ethnicities, generalizability to other demographics will need
to be investigated in future studies47. Furthermore, the proposed
system evaluated the CAC score on non-contrast cardiac and
chest CT. As such it could not detect noncalcified plaque, which
can be present even with a calcium score of zero.

In summary, our end-to-end deep learning system provides an
automated quantification of coronary calcium on both cardiac CT
and lung cancer screening CT. The deep learning calcium score is
strongly associated with cardiovascular risk in a broad spectrum
of clinical scenarios. Automated quantification of coronary cal-
cium has the potential to improve clinical routine and population
health.

Methods
Study population. This study was a retrospective secondary analysis of a long-
itudinal primary prevention cohort (FHS-CT1 and FHS-CT2) and three rando-
mized clinical trials (NLST, PROMISE, ROMICAT–II). Details about participant
selection are provided in the consort diagrams in the Supplementary Fig. 1.

The deep learning system training and tuning was accomplished in FHS
Offspring48 and Third Generation49 cohort participants (FHS-CT1, n= 1636) who
had non-contrast ECG-gated cardiac CT for coronary calcium quantification
between 2002 and 2005. Details regarding the FHS cohort, inclusion criteria, and
calcium scoring have been described elsewhere21. Participants resided or had
parents who resided in Framingham or in the New England region were drawn for
this study. Major inclusion criteria were age ≥35 years for men and ≥40 years for
women. All participants provided written consent for the CT study, which was
approved by the institutional review boards of the Boston University Medical
Center and Massachusetts General Hospital17,21. In our investigation we included
only participants with available cardiovascular disease risk profile, no known prior
cardiovascular disease, and diagnostic-quality cardiac CT as determined by an
expert reader (Supplementary Fig. 1a).

The deep learning system performance was tested in a second, independent
group of FHS participants who had cardiac CT from 2008 to 2011 (FHS-CT2, n=
663). None of the persons in the FHS-CT2 testing cohort were in the FHS-CT1
training/tuning cohort. While the FHS-CT1 training cohort included only
diagnostic-quality CTs, the FHS-CT2 testing cohort included all CTs including
those initially considered non-diagnostic (Supplementary Fig. 1b).

A second testing cohort was drawn from the NLST18, a multicenter randomized
controlled trial of non-contrast, non-ECG-gated low-dose chest CT for lung cancer
screening. In NLST, 53,454 subjects aged 55–74 years, current or former heavy
smokers, were enrolled at 33 participating medical institutions with all-cause
mortality as the primary outcome measure over a follow-up of up to 8 years. A total
of 26,722 randomly selected participants underwent low-dose non-contrast chest
CT imaging between 2002 and 2007. The trial was approved by the institutional
review board at each site. From the full cohort we had permission to include 15,000
randomly selected subjects. For each subject the baseline (T0) CT scan was chosen
with soft kernel preferred over hard kernel reconstructed images. We excluded
17 subjects that did not have a T0 scan, 10 subjects that did not have scans which
met our quality requirements, 12 subjects that had a broken or incomplete scan,
and 2 subjects with missing risk data. The final testing cohort consisted of
14,959 scans (Supplementary Fig. 1c). To verify the results of our deep learning
system in this cohort, a subset of randomly chosen 396 subjects were segmented by
expert readers.

The third cohort included participants from the Prospective Multicenter
Imaging Study for Evaluation of Chest Pain (PROMISE)19,45. In this multicenter
trial 10,003 symptomatic patients were randomized at 193 medical sites in North
America using a composite of major cardiovascular events as a primary outcome
measure over a median follow-up of 25 months. Participants of age 45 to 64 years
with stable chest pain and without known prior CAD were enrolled between 2010
and 2013 with 4,996 subjects randomly selected to undergo cardiac CT imaging.
The central activities of the study were approved by the Duke, Partners Healthcare,
and Tufts Institutional Review Boards. Furthermore, local or central IRBS
approved the study at each medical institution. The final testing cohort included
4,021 individuals each with a non-contrast cardiac CT scan and full risk profile
available (Supplementary Fig. 1d). All subjects were segmented by expert readers.

The fourth cohort included participants from the Rule Out Myocardial
Infarction Using Computer Assisted Tomography Study Two (ROMICAT-II)20. In
this randomized open-labeled multicenter trial 1000 patients which presented at
the emergency department of nine clinical sites with acute chest pain were enrolled
between 2010 and 2012. The primary outcome measure of this study was the length

