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Learning stable and predictive network-based patterns of
schizophrenia and its clinical symptoms
Mina Gheiratmand1,2,3, Irina Rish4, Guillermo A. Cecchi4, Matthew R. G. Brown1,2,3, Russell Greiner1,2, Pablo I. Polosecki4,
Pouya Bashivan5, Andrew J. Greenshaw3, Rajamannar Ramasubbu6 and Serdar M. Dursun3

Schizophrenia is often associated with disrupted brain connectivity. However, identifying specific neuroimaging-based patterns
pathognomonic for schizophrenia and related symptom severity remains a challenging open problem requiring large-scale data-
driven analyses emphasizing not only statistical significance but also stability across multiple datasets, contexts and cohorts.
Accurate prediction on previously unseen subjects, or generalization, is also essential for any useful biomarker of schizophrenia. In
order to build a predictive model based on functional network feature patterns, we studied whole-brain fMRI functional networks,
both at the voxel level and lower-resolution supervoxel level. Targeting Auditory Oddball task data on the FBIRN fMRI dataset (n =
95), we considered node-degree and link-weight network features and evaluated stability and generalization accuracy of
statistically significant feature sets in discriminating patients vs. controls. We also applied sparse multivariate regression (elastic net)
to whole-brain functional connectivity features, for the first time, to derive stable predictive features for symptom severity. Whole-
brain link-weight features achieved 74% accuracy in identifying patients and were more stable than voxel-wise node-degrees. Link-
weight features predicted severity of several negative and positive symptom scales, including inattentiveness and bizarre behavior.
The most-significant, stable and discriminative functional connectivity changes involved increased correlations between thalamus
and primary motor/primary sensory cortex, and between precuneus (BA7) and thalamus, putamen, and Brodmann areas BA9 and
BA44. Precuneus, along with BA6 and primary sensory cortex, was also involved in predicting severity of several symptoms. Overall,
the proposed multi-step methodology may help identify more reliable multivariate patterns allowing for accurate prediction of
schizophrenia and its symptoms severity.

npj Schizophrenia  (2017) 3:22 ; doi:10.1038/s41537-017-0022-8

INTRODUCTION
An ultimate question in functional magnetic resonance imaging
(fMRI) studies of schizophrenia is whether one can identify
combinations of statistical features extracted from the data that
can serve as reliable statistical (bio)markers of the disease, capable
of accurately discriminating between schizophrenic patients and
controls, which are reproducible (stable) across multiple datasets.
Here, we define biomarkers as multivariate patterns, i.e., specific
combinations of sets of features, rather than individual features.
A traditional approach to finding biomarkers is to perform mass-
univariate analysis, i.e., to compare empirical distributions of each
feature, independently of the other features, across the two
groups of subjects, e.g., patients vs. controls, to test whether the
distributions of the feature in those populations are different.
However, statistical significance of individual features may neither
be a necessary nor a sufficient criterion for discriminating between
the two groups, and must be augmented with a wider set of
requirements, including (but not limited to) generalization
accuracy and stability, as discussed later in this paper. In addition,
we propose that the ability to accurately predict symptom severity
based on neuroimaging features has an equal, if not greater,
importance than the binary disease classification, since it can lead
to a more objective measurement-driven characterization of

schizophrenia. Emphasizing the importance of objective measure-
ments in psychiatry is one of the central ideas of the recently
proposed Research Domain Criteria (RDoC)1 initiative of NIMH.
While univariate hypothesis testing simply reveals the cross-

