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Abstract

Evolutionary history can explain species resemblance to a large extent. Thus, if closely

related species share combinations of traits that modulate their response to environmental

changes, then phylogeny could predict species sensitivity to novel stressors such as

increased levels of deforestation. To test this hypothesis, we used 66,949 plots (25-m-

radius) of the Spanish National Forest Inventory and modelled the relationships between

local (plot-level) stem density of 61 Holarctic tree species and forest canopy cover mea-

sured at local and landscape scales (concentric circles centred on the plots with radiuses of

1.6, 3.2 and 6.4 km, respectively). Then, we used the output model equations to estimate

the probability of occurrence of the species as a function of forest canopy cover (i.e.

response to forest loss), and quantified the phylogenetic signal in their responses using a

molecular phylogeny. Most species showed a lower probability of occurrence when forest

canopy cover in the plots (local scale) was low. However, the probability of occurrence of

many species increased when forest canopy cover decreased across landscape scales.

We detected a strong phylogenetic signal in species response to forest loss at local and

small landscape (1.6 km) scales. However, phylogenetic signal was weak and non-signifi-

cant at intermediate (3.2 km) and large (6.4 km) landscape scales. Our results suggest that

phylogenetic information could be used to prioritize forested areas for conservation, since

evolutionary history may largely determine species response to forest loss. As such, phylo-

genetically diverse forests might ensure contrasted responses to deforestation, and thus

less abrupt reductions in the abundances of the constituent species.

Introduction

Deforestation is one of the most ubiquitous threats to biodiversity [1], notably affecting species

interaction networks [2], driving population shrinking [3], and ultimately leading to species

extinction [4]. Further, forest loss may alter a disparate set of ecosystem processes such as
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nutrient cycling and carbon fluxes [5], thus endangering ecosystem services on which human

well-being depends [6].

The most immediate effect of forest reduction is habitat loss for many forest-affiliated

species, yet species inhabiting open habitats may benefit from forest-cover reduction [7, 8].

Although the effects of forest loss on individual species are rather complex [9, 10], there is

increasing evidence that species response to forest loss is tightly linked to their functional and

life-history traits [7, 11, 12], and thus we may expect a certain degree of interdependence in

their response as far as they show some phenotypic resemblance [13]. Identifying the specific

combinations of functional traits that best predict species response to forest loss–i.e. the so-

called deforestation-sensitivity syndromes [14]–might be useful to diagnosing extinction risk

in threatened forest ecosystems [15] and informing conservation planning.

The use of functional traits to study species response to forest loss has been possible thanks

to the increased effort to collect a wide spectrum of traits from different taxonomic groups.

However, even one of the largest and most comprehensive functional trait databases compiled

to date (i.e. the TRY database for plants [16]) is largely incomplete for many traits and taxo-

nomic groups. For example, specific leaf area is a well-known trait that has been used in conti-

nental-scale tree studies [17], yet it is recorded for only 3.5% of global plant diversity and

generally biased towards frequently measured species [18]. Therefore, trait information may

be too sparse and patched to detect deforestation-sensitivity syndromes, particularly in spe-

cies-rich ecosystems and for largely uncharacterized taxa (e.g. terrestrial invertebrates [19]).

Moreover, evidence of deforestation-sensitivity syndromes in the literature is sometimes weak

[20] or even contradictory (see [12] and references therein), which might reflect the difficulties

inherent to identifying and measuring functionally relevant traits for species response to forest

loss [21].

Besides functional traits, the availability of phylogenetic information across multiple taxo-

nomic groups is increasing exponentially [22–25]. As such, phylogenetic data may represent a

powerful alternative to functional trait-based approaches for devising early diagnosis of biodi-

versity vulnerability to forest loss. If phylogenetic signal in the combinations of functional

traits that modulate species responses to deforestation pressures is high (i.e. evolutionary con-

servatism in deforestation-sensitivity syndromes [26]), close relatives would tend to show simi-

lar responses to forest loss [12], and thus species vulnerabilities to forest reduction could be

anticipated from phylogenetic affiliations.