Fig. 3 Confusion matrices to compare automatic and manual CAC quantification and to assess test–retest repeatability. a Comparison of CAC classes
calculated by the deep-learning framework and expert readers, combining data from FHS-CT2, NLST, PROMISE, and ROMICAT-II (n= 5521). The
robustness of b the deep learning framework and c expert readers to quantify CAC was assessed in 252 FHS-CT1 subjects who underwent two subsequent
CT scans within 1 h (Scan 1 and Scan 2). CAC coronary artery calcium, FHS-CT117, FHS-CT217 Framingham Heart Study, (CT1) participants from the
seventh examination cycle of the offspring cohort or first examination cycle of the Third Generation Cohort (2002–05) and (CT2) participants from the
second examination cycle of the Third Generation Cohort (2008–11), NLST18 National Lung Screening Trial, PROMISE19 Prospective Multicenter Imaging
Study for Evaluation of Chest Pain, ROMICAT-II20 Rule Out Myocardial Infarction using Computer Assisted Tomography II, CAC risk groups: very low: 0;
low: 1–100; moderate: 101–300; high: >30021.
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of the hospital stay and a second outcome including undetected acute coronary
syndrome within 72 h after hospital discharge, increased adverse events, major
adverse cardiovascular events within 28 days, and periprocedural complications.
The study was approved by the local institutional review boards. Patients were
between 40 and 74 years old, without known coronary artery disease, almost equal
gender representation and significant representation of all minorities. Of these
subjects, 500 were randomly selected to undergo non-contrast cardiac CT imaging.
After excluding participants with incomplete image data or risk profile the final
testing cohort included 441 participants (Supplementary Fig. 1e). All subjects were
segmented by expert readers.

A detailed population description for all four cohorts can be found in Table 1.
Participants from all studies provided written consent.

Deep learning-based coronary calcium segmentation. We propose a deep
learning system that is able to automatically calculate a calcium score from a given
CT scan for cardiovascular risk prediction. The system consists of four consecutive
steps for (1) heart localization, (2) heart segmentation, (3) coronary calcium seg-
mentation, and (4) calcium score calculation. We trained a separate fully con-
volutional neural network of the U-Net50 architecture for each of the first three
steps. The U-Net architecture was originally designed for biomedical image seg-
mentation with the goal of overcoming the requirement for a very large cohort for
training a deep learning network.

The cohort for training and tuning the three deep learning models consisted of
1636 CT scans: 623 CT scans were from subjects with coronary calcium and 1013
CT scans from subjects with no coronary calcium. Although several hundred more
CT scans from subjects with no coronary calcium were available, we chose to
exclude them to keep the imbalance between subjects with and without coronary
calcium small. Excluded subjects were selected randomly. Coronary calcium, if
present, was manually segmented by experienced readers in all subjects.
Furthermore, the heart was manually segmented in a subset of 129 randomly
selected subjects of the training cohort. Our testing cohort consisted of
20,084 subjects from four different clinical studies and trials including dedicated
cardiac CT scans as well as lung screening CT scans, health outcomes, and follow-
up information. Manually calculated calcium scores from expert readers were
available for 5521 subjects and manually segmented hearts for 895 subjects. All CT
scans were padded and cropped to the same size of 512 × 512 × 512pixel (px) and
resampled to the same resolution of 0.7 × 0.7 × 2.5 mm/px. A detailed description
of the training, tuning and testing cohorts and their usage is described in the
Supplementary Fig. 2a.

The first network in our system was trained to localize the heart within a given
3D CT scan. This step was necessary as CT scans could differ, for example, in size,
resolution, area captured, or field of view, depending on the cohort, scanner used,
and site acquiring the scan. The training cohort was split 70/30% for training and
tuning, and all scans were downsampled to a size of 112 × 112 × 112px to fit into
the GPU memory. The model used for training was a standard U-Net with four
downsampling steps running for 1200 epochs. Data augmentation was used by
applying rotation of ±4 degrees around the sagittal, transversal, and longitudinal
axis for heart localization and ±35 degrees around the sagittal axis for heart
segmentation. Furthermore, we applied translation within ±10px in the axial plane
for heart localization and ±20px in the axial plane for heart segmentation. The
output of the network was upsampled to the initial CT scan size, leading to a very
rough heart segmentation that we used for placing a bounding box for the
subsequent steps.

The second network of the deep learning system was trained to segment the
heart. The input scans were first cropped to 384 × 384 × 80px cubes around the
heart center and then downsampled to 128 × 128 × 80px. The training cohort was
again split 70/30% for training and tuning and data was augmented by applying
rotations and translations in small ranges only. The model used for training had
the same architecture as in the previous step with four downsampling steps
running for 1000 epochs. Once the model parameters were found to perform well
on the tuning cohort, the final model was trained combining the training and
tuning cohorts for better performance. The output of the network was upsampled
to the initial CT scan size, leading to an accurate heart segmentation. As this step
was mainly to reduce the area for the consecutive calcium segmentation step and
although the error of the heart segmentation was low, we added a rim of 11 pixels
to the predicted heart segmentation to ensure the whole heart was captured.

The third network was trained to segment coronary calcium. For this step, we
divided the previously segmented heart into smaller cubes of size 48 × 48 × 32px.
Extensive testing of several cube sizes showed the chosen size worked best as larger
cubes increased the training time while the accuracy stayed the same. We used
cubes overlapping all but one pixel for the training, whereas cubes did not overlap
during the testing. The model used in this step was a U-Net50 with three
downsampling steps extended by batch normalization layers in the contracting
path (left side) for better generalizability (Supplementary Fig. 2b). The resulting
segmentation patches were aligned again, leading to a coronary calcium
segmentation of the heart. The final step was to threshold the whole segmentation
by 0.95 to obtain the binary calcium mask.