group differences between the empirical distributions of each
individual feature, on a fixed dataset, multivariate discriminative
models, i.e., classifiers built using feature (sub)sets, attempt to
predict whether a previously unseen subject can be diagnosed with
schizophrenia or not. Predictive modeling has potential applica-
tions in practical settings, for example, early diagnosis of
schizophrenia based on neuroimaging data. Aiming to better
understand abnormalities associated with the disease, we focus
on interpretable predictive models as opposed to black-box
classifiers; particularly, we use feature subset selection in order to
identify features most relevant to predicting the disease and the
severity of the symptoms. Note that the discriminative task can be
more challenging than significance testing: for example, the use of
significant (low p-value) features in fMRI data does not always
result in accurate classification,2 and statistically significant
variables are not necessarily the best predicting variables.3 Thus,
a combination of both statistical significance and classification
accuracy criteria provides a more complete characterization of
candidate features in terms of disease relevance. Finally, stability,
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or reproducibility, of the predictive subsets of features across
varying data subsets and across different classification methods is
another important criterion that should be included when
evaluating potential biomarkers.
We focus on the brain’s functional networks derived from

functional MRI data,4–6 which is a rich source of features highly
relevant to schizophrenia2, 7, 8 and other psychiatric disorders.9, 10

The association between schizophrenia and abnormal brain
connectivity dates back to early work by Wernicke11 and Bleuler.12

It is often referred to as a “dysconnection” hypothesis,13, 14 where
“dysconnection” accounts for a range of network dysfunctions,
beyond simply the “disconnection”, or reduced connectivity.
Beyond continued exploration of abnormalities in anatomical
networks,15–17 numerous recent studies15, 18 including this work
focus instead on disrupted functional connectivity, which may
have greater potential for capturing the dynamic system proper-
ties of a brain “in action”.
We performed fully data-driven, brain-wide analysis of func-

tional networks, defined as thresholded correlation matrices
across voxel time-series,19 and explored several types of graph
features, such as link-weights (correlations) and voxel degrees. In
addition to the voxel-level networks, we also evaluated functional
networks at a coarser level using supervoxels (defined as 4 × 4 × 3
clusters of adjacent voxels). Such subsampling permitted more
comprehensive whole-brain link analysis due to a considerable
reduction of dimensionality. Previous work2, 18, 20 has demon-
strated that functional network features are highly informative
when discriminating between schizophrenic patients and controls
using multivariate predictive approaches. Our objective here
is to investigate the extent to which such findings generalize to
different datasets involving different groups of patients and
experimental paradigms (i.e., the Auditory Oddball task).
We used the FBIRN multi-site dataset, where cross-site

variability introduces an additional challenge. Unlike most recent
large-scale functional-connectivity studies of schizophrenia that
involve resting-state fMRI,18, 21 we focused on a task-based
paradigm (Auditory Oddball) which may reveal different aspects of
anomalous functional networks, compared to those identified by
resting-state studies. We evaluated discriminative ability, in
addition to statistical significance and stability, of several types
of functional network features using several state-of-art classifiers
and the leave-one-subject-out cross-validation (CV) setup.
Overall, link-weights (that is, correlations) in a supervoxel-level

functional network were the most discriminative features, achiev-
ing 74.0% classification accuracy compared to 51.6% chance level;
their performance was followed by node-degrees (70% accuracy).
Our learning systems used data from many sites, which is a more
challenging task than learning from a single site.22 This increased
challenge is due to the larger variability in the FBIRN multisite
dataset introduced by the differences in the image acquisition
equipments across sites (see supplementary Table S1 for scanner
details per site) as well as higher patient sample heterogeneity,
compared to previous single-site studies that used a homoge-
neous patient group.2 As such, our prediction accuracy is quite
encouraging, matching or exceeding the results of similar
multisite studies.18, 21, 23 (Also, see the Discussion section where
we outline the possibility of an overly optimistic classification
accuracy results reported elsewhere.)
We also evaluated these features in the context of predicting

symptom severity, thus relating functional network disruptions to
behavioral metrics. We explored the ability of link-weight features
in predicting symptoms severity, indicated by Scales for Assess-
ment of Negative Symptoms (SANS)24 and Scales for Assessment
of Positive Symptoms (SAPS).25 Specifically, we used a sparse (i.e.,
variable-selection-based) multivariate regression approach known
as elastic net (EN) to generate interpretable regression models
(corresponding to 9 SANS and SAPS Global Rating Scales) and
evaluated them using leave-one-subject-out CV, similarly to the

