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Abstract
Purpose of Review Precision medicine promises patient tailored, individualized diagnosis and treatment of diseases and
relies on clinical specimen integrity and accuracy of companion diagnostic testing. Therefore, pre-analytics, which
are defined as the collection, processing, and storage of clinical specimens, are critically important to enable optimal
diagnostics, molecular profiling, and clinical decision-making around harvested specimens. This review article dis-
cusses the impact of tumor pre-analytics on molecular pathology focusing on biospecimen protein expression and
analysis.
Recent Findings Due to busy clinical schedules and workflows that have been established for many years and to lack of
standardization and limited assessment tools to quantify variability in pre-analytical processing, the effects of pre-analytics on
biospecimen integrity are often overlooked. Several studies have recently emphasized an emerging crisis in science and repro-
ducibility of results.
Summary Biomarker instability due to pre-analytical variables affects comprehensive analysis and molecular phenotyping of
patients’ tissue. This problematic emphasizes the critical need for standardized protocols and technologies to be applied in the
clinical and research setting.

Keywords Tumorpre-analytics inprecisionmedicine .Biospecimenprocessingand storage .Tissue integrity . Proteinbiomarkers
as companion diagnostics

Introduction

Efforts are underway to better understand tissue phenotypes
and molecular characteristics of individual patients aiming to
provide a personalized medicine approach to deliver timely
and targeted prevention and treatment [1]. As technological
advances facilitate comprehensive analyses of possible drug
targets at affordable costs, this vision of personalized and pa-
tient tailored medicine is a driver for development of individ-
ualized therapeutic strategies and companion diagnostic tests
to accurately stratify and treat patients. Throughout this

clinical development, biological assays and assessment of bio-
markers play an important role in providing diagnostic, prog-
nostic, and predictive information [2, 3]. However, various
limitations and challenges need to be considered when trans-
lating promising biomarkers and drugs to the patient. A num-
ber of efforts and clinical trials have failed [4, 5], with con-
founding issues being limited knowledge of analytical, diag-
nostic, and regulatory requirements for clinical assays as well
as lack of standardization on various levels. These issues ex-
tend beyond the ones listed with variability and lack of stan-
dardization in pre-analytical processing being often
overlooked. Pre-analytical variables include, but are not lim-
ited to, anesthesia, surgical procedures, warm and cold ische-
mic time, tissue processing, fixation, and storage of
biospecimens.

Here, we aim to discuss and review the effects of tumor
pre-analytics on protein expression resulting in modification
of in vivo protein status.
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Anesthesia and Surgical Approaches

Anesthesia

Several publications describe the influence of anesthetic drugs
and methods on tumor biology and alterations of biomarkers.
Effects of general anesthesia on blood and serum biomarkers
were investigated in a few studies showing that most of the
tested analytes were not affected by time of blood draw or
administration of anesthesia [6, 7], while viability and apopto-
sis of circulating CD4-positive lymphocytes were significant-
ly affected by propofol administration [8]. No changes were
reported for circulating CD8-positive lymphocytes.
Metabolomic profiling of pre- and postanesthesia plasma sam-
ples of colorectal cancer patients revealed that propofol- or
etomidate-induced anesthesia significantly decreases levels
of several metabolites compared to pre-anesthesia blood draw
[9]. With an increasing number of highly sensitive biomarkers
and multi-analyte blood tests, the pre-analytical variability of
liquid biopsies introduced by administration of general anes-
thesia should still be taken into consideration. Several publi-
cations also report potential links between the administration
of analgetics, anesthetics, and molecular changes in tumor
biology [10–12]. Opioid therapy, for example, directly acti-
vates μ-opioid receptor (MOR) expression in cancer cells.
Overexpression and activation of MORs promote activation
of Akt and mTor, and MOR agonists may influence expres-
sion levels of these important biomarkers [13]. MOR also
interferes and transactivates VEGFRs in cancer cells [14], as
well as EGFR phosphorylation, AKT, and MAPK/ERK acti-
vation [15]. MOR plays an important role in NSCLC and has
reportedly been associated with NSCLC progression and me-
tastasis [11, 16]. Influence of general anesthesia on metastatic
potential of cancer cells, recurrence, and overall survival was
studied in several cancer types, such as colon, breast, and
prostate cancer [17–20]. These observations might not only
be associated with direct activation and interaction of MOR
and opioid agonists with cancer cell receptors and pathways.
Opioids and other anesthetic drugs, such as benzodiazepine
derivatives, propofol, ketamine, and others, are also directly
linked to immune-suppression and have immune-modulatory
effects [21]. These range from inhibition of transcription fac-
tors that regulate production of inflammatory mediators, to
direct interference with receptors on macrophages, to central
neuro-endocrine/neuro-paracrine and peripheral mechanisms,
and to peripheral actions mediated by mu-opioid receptors on
immune cells [22]. While immune-suppressive effects of an-
esthesia and transient immune-impairment seem to primarily
affect the general immune system of the patient, immune-
modulatory influences on the tumor environment, tumor infil-
trating lymphocytes, and alterations in NK cell activity may
enhance tumor growth and metastatic ability and alter matrix
metalloproteinase and MOR status within the tumor [23–25].