Forest loss is the immediate consequence of deforestation, yet the spatial configuration of

the remaining forest fragments in the landscape may have also important implications for

biodiversity [27]. As such, some species may be favoured in landscapes made up of small and

isolated forest patches due to e.g. positive edge effects [28, 29, 8] or density compensation

(i.e. release of competition due to extinction of competitors that are negatively affected

by fragmentation [30]). Although there is evidence that forest loss has a stronger effect on

biodiversity than the spatial configuration of forest fragments in the landscape ([31], but see

[32]), the relative importance of both processes is still under debate [33, 34], likely mirroring

the inherent difficulties to tease apart their specific effects with observational data (but see

[29, 8]).

In this study, we used 66,949 circular plots (25-m-radius) of the third Spanish National

Forest Inventory to model the relationships between the local stem density of 61 Holarctic

tree species and the percentage of forest canopy cover measured in the plots (local scale) and

in the neighbouring landscape (i.e. concentric circles centred on the plots with radiuses of

1.6, 3.2 and 6.4 km, respectively). Then, we applied the model outputs along with phyloge-

netic information to estimate: (i) the response of tree species to forest loss (i.e. species proba-

bility of occurrence as a function of forest canopy cover), and (ii) the phylogenetic signal in
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species responses. The relationship between the probability of occurrence of species and

plot-level canopy cover would serve to detect species degree of forest affiliation (i.e. species

preferences for closed or more open forest canopies), whereas the relationship between the

probability of occurrence and canopy cover in the neighbouring landscape would indirectly

reflect species response to the spatial configuration of forest fragments. For instance, a for-

est-affiliated species will show a high probability of occurrence when plot canopy cover is

high. However, the same species may show a low probability of occurrence when canopy

cover in the neighbouring landscape is also high, suggesting that the species is prone to

occur in isolated forest patches (Fig 1c). In contrast, a species that shows a high probability

of occurrence when canopy cover is high at both scales will tend to form continuous and

extensive forest masses (Fig 1a).

Fig 1. Conceptual model depicting the response of tree species to plot-level (local) and landscape forest canopy

cover. The colored trees represent individuals of the target species, and the grey circumferences represent the borders

of the sampling units (i.e. circular plots) that are placed across the landscape. (A) The species responds negatively to

forest loss at either local (plot-level) and landscape scales (the entire area within the top-left panel), and thus it only

occurs in extensively forested areas. (B) The species responds positively to forest loss at both scales, and therefore it

tends to grow in extensively deforested areas. (C) The species responds negatively to forest loss at the local scale, but

positively at the landscape scale. As such, it tends to occur in isolated forest fragments. (D) The target species responds

positively to forest loss at the local scale, but negatively at the landscape scale, meaning that it is an early successional

species that regenerates mainly within forest gaps.

https://doi.org/10.1371/journal.pone.0204365.g001
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Materials and methods

Study region

Peninsular Spain is located in the Iberian Peninsula at the southwest corner of Europe (Fig 2).

The region possesses a high physiographic complexity, with several mountain ranges running,

primarily, east-west. The northern third of peninsular Spain (i.e. Galician Massif, Cantabrian

Mountains and western and central Pyrenees) falls within the Eurosiberian biogeographic

zone, and it is characterized by a humid climate that is moderated by the influence of the

Atlantic Ocean. Winters are relatively cold and there is lack of drought season (precipitation

ranges from approximately 1000 mm to more than 1500 mm). Roughly, the vegetation is

deciduous oak dominated forest at valley bottoms (i.e. with Quercus petrea, Q. robur and Fraxi-
nus excelsior among others), with beech (Fagus sylvatica) and fir (Abies alba) forests at interme-

diate and high elevations, respectively [35]. Birches (Betula pendula) often constitute small

enclaves in the clearings of the beech forest, and the mountain pine (Pinus uncinata) forms the

characteristic subalpine natural forest in the Pyrenees.