classification models discussed above. The predicted symptom
severity scores resulting from this approach were significantly
correlated with actual scores (Spearman ρ between 0.2 to 0.5), for
the following five Global Rating Scales: inattentiveness, bizarre
behavior, positive formal thought disorder, avolition/apathy and
alogia. These models also allowed us to identify stable predictive
subsets of link-weight features, which were selected by the EN
model across all CV data subsets. Note that most prior work
considers primarily univariate correlations between symptom
scales and features of interest18; we believe, this work represents
the first to actually predict schizophrenia scales via multivariate
regression approach using the whole-brain functional connectivity
features.
The most statistically significant, discriminative and stable

connectivity disruptions in schizophrenia observed in this study
involved increased correlations between thalamus and primary
motor/primary sensor cortex, as well as between precuneus (BA7)
and thalamus, putamen, and areas BA9 and BA44; precuneus
was also implicated in abnormally high network degrees. The
precuneus was also highly involved in the stable, most-predictive
links selected by sparse multivariate models for prediction of
clinical symptom severity. BA6 (premotor cortex) and primary
sensory cortex were two other areas that played an important role
in predicting, with statistically significant accuracy, all five
symptom severity scales: inattentiveness, bizarre behavior, posi-
tive formal thought disorder, avolition/apathy and alogia. It is of
interest that, while several brain areas, and especially precuneus,
were consistently involved in both disease classification and scale
prediction models, the specific links found by sparse regression to
be most predictive about the scales were not necessarily among
the most-discriminative links, and vice versa.
The contributions of this paper are as follows:

1. We demonstrate that combinations of functional network
features (specifically, supervoxel-level link-weights) can accu-
rately predict not only the presence of schizophrenia, but also
the severity of its clinical symptoms. We observe that the
most significant functional network disruptions involve
abnormal increase of thalamo-motor cortex correlations,
confirming prior resting-state observations on this task-
based (Auditory Oddball) data. Furthermore, precuneus is
consistently involved in multiple network links with abnor-
mally increased correlations.

2. We observe considerable “hyperconnectivity” in patients, i.e.
higher than normal weights (correlations) along all significant
links, as well as increased node-degrees at all significant
nodes. Our observations are consistent with the findings of
Yang et al.26 who report network hyperconnectivity (espe-
cially in the fronto-parietal network) in schizophrenia,
resulting from an increased excitation to inhibition ratio
simulated using a neural model.

3. From the methodological point of view, we propose a stricter
evaluation framework for candidate neuroimaging-based
“statistical biomarkers” of schizophrenia, including cross-
dataset stability and generalization accuracy. We argue that
such an approach can result in more reliable markers as
compared to those produced by univariate statistical tests
alone.

RESULTS
Mass-univariate statistical hypothesis testing
A large proportion of both ss-log-degree and ss-link-weight
features (see Methods for a description of the features) were
significantly different across the two groups: more than 10,000 ss-
log-degree features out of 26,949 and more than 100,000 ss-link-
weight features out of 161,596 survived the false discovery rate
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(FDR) correction for multiple comparisons; moreover, around 700
ss-log-degree features and around 14,500 ss-link-weight features
also survived the Bonferroni test. The lowest p-value attained by
ss-log-degree and ss-link-weight features were around 10−12 and
10−19, respectively (see Supplementary Fig. S2 in the Supplemental
Material for more details).