Despite all this evidence, data on the influence of general
anesthesia and even cancer progression are still controversial,
and the substantiation is insufficient to support any changes in
current clinical practices [26]. In an attempt to reduce intraop-
erative opioid consumption and surgical stress response [27,
28] and improve postoperative pain management, epidural or
regional anesthesia can be combined with general anesthetics.
Experimental data from various animal models suggest that
regional anesthesia attenuates the process of metastasis by
preserving natural-killer (NK) cell function and modification
of the T-lymphocytic population [24, 29, 30]. Different studies
in patients undergoing surgery for breast, lung, and other can-
cers have shown that the combination of epidural with general
anesthesia results in a significant increase of CD8-positive
lymphocytes within the tumor microenvironment but a de-
crease in FOXP3-positive T cell infiltration [24, 30, 31], a
preservation of NK cells and of the preoperative balance of
the patient’s immune system and tumor microenvironment
[32]. These results suggest that combined epidural and general
anesthesia mitigates the suppression of immune functions
caused by surgical stress and various analgetics/anesthetics
and improves pain management and postoperative recovery.

Surgical Approach and Warm Ischemia

Not only domethods of anesthesia and surgical stress attenuate
the patient’s immune system, have immune-modulatory effects
within the tumormicroenvironment, andmodify several recep-
tors and downstream pathways, the surgical approach, duration
of it, and time to tissue removal also significantly impact the
molecular tumor phenotype. The most important factor herein
is warm ischemic time, defined as the time a tissue, organ, or
body part remains at body temperature after its blood supply
has been reduced or cut off but before it is cooled, further
processed, or reconnected to a blood supply. The extent of
warm ischemic time depends on the procedure and organ, the
surgical approach with laparoscopic surgeries sometimes dou-
bling or tripling warm ischemia [33], the experience of the
surgeon, and other confounding factors. Tissue integrity and
histopathological characteristics remain mainly unaffected
leaving the tissue suitable for assessment of pathological stage,
grade, and further evaluation [33, 34], whereas hypoxia and
stress induce tumor cell responses on a genetic, transcriptome,
and protein level. The effects of warm and cold ischemia can
be classified into ischemia-induced metabolic responses in-
cluding posttranslational modification, all of which occur with-
in the early stages after ligation of the blood supply, and
ischemia-induced degradation on a cellular and tissue level as
a result of hypoxia and stress [35]. Furthermore, these meta-
bolic responses, posttranslational modifications, and degrada-
tive processes are highly variable comparing normal and tumor
tissue, with malignant tissue having significantly higher vari-
ability and reactions to stress and hypoxia [36]. Additional
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variability lies within different organs and patient populations.
Comparing molecular tumor phenotypes from surgical biop-
sies before and after clamping of the main blood vessels and
removal of the tissue reveals that the severity of posttransla-
tional modification and stress response and the number of in-
volved genes and proteins increase with prolonged ischemic
time [36]. Several important biomarkers and therapeutic targets
such as mTOR, ERK1/2, AKT, and MEK are upregulated
within 10 min of warm ischemic time, while their expression
levels subsequently decrease again. Some proteins such as
EGFR reveal high interpatient variability in their response to
pre-analytical differences in tissue acquisition. Most vulnera-
ble and reactive are phosphorylated proteins [37], and the
phosphorylation status of key signaling proteins is significantly
altered within a short period of ischemic time both in normal
and in tumor tissue samples [36]. While most proteins show a
decrease in phosphorylation, markers of posttranslationalmod-
ification and stress response increase gradually. With warm
ischemic time being dependent on the surgical procedure, anat-
omy, patients’ factors, and other influences, standardization,
conclusions, and prospective studies are difficult to attain.
While it is hard to minimize and control warm ischemic time,
documentation of it is helpful in determining a degree of stress
and changes within the molecular phenotype of biospecimens
that might have occurred.