The rest of peninsular Spain is dominated by the Mediterranean climate, with relatively soft

winters and a marked summer drought (precipitation ranges from less than 350 mm to 1500

mm). The typical forests in this region include evergreen trees such as holm oak (Quercus ilex),
Portuguese oak (Q. faginea), cork oak (Q. suber), Pyrenean oak (Q. pyrenaica), Algerian oak

(Q. canariensis), juniper (Juniperus sp.) and wild olive (Olea europaea) among others. These

are accompanied or replaced in the warmer or steeper regions by forests of Aleppo pine (Pinus
halepensis) and in areas of sandy ground by the stone pine (P. pinea). The Scots pine (P. sylves-
tris) also forms extensive forests in the mountainous areas of the northern half of peninsular

Spain.

Forest data

First, we compiled a list of tree species from the third Spanish National Forest Inventory

(IFN3) [36]. We did not include species of hybrid origin, nor infra-specific taxa, and con-

ducted standardization of nomenclatural criteria by means of The Plant List [37]. Then, we

removed species that are strictly cultivated in the study area according to Castroviejo [38] and

those that occurred in less than 25 plots of the IFN3 (to avoid low statistical-power issues).

Fig 2. Distribution of survey plots in peninsular Spain. In total, n = 66,949 circular plots of 25-m-radius were

analysed. The inset shows the location of the study area (shaded area) in the western edge of the Mediterranean.

https://doi.org/10.1371/journal.pone.0204365.g002
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Finally, we retained the species that matched the phylogenetic tips of the phylogeny used in

the analyses (see below). This procedure resulted in a list of 61 Holarctic tree species (46 angio-

sperms and 15 gymnosperms).

We used 66,949 IFN3 survey plots distributed across peninsular Spain in which the focal

species occurred (Fig 2). The IFN3 placed a circular sample plot of 25-m-radius in the intersec-

tions of a 1-km grid that were classified as forested by the Forest Map of Spain (MAPAMA—

MFE50; available at http://www.mapama.gob.es). From the IFN3, we extracted two different

variables measured in the plots: (i) the stem density of each species (i.e. individuals larger than

1.30 m of height and 75 mm of diameter at breast height per hectare), and (ii) the percentage

of forest canopy cover (i.e. projected area of adult trees canopy), which was estimated “de visu”

[36]. Besides, we also estimated forest canopy cover at three different spatial scales in the neigh-

bouring landscape of the plots, which was represented in this case by three concentric circles

centred on the plots with radiuses of 1.6, 3.2 and 6.4 km, respectively. To do so, we averaged

the canopy cover recorded in the plots that each circle could possibly hold (i.e. n = 9, 37 and

129, respectively; Fig 3), thus representing forest canopy cover in three different landscape

buffer areas. Because borders with Portugal and France do not represent natural barriers to for-

est establishment, we excluded all plots located less than 6.4 km apart from them. In sum, our

dataset consisted in a local estimate of stem density for each species (response variable) and

one local and three landscape-level estimates of forest canopy cover (explanatory variables).

Phylogenetic tree

We used a species-level time-calibrated molecular phylogeny including native tree species

(woody plants growing to� 4 m) of Europe and North America that was pruned to retain

Fig 3. Schematic representation of the sampling method used to measure forest canopy cover at different spatial

scales. Circular plots of 25-m-radius were placed in the intersections of a 1-km grid that encompassed the study area

(peninsular Spain). The percentage of forest canopy cover (green-coloured areas) was measured within each plot (local

scale) and at three different spatial scales in the neighbouring landscape, which was represented by three concentric

circles centred on the plots with radiuses of 1.6, 3.2 and 6.4 km, respectively (for simplicity, only the local and the 1.6

and 3.2 km landscape scales are represented). Canopy cover was averaged from the maximum number of plots that

each circle could possibly hold. The 25-m-radius circles are drawn out of the scale of the grid (1 km) to facilitate

visualization of the plots. The legend schematically summarizes the calculations for estimating forest canopy cover in a

given 25-m-radius plot (in red) and in the neighbouring landscape of the target plot (only 1.6 and 3.2 km-radius circles

are shown).