Stability analysis
However, high statistical significance does not yet guarantee
feature stability across varying datasets. As described in the
Methods section, for the discriminative task, we generated 95
different subsets of our data, where each subset was obtained by
leaving out one subject, i.e. all 4 runs associated with that subject.
Next, we performed the two-sample t-test on each of the data
subsets, (called CV-folds). Finally, we computed the intersection of
all Bonferroni-surviving feature subsets, across the CV-folds. Only
426 ss-log-degree features survived this “stable Bonferroni” test, as
compared to 700 features surviving Bonferroni on the single full
dataset.
The regions corresponding to stable Bonferroni-surviving ss-log-

degree features are shown in Fig. 1. Brain areas that contained the
most-significant voxels (in yellow) involved Brodmann areas BA39.
L (left), BA7.L, BA6.L and BA30.L (see Lacadie et al.27 for details of
Montreal Neurological Institute (MNI) space to Brodmann area
conversion). More specifically, the cortical brain areas correspond-
ing to the largest clusters with the lowest p-values included lateral
occipital cortex, precuneus cortex, precentral gyrus, middle
temporal gyrus, and cingulate gyrus, according to the Harvard-
Oxford Structural Atlas. (Supplementary Table S5 summarizes
details of the eight largest clusters.) It is interesting to note that,
for all stable Bonferroni-surviving ss-log-degree features (for all
voxels shown in Fig. 1), the corresponding mean ss-log-degree, as
well as just mean log-degree (and mean degree) values were

higher for the schizophrenic group as compared to controls (also,
see Discussion and Supplementary Fig. S3).
As described above, for the other feature type, the ss-link-

weights, the number of Bonferroni surviving features was very
large (above 14,500), and even the stable subset of those over
CV-folds resulted in too many links (10,112 links). Thus, we do not
display the stable Bonferroni ss-link-weight features here, since
the corresponding plot would be too complex to be informative.
Later in the paper, however, we describe application of an even
stricter feature subset selection criterion based on predictive
accuracy of a multivariate classification model, and present an
illustration of a stable (over all CV-folds) subset of best-predictive
links.
Next, we evaluated how feature stability varies with the size of

feature subsets. For each feature type, and for varying feature
subset size k, we selected the top k most-significant (lowest p-
value) features on each of the leave-subject-out data subsets (CV-
folds) and computed the ratio of the features common to all CV-
folds. Figure 2 shows this fraction (i.e., the number of common
features divided by k) for link-weight and log-degree features, as
well as for just degree features, plotted against the (normalized)
feature subset size (log-scale) measured by percent k/N, where N is
the total number of features of a particular type (we use the
normalization since N can be different for different feature types).
Obviously, the general trend is that the ratio of common features
increases with k, and for k = N (i.e., all variables used), the overlap
between features selected in different folds is 100% (each fold
uses all the features). Thus, here, we only focus on the first part of
the plot, which includes only up to about 20% of the total number
of features (N), where every 1% increase in k is equal, respectively,
to about 1616 and 270 features for the link-weights and log-
degrees (and degrees).
Our main observation here is that the link-weight feature type

appears to be the most stable, followed by the log-degree feature;
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Fig. 1 A stable subset of statistically significant (Bonferroni-surviving) site-standardized (ss) log-degree features, across 95 data subsets
corresponding to leave-subject-out CV. For each data subset, a two-sample t-test was performed to select the subset of features surviving
Bonferroni correction. The intersection of all such subsets contains 426 “stable Bonferroni” voxels (vs. 700 that survived Bonferroni on the
whole dataset but were not necessarily stable). Note that mean values of the site-standardized log-degree, as well as the corresponding log-
degree features, at all highlighted voxels, were higher in schizophrenic group than in the control group (see Supplementary Fig. S3). The
numbered arrows in the figure point to the most-significant (smallest p-value) largest clusters, which included: (1) left BA6 (precentral gyrus,
inferior frontal gyrus); (2) left BA6 (middle frontal gyrus); (3) left BA39 (lateral occipital cortex, superior division); (4) left BA30 (cingulate gyrus,
posterior division); and (5) left BA7 (precuneus). Also, see Supplementary Table S5 for the MNI coordinates of the clusters’ local maxima). For
visualization purposes, the original-resolution statistical maps are upsampled (to 2 × 2 × 2 ×mm), thresholded based on intensity and cluster
size, and smoothed using a Gaussian kernel (5 mm FWHH) in bspmview.28 The original statistical p-map is provided in supplementary
information below Supplementary Table S5

Stable and predictive network-based patterns of schizophrenia
M Gheiratmand et al.