PostSurgical Factors Confounding
Biospecimen Quality

Avariety of factors involved in tissue handling and processing
such as cold ischemic time, fixation processes, storage condi-
tions, and others lack standardization and guidelines, all of
which have potential influence on clinically relevant target
molecules and biomarkers.

Cold Ischemia

The common definition for cold ischemia in surgery is the
time between the chilling of a tissue, organ, or body part after
its blood supply has been reduced or cut off until it is warmed
by having its blood supply restored. In biospecimen science,
cold ischemic time is defined as the period of removal of an
organ/tissue/biospecimen from the body until further preser-
vation of the specimen such as chemical fixation or snap freez-
ing. While reports on the effects of warm ischemic time are
scarce, several publications investigate molecular changes of
patients’ samples that are attributed to delay in tissue process-
ing and archiving after it was harvested. Cold ischemia trig-
gers a cascade of noxious effects and responses to hypoxia and
stress, all of which affect the quality of the biospecimen and
subsequently of any analytical approach [38–43]. Comparing
molecular changes at various timepoints of cold ischemia

reveals that already 15 min after surgery, a certain percentage
of detectable genes and proteins (with reports ranging from 1
to 15%) and 30 min after surgery up to 20% of all detectable
molecules show moderate to significant changes from base-
line values [44–48]. Variability in tissue response is not only
confounded by tissue, patient, and population heterogeneity
[49–51] but also by the complexity of phosphorylation cas-
cades of different proteins and isoforms, hypoxia-induced re-
sponses, posttranslational modification, degradation, and in-
creased vulnerability of tumor compared to normal tissue. The
complexity of all these factors results consequently in a fluc-
tuation of expression levels of phosphorylated proteins within
the first 20 to 30 min of cold ischemic time [37, 52•], followed
by dephosphorylation processes within 1 to 2 h of delay to
formalin fixation leading to a significant decrease to loss of the
majority of phospho-epitopes [45, 53–60]. Examples for more
vulnerable phospho-epitopes are p-AKT, p-MAPK, p-
Tyrosines, and p-Met amongst others, all of which are impor-
tant biomarkers for pathway activity and actionable drug tar-
gets (Fig. 1). While the phosphorylation status of several pro-
teins is altered significantly within a short period of time, the
non-phosphorylated molecules remain more stable [37]. To
complicate matters, other phosphorylated epitopes, such as
p-ER, p-HER2, and p-Jak2, to name a few, are not as vulner-
able and may remain stable in their expression levels for up to
a few hours of cold ischemia [61]. Figure 2 illustrates variabil-
ity in protein expression due to increasing cold ischemic time.
The complexity of these results is also further confined by
tissue and tumor heterogeneity [58], the method of assessment
of the protein status (qualitative versus semi-quantitative and
quantitative measurements), availability of appropriate anti-
bodies to various isoforms, and validation of those.
Moreover, these studies are not comprehensively evaluating
the stability of protein phosphorylation over an entire sample
population, but rather produce short time point data on a lim-
ited set of samples. Wu et al. describe the Bayesian model, a
statistical approach to generate trajectories and estimates for
the phosphorylation time course of various phospho-tyrosines
on limited sample sets simulating larger sample sizes and co-
horts. This model [62] computes similar results to the ones
reported with fluctuation of phosphorylation and increases
and decreases of phosphorylation abundance of phospho-
tyrosines in a time-dependent manner following cold ischemic
shock.