https://doi.org/10.1371/journal.pone.0204365.g003
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only the 61 species of our study (see [39] for details on the phylogenetic procedure). The phy-

logeny was inferred with maximum-likelihood methods based on a mixed supertree-superma-

trix approach [40], with sequences corresponding to various chloroplastic (i.e. rbcL, matK,

trnL-F) and nuclear DNA regions (i.e. ITS1 and ITS2). The maximum likelihood tree obtained

in the phylogenetic inference analysis was calibrated using the software TreePL [41]. To do

so, we used 14 calibration points (fossil data) with minimum and maximum age constraints

extracted from [42] and [43] (S1 Table). The age of the root node (Euphyllophyta) was fixed at

365 ma [44]. The smoothing parameter ρ that affects the penalty for rate variation over the tree

was estimated using cross-validation (here, ρ = 0.1).

Statistical analyses

Response to canopy cover. We fitted Poisson models to explore the relationship between

the probability of occurrence of each species and forest canopy cover [45]. The Poisson distri-

bution describes the probability of a given number of events (i.e. in our study, the observed

stem density of each species in the plots where they occurred) in a fixed interval of the explana-

tory variable (i.e. forest canopy cover, in our study):

Pðrj; FqÞ ¼
l

rj
� e� l

rj!
ð1Þ

lðj; FqÞ ¼ Mj þ ðCj � FqÞ ð2Þ

where ρj is the stem density of species j in plot q; Fq represents canopy cover in plot q (or alter-

natively the canopy cover in the neighbouring landscape of plot q); λ is the rate parameter of

the Poisson distribution, which here represents the expected stem density for species j along

the canopy cover gradient; e is the base of the natural logarithm; andMj and Cj are species-spe-

cific parameters for species j and with respect to Fq. Then, when the probability P of presence

of species j is zero, P only depends on the rate parameter (λ):

Pðrj ¼ 0; FqÞ ¼ e
� l ð3Þ

And we can transform Eq 3 as follows:

Pðrj > 0; FqÞ ¼ 1 � e� l ð4Þ

where P in Eq 4 is the probability of finding species j along the canopy cover gradient irrespec-

tive of the stem density of species j in plot q, which allows to explore the relationship between

the species probability of occurrence and forest canopy cover. For each species and spatial

scale, we evaluated the informative power of the models (i.e. probability of finding species j as

a function of forest canopy cover) with respect to the corresponding intercept models using

the Akaike Information Criterion (i.e. AICc). Thus, we conducted 244 independent pairwise

model comparisons (i.e. n = 61 species × 4 spatial scales), and assumed that forest canopy

cover was a good predictor of species presence when the AICc difference between pairwise

models was higher than 10 [46]. Otherwise we did not consider the models in subsequent anal-

yses. To evaluate which spatial scale best described species presence, we also compared the

models fitted for each species across the different spatial scales (i.e. four models per species)

using AICc.

In order to facilitate comparison among species we used the fitted models (only those that

showed an AICc > 10 with respect to the corresponding intercept models) to estimate, for

each species j, a scalar Oj defined as the natural logarithm of the ratio between occurrence
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probabilities at a low and a high level of forest canopy cover; i.e. 5 and 75% respectively (see

[29] for a similar analysis):

Oj ¼ ln
Pðj; F ¼ 5%Þ

Pðj; F ¼ 75%Þ
ð5Þ

Positive O values imply that the species are more likely to be found under open forest cano-

pies (i.e. positive association between forest loss and species abundances), while negative O val-

ues indicate the opposite. For each species, we estimated one Oj value at the local scale (using

plot canopy cover as the explanatory variable) and three Oj values at the landscape scales (i.e.

using the averaged canopy cover of each concentric circle centred on the target plot, Fig 3).

To test the robustness of estimates and plausible values for the true Oj, we generated non-

parametric 95% confidence intervals (95% CI) using a bootstrap procedure [29]. We produced

1000 bootstrapped samples for each species j by resampling with replacement from the original

sample of j (the bootstrapped samples comprised the same number of plots as the original sam-

ples), and used the bootstrapped samples to parametrize the Poisson model and compute 1000

O values (Eq 5). The positions 25th and 976th of the ranked values correspond to the lower and

upper limits of 95% CI. We considered species responses to decreased canopy cover were non-

neutral (i.e. negative or positive) when their corresponding CI did not include zero [7].