With the coronary calcium segmented, the calcium score was calculated using a
volumetric implementation of the method by Agatston and Janowitz5. The calcium
score was calculated by multiplying the volume of a coronary calcification with a

factor, depending on the highest density within the calcification, with the density
being measured in Hounsfield Units (HU). This weight factor was 1 for a density
between 130 and 199 HU, 2 for 200 to 299 HU, 3 for 300 to 399 HU, and 4 for 400
HU and above. Calcification with a volume below one cubic-millimeter was
considered noise and excluded from the calculation. The final calcium score per
patient was the sum of the weighted calcifications. For further analysis we stratified
the calcium risk score into the risk groups very low (0), low (1–100), moderate
(101–300), and high (>300)21.

Training, tuning, and testing was done on a Linux workstation using
Tensorflow-GPU and Keras. The only notable hardware requirement was to have 4
GPUs with at least 64 gigabytes of memory to fit a reasonable batch size of input
volumes for the heart segmentations.

Technical evaluation. The performance of the deep learning system was tested by
reviewing CT scans with discordances between the manual and deep learning
coronary calcium categories (Supplementary Fig. 7). Most discrepancies were due
to misclassification of non-coronary calcium as coronary calcium and vice versa. In
a few instances, inaccurate heart segmentation led to coronary calcium being
outside the ROI of the calcium segmentation network and hence being missed.
Furthermore, we measured the time the system needed to process scans. On
average, the deep learning system assessed the CAC score in under two seconds
per scan.

Manual calcium score assessment. The CAC score was measured manually by
expert readers using the method by Agatston and Janowitz5,6 on dedicated
workstations, as reported in the parent FHS17, PROMISE19, and ROMICAT-II20

studies. In NLST18, the coronary calcium score was measured manually in 396
randomly selected participants using 3D Slicer (V4).

Test–Retest analysis. In FHS-CT1, 252 participants underwent cardiac ECG-
gated CT twice within 1 h to assess test–retest reliability. The deep learning system
and the human readers quantified calcium on both scans to assess test–retest
reliability.

Statistical methods. In this study we described continuous variables as the mean ±
standard deviation (SD) and categorical variables as frequencies and percentages.
Furthermore, we performed univariate and multivariate Cox proportional hazards
regressions comparing cardiovascular disease risk in the 1st (lowest) versus the 2nd–4th

quartiles of CAC. The dependent variable in FHS-CT2 was a composite of cardio-
vascular disease event and all-cause mortality with a mean follow-up of 8.8 years51.
Events in NLST were defined as ASCVDmortality with a follow-up of up to 9 years18.
Events in PROMISE were defined as a composite of all-cause mortality, myocardial
infarction, major complications from cardiovascular procedures and diagnostic testing
and unstable angina with an average follow-up of 2.5 years19. Events in the
ROMICAT-II trial were defined as major adverse cardiovascular events in a time
frame of 28 days after admission to the emergency room46. Cox proportional hazards
models and log rank tests were used to estimate and compare hazard ratios between
the reference (very low risk) group (0: no coronary calcifications found), the low risk
group (1–100: small amounts of coronary calcifications), the moderate risk group
(101–300: moderate amounts of coronary calcifications) and the high risk group
(>300: large amounts of coronary calcifications): one unadjusted model, one model
adjusted for age and sex, and a third model in which we additionally adjusted for
standard cardiovascular risk factors (NLST: hypertension, diabetes, past coronary
artery disease, past stroke; PROMISE: FRS; ROMICAT-II: TIMI risk score) using
Survival R package (v3.2-3). Standard Kaplan–Meier survival curves were generated to
visualize event-free survival for the NLST and PROMISE testing cohorts in R using
the Survminer package (v0.4.8). The log rank test was used to identify significant
differences in survival. To assess the similarity of automatically and manually derived
calcium scores, we calculated the Spearman’s correlation (Python package scipy.stats.
spearmanr based on Zwillinger, D. and Kokoska52), the ICC, which was calculated
from components of a one-way analysis of variance in R using the ICC package
(v2.3.0) based on Searle53, Donner54 and Thomas and Hultquist55, the Cohen’s
Kappa56 (Python package sklearn.metrics.cohen_kappa_score) and the concordance
rate (calculated as number of concordant pairs divided by the number of all pairs).
The combined AUCs were estimated and compared using the survcomp R package
(V1.36.1). BMI was calculated using the weight (pounds) and height (inches) as
weight/height2 * 70357.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
NLST data including raw CT images may be requested from the National Cancer
Institute (https://biometry.nci.nih.gov/cdas/nlst/). Although raw CT imaging data cannot
be shared, all measured results to replicate the statistical analysis in NLST are shared at
the AIM webpage at aim.hms.harvard.edu/deepcac. Furthermore, we include test samples
from a publicly available data set with deep learning and expert reader heart and calcium
segmentations.
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Code availability
The code of the deep learning system, as well as the trained model and statistical analysis
are publicly available at the AIM webpage aim.hms.harvard.edu/deepcac.
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