Due to post-excisional reactivity, dynamic state and adap-
tive cellular mechanisms in response to stress, hypoxia, and
other environmental factors, certain proteins such as phospho-
HSP27, a small heat-shock-induced protein and apoptosis
modulator, acetylated lysin, a marker of posttranslational
modification, AKAP13 and HIF1 alpha, and hypoxia-
induced analytes are examples of proteins that show a propor-
tional increase as a function of delayed time to fixation up to a
period of 5 h [61]. Standard breast cancer biomarkers on the
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other hand, such as estrogen receptor (ER), progesterone re-
ceptor (PR), HER2, and Ki67, are not affected by cold ische-
mic time of 1 h [61, 63], which is the maximum of delay to
fixation for breast cancer specimens recommended by
ASCO/CAP guidelines [64–66]. These proteins do reveal loss
of antigenicity if cold ischemia extends beyond several hours
impacting companion diagnostic testing and treatment deci-
sions [61, 63, 67–69]. Lability of protein-biomarkers extends
beyond these listed here, and a number of prognostic and
predictive analytes in different tumor and tissue types are af-
fected by extended cold ischemic shock confounding tissue
quality [36, 60, 61, 70]. While several publications investigate
protein expression levels using the binary qualitative evalua-
tion of IHC, these results were also confirmed with quantita-
tive approaches such as in situ quantitative immune-fluores-
cence, NanoPro 1000 technology—a quantitative immune as-
say platform—mass spectrometry, and reverse phase protein
arrays [36, 52•, 60, 61].

In an effort to minimize detrimental effects of delay to
tissue fixation, several centers keep biospecimens at 4 °C until
further processing [71]. Studies have proven that chilling of
the samples mitigates hypoxia-induced responses and degen-
erative effects for up to several hours of cold ischemia thus
resulting in better preservation of tissue morphology, epitope
stability—including phosphorylated proteins—and RNA in-
tegrity [60, 63, 72]. Gianni Bussolati et al. introduced the
method of immediately vacuum sealing resected samples

followed by storage at 4 °C up to 72 h as a feasible way to
preserve biospecimens for an extended period of time
[73–76], though it is not all clear if vacuum sealing renders
additional value in tissue preservation or if cooling alone suf-
fices [75].

Fixation

Formalin fixation and paraffin embedding (FFPE) of tissue
samples is a widely established and inexpensive method to
process and archive biospecimens over long time periods.
Several factors such as concentration, pH, presence/absence
of buffer in the formalin solution, tissue-to-fixative-volume
ratio, size and grossing of the tissue, temperature during and

Fig. 1 Representative images
illustrating significant reduction
in expression levels of phospho-
AKT according to increasing cold
ischemic time ([36]). These
images show evaluation of pAKT
expression by
immunohistochemistry on
formalin-fixed colon cancer tissue
from one patient taken at four
timepoints. a Biopsy presurgery;
b Tissue fixed 10 min after
resection; c Tissue fixed 20 min
after resection; and d Tissue fixed
45 min after resection