Phylogenetic signal in species response to forest loss. Phylogenetic signal can be defined

as the degree of statistical dependence among species trait values due to their phylogenetic

relationships [47, 48]. As such, high phylogenetic signal indicates that ancestor-descendant

relationships explain a high fraction of the variance in a certain trait (e.g. O values), whereas

low phylogenetic signal indicates the opposite (i.e. the trait has evolved following uncorrelated

trajectories). In order to measure phylogenetic signal in species response to forest loss (i.e. O

values) we used the Pagel’s λ statistic [49]. Pagel’s λ is ranged between 0 (complete lack of phy-

logenetic signal) and 1 (the trait has evolved following a pure Brownian motion model of evo-

lution). Unlike other commonly used indices of phylogenetic signal (e.g. Blomberg’s K),

Pagel’s λ is robust to phylogenetic resolution and branch-length information uncertainties [50,

51]. The statistical significance of λ was assessed based on a likelihood ratio test as imple-

mented in the phylosig function of phytools R package [52].

To account for the uncertainty associated to O values in phylogenetic signal estimation, we

created a dataset of O trait values (n = 1000) for each species j by randomly sampling from the

uniform distribution Uj (min Oj, max Oj), where min Oj and max Oj are minimum and maxi-

mum values of the 95% CI. We obtained a distribution of λ values and their associated p-values

from the so-generated O traits (n = 1000 tests), and reported the overall phylogenetic signal

(λ statistic) and statistical significance (p-value) based on the median value of the 1000 itera-

tions. We conducted the analyses using either all species in the phylogeny and angiosperms

and gymnosperms, separately.

Results

At the plot scale, canopy cover was a good predictor of species stem density in 89% of the cases

(i.e. 54 out of 61 tree species). Of this pool, 30 species (56%) showed consistently negative

responses to decreased canopy cover (i.e. negative O values with confidence intervals not

including zero), four species (7%) showed consistently positive responses (i.e. positive O values

with confidence intervals not including zero), and 20 species (37%) showed a neutral response

(i.e. either positive or negative O values with confidence intervals including zero, Fig 4). Over-

all, most of the species that had a negative response to decreased forest canopy cover at the plot

scale showed a neutral or positive response at the landscape scales (Figs 4 and 2c). However,
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some species showed consistently negative responses across all scales, most of them within the

Fagaceae (Figs 4 and 2a), and a few species showed positive responses across most of the scales

analysed (Figs 4 and 2b). No species showed positive response at the plot scale but negative at

the landscape scales (Figs 4 and 2d). The robustness of estimates of O values was overall high

(i.e. narrow 95% CI), yet a few species showed substantially wide confidence intervals (Fig 4

and S1 Fig). We found that in 59% of the cases (36 out of 61 species analysed), forest canopy

cover at the local scale was the best predictor of species presence (i.e. lowest AICc score),

whereas canopy cover at the 1.6, 3.2 and 6.4-km-radius scales were the best predictors for 18%,

10% and 13% of the species analysed, respectively.

Overall, we found a strong phylogenetic signal in species response to local forest loss (Fig

5a). When all lineages were analysed together, the median phylogenetic signal λ was equal to 1

(median p-value<< 0.001). The pattern was similar within the gymnosperms (median λ = 1,

median p-value<< 0.001), and slightly weaker within the angiosperm lineage (median λ =

0.95, median p-value< 0.01). At the smallest landscape scale (1.6-km-radius), phylogenetic

signal was also strong and significant for all lineages analysed together (median λ = 0.99,

median p-value< 0.001) and the angiosperms (median λ = 0.97, median p-value< 0.03) (Fig

5b). However, phylogenetic signal was very weak and non-significant for the gymnosperms

(median λ ~ 0, median p-value = 1; Fig 5b), and it almost entirely disappeared in all cases at

intermediate (3.2-km-radius) and large (6.4-km-radius) landscape scales (Fig 5c and 5d).