3

Published in partnership with the Schizophrenia International Research Society npj Schizophrenia (2017)  22 



note that both features are much more stable than the original
degrees, which is another reason (besides better classification
accuracy) for choosing to focus on them here. The stability curves
for the site-standardized link-weights and log-degrees were
similar to their non-standardized versions and are not shown here.

Learning classifiers to test discriminative ability of different feature
types
Figure 3 shows average classification error (y-axis), over 95 CV-
folds, obtained on test data (leave-subject-out data subset) by
various classifiers trained on the remaining training data, for the
ss-link-weight feature, and for different feature subset sizes shown
on the x-axis for patients vs. controls. Recall that each subset
consists of k lowest p-value features selected separately for each
CV-fold, to avoid “double-dipping” during the feature-selection
process. Note that for every k, all k top-ranking features in that CV
data subset are used as features in the model, not just the CV
stable subset. We will later analyze the stable features for the
winning k-size subset, i.e., the subset that yielded the lowest
classification error. The classification error based on the ss-log-
degree features is given in Supplementary Fig. S4.
The most accurate classification, on average, was achieved

using the ss-link-weight features: 26.8% error (73.2% accuracy)
using linear support vector machines (SVM) on subsets of only 30
features out of a total of 161,596 at each CV-fold, and 26.0%
(74.0% accuracy) using logistic regression with 1024 features. (The
lowest error rate and feature number for all other classifiers is
summarized in the Supplementary Table S6.) For more details,
including the false positive (FP) and false negative (FN) errors, see
Supplementary Fig. S4 in the Supplemental Material. The ss-log-
degrees yield somewhat less accurate prediction, 30% error at
best, using more than 10,000 features (Supplementary Fig. S4).
Note that classification performance is quite consistent among
majority of the classifiers, at least for the smaller values of k. The
cross-classifier stability of the results suggests that corresponding
subsets of top k features may indeed contain discriminative
information that is reliably picked up by many classifiers, as
opposed to a potential fluctuation in the error estimate of a

particular classifier. Note that the reported error is the lowest
average error achieved by each model.
In summary, it appears that the site-standardized link-weights

were not only the most stable, but also most accurate features for
discriminating between schizophrenia and control in our study.
Figure 4a, b shows a subset of the 13 most stable and predictive
links, i.e., the links common to all top-30 ranked link subsets
corresponding to the most-predictive ss-link-weight features, over
all CV subsets (recall that, as shown in Fig. 3, linear SVM achieved
lowest error at k = 30 top features). Note that all of the above 13
links were also top-ranking based on the t-tests ran on all of the
data. A complete list of the links are presented in Supplementary
Table S9, with a list of nodes (supervoxels) X, Y, Z coordinates in
the MNI space, functional (BA)27 and anatomical labels presented
in Supplementary Table S7.
We observed that the most significant links, i.e., the ones with

the lowest p-value on the full dataset, connect the thalamus to
primary motor (next to the primary sensory) cortex. Next, we
observed multiple disrupted connections involving precuneus
(BA7), including highly significant links connecting it to thalamus,
as well as to right Brodmann areas BA9, BA44 (inferior prefrontal
gyrus) and to the putamen. Note that the left BA7 and BA39
areas were already implicated in abnormal ss-log-degree features
in Fig. 1.
Furthermore, we observe, for all 13 stable predictive links, and

also for all Bonferroni-surviving links, that the corresponding mean
link-weights were higher for schizophrenic group as compared to
the control group; see Supplementary Fig. S5 in Supplementary
Information, which demonstrates that, indeed, a large fraction of
whole-brain connections has increased link-weight in schizophre-
nic patients, even after regressing out motion parameters to rule
out the possibility of motion-related artifacts; see the Discussion
section.