�Fig. 2 Examples of changes of protein expression levels according to
increasing cold ischemic time ([36]). a Total protein expression (relative
units) of p70-S6K, AKT, EGFR, ERK1/2,MTOR, GSK3B, andMEK1/2
in normal and tumor colon tissue at four timepoints of tissue collection:
pre, before hepatic pedicle clamping; 10′, 10 min after resection; 20′,
20 min after resection; and 45′, 45 min after resection.*p < 0.05;
**p < 0.01; ***p < 0.001. Box plots indicate the 5/95% confidence
interval, median, and standard deviation. b Percentage of protein
phosphorylation of p70-S6K, AKT, EGFR, ERK1/2, MTOR, GSK3B,
andMEK1/2 in normal and tumor colon tissue at four timepoints of tissue
collection: pre, before hepatic pedicle clamping; 10′, 10 min after
resection; 20′, 20 min after resection; and 45′, 45 min after resection.
*p < 0.05; **p < 0.01; ***p < 0.001. Box plots indicate the 5/95%
confidence interval, median, and standard deviation
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duration of the fixation process, postfixation processing, and
paraffin impregnation need to be optimized and standardized
to optimally preserve histomorphology and molecular pheno-
types of harvested specimens [77–79]. Recommendations and
guidelines advise fixation using 10% neutral buffered formalin
(NBF) [64–66], though optimal preservation of different mol-
ecules might require different buffers or fixatives [78, 79]. Pre-
analytical variability around formalin fixation and paraffin em-
bedding and the problematic of suboptimal processing condi-
tions have been summarized by Helen Moore and colleagues
[77, 80]. In an attempt to improve preservation of several
downstream targets and phospho-protein abundance while
maintaining histomorphology in tissue blocks, several alterna-
tive fixatives were investigated, such as a one stop biomarker
and histology preservative (BHP) consisting of reversible cross
linkers, permeation enhancer, phosphatase and kinase inhibi-
tors, and the fixative [81]. The Paxgene Tissue System repre-
sents another formalin-free tissue preservation technology that
reportedly allows preservation of histomorphology, intact and
immune-reactive proteins, and antigenicity, while also main-
taining integrity of nucleic acids [82–84]. Signal intensities of a
number of phosphorylated proteins preserved in Paxgene-fixed
paraffin embedded (PFPE) specimens were comparable to
those analyzed in cryopreserved samples, whereas expression
levels of the same phospho-epitopes obtained from FFPE tis-
sue samples were significantly weaker [85]. Prolonged dura-
tion of Paxgene fixation also did not negatively affect expres-
sion levels of analytes. These are just two examples of several
attempts during the past years to replace cross-linking formalin
with alternative preservatives aiming to improve the quality of
proteomic and other molecular analytical approaches [86–89].

Snap freezing biospecimens is superior to chemical fixa-
tion. Preservation at ultra-low temperatures rapidly and effec-
tively inactivates a broad range of protein modifying and pro-
cessing enzymes and is also the method of choice for preser-
vation of nucleic acids. Large-scale proteomic analysis includ-
ing comprehensive phospho-proteomics yields significantly
better results using snap frozen specimens.

Long-Term Storage

The value of FFPE tissue, archives collected often over de-
cades and huge biorepositories, is undisputed. Despite the fact
that FFPE blocks are not the best source for highest quality
molecular material, recent advances in extraction of nucleic
acids and proteins have made these derivatives available to
high throughput genomic and proteomic platforms. At the
same time, the quality of FFPE biospecimens, often stored
over a long-term period, needs to be critically evaluated to
determine their fit-for-purpose for accurate molecular pheno-
typing. While formalin fixation and paraffin embedding pre-
serves tissue morphology for up to 30 years of storage [90],
including cytological details and immune-reactivity of tissue

antigens, recent studies investigate the influence of long-term
storage on complex molecular analytes. Results, however, are
somehow controversial with studies concluding that the fit-
ness of FFPE blocks for proteomic analysis is independent
of tissue age evaluating a time frame of 11 years [91], respec-
tively 11-year intervals from 1990 to 2001 and from 2002 to
2013 [92], but rather dependent on tissue and tumor type,
reporting significant differences in protein derivatives be-
tween papillary, squamous, and adenocarcinomas asmeasured
by protein absorbance values in one of the studies [92].
Comparing analysis of corresponding fresh frozen and FFPE
tissue samples by multidimensional liquid chromatography-
based mass spectrometry (LC-MS), the data generated indi-
cate essential equivalence between protein inventories obtain-
ed from either source of processed and stored tissue [93].
Researchers conclude that the storage of FFPE blocks of
roughly 10 years duration should not be a significant imped-
iment to proteomic analysis. Very few studies investigate the
influence of extended storage time. Combs et al. quantitatively
analyzed expression levels of ER, Her2, Ki67, and cytokeratin
(CK) on a series of FFPE tissues from more than 1000 patient
samples preserved for 7 to up to more than 50 years.While the
average expression decreased for all biomarkers over time, the
rate of loss of antigenicity is target-specific [94•]. The results
indicate a 10% loss of antigenicity for ER expression over a
period of 10 years, while HER2 and Ki67 seem to degenerate
faster with 10% loss of expression over a period of 8.9 and
4.5 years, respectively. The degradation of CK occurs at a
much lower rate. While these results are restricted to four
biomarkers in breast cancer specimens only, this study dem-
onstrates that tissue age is an important variable and should be
considered when investigating archived tumor samples.
Several investigations have also addressed loss of protein ex-
pression in tissue sections that were stored over an extended
period of time due to effects of air, humidity, temperature, and
fixatives, leading to oxidation, denaturation, and further deg-
radative modification of tissue biomarkers [71, 95–97].