Fig 4. Response of tree species (O values) to forest canopy cover measured in the plots (local scale) and in the

neighbouring landscape (L-1.6, L-3.2 and L-6.4). The squared symbols on the phylogenetic tips show the type of

response of each species (negative, neutral or positive), and the bars and dots correspond to 95% CI of O values

estimated at the plot level. The response of species was considered negative when the 95% CI of O completely laid

below zero (red colour), positive when the 95% CI completely laid above zero (green colour), and neutral if the 95% CI

included zero (grey colour). The gaps in the figure represent those cases where the Poisson models failed to explain the

probability of occurrences of species (see text). The scale bar in the phylogeny represents millions of years. The

highlighted clades include species that showed similar responses to plot-level canopy cover within their respective

lineages.

https://doi.org/10.1371/journal.pone.0204365.g004
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Discussion

The combinations of functional traits that modulate species responses to novel deforestation

pressures might be evolutionarily conserved [26], and thus phylogenetic relationships may

predict species survival in an increasingly human-deforested world [1]. Using the third Span-

ish National Forest Inventory as a case study, we found a strong phylogenetic signal in the

response of tree species to forest loss at local and small landscape scales (Fig 5), suggesting that

close relatives respond similarly to deforestation pressures.

Most species within the families Fagaceae, Pinaceae and Oleaceae (excluding Phillyrea lati-
folia) respectively showed a negative and similar response to decreased canopy cover at the

plot level (Fig 4). As such, one might conclude that tree diversity in forest stands including

many representatives of these lineages would be strongly affected by forest loss (i.e. most spe-

cies would show a negative response to forest canopy cover reduction) as opposed to more

phylogenetically diverse forests, which might ensure contrasted responses of the constituent

species and thus less abrupt reductions in their abundances. This result highlights the impor-

tance of preserving high levels of phylogenetic diversity as a “natural insurance” for ecosystems

[53], and may provide a foundational basis to inform conservation planning. Nevertheless, fur-

ther research conducted across multiple biomes, lineages and trophic levels is required to con-

firm the generality of our results.

Fig 5. Phylogenetic signal in species response to forest canopy cover (O values) at different spatial scales. (a) Plot-

level analyses (local scale). The histograms show the distribution of the λ statistic that resulted from analysing n = 1000

bootstrapped traits (i.e. O values within 95% CI, see text). Values close to 1 indicate that the trait evolved following a

Brownian motion model of evolution (i.e. high phylogenetic signal), whereas close to zero values indicate lack of

phylogenetic signal. The analyses were conducted using all the species in the study and angiosperms and gymnosperms

separately. The overall phylogenetic signal (λ statistic) and statistical significance (p-value) are based on the median

value of n = 1000 iterations. (b-d) Analyses conducted at different landscape scales.

https://doi.org/10.1371/journal.pone.0204365.g005
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We found that the probability of occurrence of many species in the Fagaceae (i.e. Quercus
spp.) decreased along with forest cover reduction across all the scales analysed (i.e. they are

more prone to occur at high canopy cover irrespective of the scale, Fig 1a). Indeed, Fagaceae

species (i.e. Quercus ilex,Q. pyrenaica, Q. faginea, Q. suber) constitute widespread and dense

forest stands under natural conditions in the western Mediterranean [54, 35], the holm oak

(Q. ilex) being the commonest in peninsular Spain. A substantial fraction of Q. ilex forests

(and Q. pyrenaica and Q. suber to a minor extent) are transformed by humans into savanna-

like systems (i.e. selective tree clearing) devoted primarily to livestock raising, the so-called

Spanish dehesas [55]. However, despite the socio-economic importance of these semi-natural

agroforestry ecosystems [56], dehesas fail to naturally regenerate [57] because oak seedlings

require a relatively high canopy closure to survive [58, 59], which might be the cause of the

high vulnerability of Quercus species to forest loss.