Disease symptom severity prediction
Since in the discrimination study, the whole-brain (supervoxel-
level) link-weights were the most discriminative features related to
the presence of schizophrenia, we tested whether this set of
features could also be informative about the disease severity. Note
that we are considering the entire set, and are not focusing on just
the 13 features that were best for the previous task.
Figure 5a shows, for each of the 9 scales, the Spearman

correlations of that scale with each link-weight feature, in
descending order. (Pearson correlations yielded similar results.)
For all scales, symptom severity varies in the range {0, 1, 2, 3, 4, 5},
with 0 representing no symptom and 5 representing severe

Fig. 2 Stability of feature subset selection over CV-folds. Stability is
measured as the fraction of features in common among the subsets
of k top features selected in all CV-folds. Plots present the stability of
the non-standardized version of the features: degrees, log-degrees,
and link-weights described in Methods. The stability rates for the
standardized version of log-degree and link-weight features, ss-log-
degree and ss-link-weights, were similar to the non-standardized
versions presented here and are not displayed

Fig. 3 Classification of patients vs. controls based on ss-link-weight
features. Y-axis shows the average CV error over 95 leave-subject-out
folds (see the Supplementary Fig. S4 for the corresponding FP and
FN rates) for different classifiers, and for varying size of top-ranking
feature subset shown on x-axis
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symptom. The three scales, Global Rating of Attention, Global
Rating of Severity of Bizarre Behavior, and Global Rating of Positive
Formal Thought Disorder achieved the highest correlations (of
almost 0.5); for the remaining scales, the best correlations were
between 0.26 and 0.38.

Next, we evaluated the generalization ability of the link-weight
features, i.e., focused on predicting the scales based on sparse
multivariate regression model (EN), which includes link-weights as
features (predictors). Table 1 shows the best results across all the
EN parameter settings discussed in the Methods section (see

Fig. 4 Map of 13 stable (supervoxel-level) links common to all subsets of 30 top-ranked (lowest p-value) links, over 95 different CV-folds (leave-
one-subject out data subsets). a Custom view. b Full view of the links presented in a. The color bar shows –ln(p-value). Labels show the
Brodmann areas (BA) corresponding to the end nodes. X, Y, Z coordinates of the nodes in the MNI space are given in Supplementary Table S7.
A summary of links is presented in Supplementary Table S9 (see also Supplementary Fig. S9 for a reference map of all BAs)

Fig. 5 a Correlations between all link-weight features and scales. SANS and SAPS scales are shown using dashed and solid lines, respectively; b–
d stable across CV-folds subset of most-predictive links selected by EN for predicting the global rating of b attention, c severity of bizarre
behavior and d positive formal thought disorder. Links thickness and color is scaled based on the average weight of links across CV-folds in
the EN model. In b, nodes are color-coded based on the lobe they are located in, as follows: frontal (green), parietal (dark blue), temporal
(yellow), occipital (blue); cerebellum (red) and white matter (magenta). (see also Supplementary Fig. S9 for a reference map of all BAs; for the
scale SS35 [attention], the third best model was used for visualization, as the links map for the best model was very complex [129 out of 700].)
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also Supplementary Information): this required performing 135
tests (9 scales × 5 number of variables × 3 λ2 values).
The EN model built using link-weight features predicted several