Conclusions

The concept of precision medicine, in which health care is
tailored to each patient based on a person’s genes, lifestyle,
and environmental factors, promises an opportunity to make
precise personalized patient care a clinical reality. With this
promise, there is critical need for standardized protocols and
technologies that can be used in the clinical setting for seam-
less collection and preservation of biospecimens used for clin-
ical decision-making. For whole genome arrays and compre-
hensive genomic profiling variations due to pre-analytical
noise may be compensated by the large number of analyzed
transcriptomes and non-coding regions. However, in case of
validation of signatures, targeted sequencing, and foremost
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protein-based diagnostic tests that are the source of treatment
decisions, the problem of biomarker instability and variability
in pre-analytical tissue processing and storage is acute. The
estimated number of papers documenting biomarker discov-
eries lies above 100,000, while the estimated number of bio-
markers used in the daily clinical setting lies around 100 [98].
Lack of validation and qualification of biomarker-based re-
search impacts product and drug development with pharma-
ceutical companies spending billions of dollars in drug dis-
covery and pre-clinical and clinical phases, with the main
expense being failure within these processes. Scientists at
the biotech company Amgen reported that out of 53 landmark
studies, only 6 could be proven valid raising concerns about
an emerging crisis in science. Similarly, a group at Bayer
HealthCare found that only 25% of publications, on which
the company was basing R&D efforts, could be validated.
While irreproducibility may partly result from trial and error
inherent to the scientific process, the major problem lies with-
in sample procurement, storage, analysis, and lack of stan-
dardization of these processes [5].

To date, clinical processing and preservation techniques rely
mainly on protocols and approaches that are decades old, and
in a busy clinical setting, improvement of processes is difficult.
Therefore, unambiguous determination of in vivo levels of
proteins is a challenge, and different protocols for tissue han-
dling and protein preparation may result in significantly differ-
ent protein profiles. NCI’s Biorepositories and Biospecimen
Research Branch (BBRB) has found current tissue sample-
handling techniques to be a major roadblock to future quality
research and personalized medicine [99]. To improve collec-
tion and storage procedures and standardize practices across
different institutions, the BBRB has issued the NCI Best
Practices incorporating key principles to define state-of-the-
science biospecimen resource practices, promote biospecimen
and data quality, and support adherence to ethical and legal
requirements, https://biospecimens.cancer.gov/practices/. The
International Society for Biological and Environmental
Repositories (ISBER) also published ISBER Best Practices:
Recommendations for Repositories—evidence-based or
consensus-based practices for collection, long-term storage,
retrieval, and distribution of specimens. The College of
American Pathologists (CAP) has published guidelines for
breast cancer to standardize and optimize tissue acquisition,
processing, handling, and testing [64, 65]. These guidelines
comprise mandatory elements aiming to improve and stan-
dardize all aspects of companion diagnostic testing in breast
cancer. Adherence to the NCI and ISBER Best Practices, how-
ever, is strictly on a voluntary basis. Additional important steps
toward improving and standardizing biospecimen collection,
processing, and quality are currently on their way. The
Personal Healthcare Committee (PHC) of CAP initiated the
formation of the Pre-analytics for Precision Medicine Project
Team (PPMPT), a task force developing practice metrics and

documentation guidelines to be applied in CAP-accredited lab-
oratories as well as guidelines for the control of cold ischemic
time and additional pre-analytical variables.

With increasing recognition of the importance of biospecimen
quality for precision medicine, these initiatives, task forces, and
guidelines are steps toward the goal to ensure that all
biospecimens in research and clinical settings are fit for molecu-
lar analysis and represent the patient’s in vivo molecular profile.
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