On the other hand, species within the Pinaceae also showed a negative response to

decreased forest canopy cover at the local scale (Fig 4). Both Pinus and Quercus lineages

include evergreen sclerophyllous-leaved trees (although Quercus also includes deciduous spe-

cies), they are generally restricted to temperate latitudes in the Northern Hemisphere or to

mountainous areas at lower latitudes, and they tend to form dense forest stands [60]. Besides,

Pinus species show a strong phylogenetic signal in fire-adapted traits [61], which suggests that

functionally relevant traits may have evolved conservatively in this lineage, thus leading to a

similar response to forest loss between close relatives (Fig 5a).

It is important to note that all the common species analysed (i.e. most species in the Faga-

ceae and the Pinaceae) had higher stem densities with increased forest canopy cover at the

local scale (i.e. negative plot-level O values). Although we expected negative O values for those

species that tend to be dominant in closed forests, differences in O among them still reflected

contrasted responses to forest loss. For example, the cork oak (Quercus suber) showed the low-

est O values within the Fagaceae (with the notable exception of Quercus canariensis, a rare spe-

cies in the study area) (Fig 4 and S1 Fig), and as such it tends to form extensive closed forests,

notably in the southern half of the study area (e.g. Los Alcornocales Natural Park is character-

ized by the most extensive forest of cork oak in Spain, and one of the largest in the world). In

contrast, the holm oak (Quercus ilex) showed higher O values than Q. suber (Fig 4 and S1 Fig),

likely because the former is more tolerant to drought and cold than the latter [62], and there-

fore more prone to occur in open habitats.

The realm of positive O values and, consequently, of positive responses to local forest loss

corresponds to species that tend to occur in open habitats and might be also present in closed

forests, but not as dominant species. This was the case of most species in the Rosaceae (i.e. Sor-
bus aucuparia, S. aria,Malus sylvestris and Crataegus monogyna), which overall tended to

show positive O values (Fig 4). Sorbus aucuparia and S. aria often occur at the edges of Atlantic

forests in northern Spain [63],Malus sylvestris also occurs at the edges of wet forests or in open

habitats due to its weak competitiveness and high light requirement [64], and C.monogyna is

one of the most characteristic species of early-successional prickly shrub communities [35, 65].

These communities are critical for the natural regeneration of many forest types of peninsular

Spain [66, 67], since they keep herbivores at bay from regeneration stands [68] and serve as the

main microsites for the recruitment of many tree species [69, 70].

On the other hand, dispersal mode may also explain the trend towards positive O values in

the Rosaceae [7]. Most species in this family possess fleshy fruits and are largely dispersed by

animals [67], which may confer robustness to forest loss due to increased colonisation ability of

open habitats [71, 72]. However, forest loss may still reduce colonisation ability of animal-dis-

persed trees if their main seed dispersers are forest-affiliated species. For example, Santos and

Tellerı́a [73] found that the abundance of Turdus spp., the main seed dispersers of the Spanish
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juniper (J. thurifera), was up to six times higher within large forest fragments, where the propor-

tion of thrush pellets with intact seeds and seedling abundance of J. thurifera was also notably

higher. Moreover, they found that seed consumption by Apodemus sylvaticus (a seed eater

rodent) was up to nine times lower within large forest fragments. These results may largely

explain the trend of J. thurifera to grow in extensively forested areas (Fig 4). Similar evidence

has been reported for holm oak woodlands (Quercus ilex), where the balance between acorn

consumption by wood mice (Apodemus sylvaticus) and effective dispersion (largely driven by

the Eurasian jay, Garrulus glandarius) seems to depend on stem density [74, 75]. Together these

findings highlight the impact that forest loss can have on species interaction networks [2].

Phylogenetic signal in species response to forest loss differed between angiosperms and

gymnosperms, particularly at the small (1.6-km-radius) landscape scale (Fig 5). This suggests

that despite we observed an overall phylogenetic signal in the data at local and small landscape

scales (Fig 5a and 5b), a homogeneous rate of evolution (i.e. a single Brownian motion model

for the entire phylogeny) may not be sufficient to explain evolutionary trajectories in species

response to forest loss, as expected in phylogenetic trees involving many distant relative line-

ages [76]. Therefore, more inclusive studies including hundreds of species from multiple line-

ages and heterogeneous rates of evolution may be required to accurately model the evolution

of species response to forest loss.