SANS and SAPS scales with relatively high accuracy and statistical
significance. The resulting p-values of Spearman correlations
showed that five survived (p < 0.05, including the FDR correction
to correct for the multiple comparisons to evaluate multiple
parameter setting for EN for multiple scales): SS35 (attention),
SS60 (severity of bizarre behavior), SS69 (positive formal thought
disorder), SS27 (avolition-apathy), and SS23 (alogia). Three of
those scales, SS35, SS60, and SS69, also survived Bonferroni
correction. These also had the lowest mean absolute error as
summarized in Table 1. For the remaining four scales (Global
Rating of Affective Flattening, Anhedonia-Asociality, Severity of
Hallucination, and Severity of Delusions), the correlation values
varied between −0.04 and 0.12 with non-significant p-values
(0.12–0.87).
For the scales surviving FDR, the best prediction was achieved

with the EN model using the following λ1 parameters (measured
by the number of features selected, corresponding to number of
non-zero weights): for SS23, 100 features; for SS27, 300 features;
for SS35, 700 features; for SS60, 50 features; and for SS69, 50
features; see Supplementary Information for λ2 parameter for the
best models. Supplementary Figure S6 shows the EN model
prediction for SS35 for all parameter settings. EN prediction results
for all nine scales, as well as the average predictor coefficients and
feature selection stability are shown in three separate figures in
the Supplementary Information Appendix.
Finally, we considered the most-predictive features selected by

the EN model, which, as a sparse method, has an inherent
variable-selection property. Figure 5b shows, for scale SS35
(attention), the stable subset of 28 links (out of 300 links) selected
in all CV leave-one-subject-out subsets. The full view is presented
in Supplementary Fig. S7; list of all connections is presented in
Supplementary Table S10a. We demonstrated the stable links for
the third best model, which achieved comparable prediction to
the best model (Spearman’s rho = 0.4670, p-value = 2.34 × 10−11

vs. rho = 0.4894, p-value = 1.79 × 10−12), but used a much lower
number of features (300 vs. 700). For the sake of interpretability of
the visualized link maps, our algorithm picks the model with the
smallest number of features that has a significant correlation
within 5% of the highest correlation; see also Supplementary
Fig. S6 for EN model performance for all parameter settings. The
stable links map for the best model (700 nonzero features in the

EN model) included 129 links and was too complex to display
here; the map is presented in Supplementary Fig. S7. In total, 48
nodes were involved, including 17 frontal, 11 temporal, 11
parietal, 6 occipital, 4 white matter, and 1 cerebellum. We
observed numerous long-range connections. The strongest
connections (i.e., the features with the largest average coefficient
in the EN model), displayed in bright green and thicker links in the
Figure, consisted in connections from BA6.L to BA22.R (right) and
from cerebellum.L to BA19.R. In addition, several links involved
parahippocampal cortex (BA36.L) connecting to other areas
including BA7.L, BA22 and Precentral Gyrus (both in the right
hemisphere).
Figure 5c shows the 9 stable links, out of the 50 links for

prediction of the scale SS60 (severity of bizarre behavior); recall
that the EN model with 50 nonzero coefficients corresponded to
the best average prediction. The full view is presented in
Supplementary Fig. S7. Brain areas involved in the predictive
links, such as bilateral BA6 and BA7, are quite consistent with the
areas involved in significantly disrupted log-degrees (Fig. 1: BA6.L
and BA7.L). BA44.R and BA7.L in Fig. 5c are also involved in stable
subset of most-discriminative links shown earlier in Fig. 4.
Figure 5d shows the subset of 11 stable links (out of 50 links) for

prediction of scale SS69 (positive formal thought disorder). Several
connections involved BA9.L, which spanned mainly to areas BA6
and BA8 on the right and left hemispheres, with the strongest
links consisting of BA9.L-BA8.L and BA9.L-BA6.R. Several other
areas were also involved including BA7, primary sensory cortex
(BA1), BA22, BA39, and BA40.
Maps of the stable predictive links for the two remaining scales

that survived FDR correction, SS23 and SS27, are given in the
Supplementary Fig. S7d, e. A description of the involved links and
areas are presented in Supplementary Information.
For each scale, the X, Y, Z coordinates of the end nodes for the

stable links are listed in the Supplementary Table S8a–e. We
observed consistencies between areas involved in prediction of
various scales. For example, areas BA7 (precuneus), BA6 (premotor
cortex), and the primary sensory cortex appeared in all five FDR-
surviving scales; see also Supplementary Fig. S9. However,
overall, patterns of the stable subset of links contributing to
different scales’ prediction looked distinct, as can be seen in the
visualizations in Fig. 5b–d and Supplementary Fig. S7a–e. Sum-
mary of the stable links involved in prediction of different scales is
presented in Supplementary Table S10a–e.