The presence of 76% of the species analysed in the study was best explained by forest can-

opy cover at local and small landscape scales. Further, the phylogenetic signal in species

response was particularly strong at such scales, whereas it almost entirely disappeared at inter-

mediate and large landscape scales (Fig 5). This suggests that the environmental drivers of spe-

cies response to forest loss operate primarily at reduced spatial scales. Yet, a few pairs of closely

related species such as Betula pendula and Alnus glutinosa, Q. pubescens and Q. robur, Populus
alba and P. nigra showed similar positive responses at intermediate and large landscape scales

(Fig 4 and S1 Fig). Generally, species with positive responses at the landscape scales had a neg-

ative response to local forest cover reduction, suggesting that they tend to grow in isolated for-

est patches (Fig 1c). It is noticeable that A. glutinosa, P. alba and P. nigra are characteristic of

riparian forests, which may largely explain their tendency to grow in fragmented landscapes

since riparian forest are often surrounded by highly deforested areas [77]. On the other hand,

Q. robur is the most characteristic species in low-elevation forest stands in northern Spain,

which are nowadays reduced to small and isolated fragments due to anthropogenic activities.

This result highlights the importance of incorporating human-induced landscape transforma-

tions into ecological models to better understand current species distributions [78].

Finally, it is worthy to mention that some Pinus species such as P. pinea and P. halepensis
also showed a contrasted response to forest loss between local and landscape scales (i.e. nega-

tive and positive responses, respectively; Fig 4 and S1 Fig), suggesting that they are prone to

occur in isolated forest patches (Fig 1c). Consistent with this, P. halepensis is a fast-growing

tree able to quickly colonize open and disturbed areas such as burned sites [79], which may

explain its positive response to low forest cover at the landscape scale. On the other hand, P.

pinea forms extensive forest stands along the coastline in southwestern and northeastern pen-

insular Spain that are embedded in a predominantly agricultural matrix. Besides, plots located

along the coastline will necessarily show a low canopy cover in their surrounding areas due to

the strong ecotone between land and sea areas.

Conclusions

Identifying species sensitivity syndromes to deforestation is of outstanding importance if we

are to preserve forest biodiversity in an increasingly deforested world [1]. Yet, evidence for the
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syndromes is often weak [19] or even contradictory (see [12] and references therein). We pro-

pose that available phylogenetic information could be used as a complementary reference to

functional-based approaches for devising species vulnerability to forest loss based on ancestor-

descendant relationships, and may thus provide a foundational basis to inform conservation

planning. Importantly, our approach may be particularly valuable to analyse poorly character-

ized taxa for which functional information is largely missing [80, 18, 19].

Using the third Spanish National Forest Inventory as a case study, we have shown how evo-

lutionary history largely determines the response of tree species to forest loss, particularly at

reduced spatial scales. As such, forest stands with low levels of phylogenetic diversity would be

comprised of species that are expected to show similar responses to deforestation pressures

(and therefore there is a high probability for a general negative response), whereas phylogenet-

ically diverse forests would respond less abruptly, since the latter would comprise a mix of

species with contrasted responses. Although we focused on tree species, our results could be

extended to other taxonomic groups whose distribution is largely determined by the presence

of forest stands [81], and highlight the importance of preserving high levels of phylogenetic

diversity as a “natural insurance” for ecosystems [53].

Supporting information

S1 Table. Fossil information and minimum and maximum age constraints used for the

dating analysis. Fossils were assigned to the most recent common ancestors (MRCA) of the

listed taxa.

(XLSX)

S1 Fig. Response of tree species (O values) to forest canopy cover measured at different

landscape scales (concentric circles centred on the plots with radiuses of 1.6, 3.2 and 6.4

km-radius, respectively). The bars and dots correspond to 95% CI of O values. The response

of species was considered negative when the 95% CI of O completely laid below zero (red col-

our), positive when the 95% CI completely laid above zero (green colour), and neutral if the

95% CI included the zero (grey colour). The gaps in the figure represent those cases where the

Poisson models failed to explain the probability of occurrences of species (see text). The scale

bar in the phylogeny represents millions of years.
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