Table 1. Scale prediction results

Scale
name Global Rating scales Max_Rho pval MAE

MAE
S.D.

Bonferroni
surviving

FDR
surviving

1 SS17 Affective Flattening 0.0843 0.2553 1.4 0.88 0 0

2 SS23 Alogia 0.1737 0.0184 1.22 0.87 0 1
3 SS27 Avolition-Apathy 0.2084 0.0045 1.85 1.6 0 1
4 SS32 Anhedonia-Asociality 0.1162 0.1162 1.21 0.87 0 0

5 SS35 Attention 0.4894 0.0000 0.94 0.73 1 1
6 SS42 Severity of Hallucinations 0.0119 0.8725 1.52 0.91 0 0 

7 SS55 Severity of Delusions -0.0414 0.5770 1.19 0.97 0 0 

8 SS60 Severity of Bizarre Behavior 0.2875 0.0001 1 0.79 1 1 
9 SS69 Positive Formal Thought Disorder 0.28 0.0001 1.02 0.8 1 1 

For each of the nine Global Rating Scales, the largest Spearman correlation coefficient and the corresponding p-value are presented. Gray rows correspond to
negative symptoms scale (SANS) and white background rows correspond to positive symptoms scale (SAPS). The last two columns show whether the p-values
of the correlation survived Bonferroni and/or FDR correction. Scales that survived FDR are displayed in bold
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Curiously, the most predictive links selected by EN for scales
prediction, even including those in stable subsets, were not
among the most significantly different (lowest p-value) links
between the patient and control groups computed on the full
dataset. For example, Supplementary Fig. S8 illustrates this for
scale SS69. The FDR plot (Supplementary Fig. S8a) shows that the
p-values of the stable EN-selected features (link-weights), marked
in red, did not necessarily survive the Bonferroni—or even FDR-
corrected thresholds, and the scatter plot in Supplementary
Fig. S8b shows that the mean values of the stable EN-selected
features were not very different among the patient vs. healthy
control group, shown in y and x-axes, respectively. These
observations suggest that the features (link-weights) discriminat-
ing patients from controls might be different from those that
predict symptom severity. For example, thalamo-cortical connec-
tions were heavily involved in classification but were not among
the link subsets that were relevant in scale prediction. The feature
selection methods in classification vs. regression were different,
however, and it would be interesting to use a similar feature
selection approach in both tasks before comparing the links
involved in classification vs. scale prediction (possible alternative
approaches are discussed in the Discussion).

DISCUSSION
Methodological messages
We are proposing a multi-step methodology that combines
statistical testing, stability, and generalization accuracy in a
predictive setting, in order to identify interpretable and repro-
ducible sets of functional connectivity features that can distin-
guish between patients with schizophrenia and healthy control
subjects. We considered two main functional network feature
types extracted from the whole brain in response to an Auditory
Oddball task (namely, voxel-level degrees and supervoxel-level
link-weights) and subjected them to a series of tests, including
univariate statistical testing, features stability analysis, and
classification performance. While many features (of both feature
types) showed statistically significant group-level differences,
multivariate subsets of supervoxel link-weights were superior in
terms of stability and classification performance. We achieved
74.0% accuracy, vs. 51.6% chance level, in discriminating between
patients with schizophrenia and control subjects. This is a
promising result as our study involved data from five different
sites, meaning we had to overcome higher variability in the
data due to differences in image acquisition equipments
across different sites (dubbed as the “batch effects”), as well as
heterogeneity in the patient group, compared to single-site
studies.2

We were also able to predict symptom severity related to
several measures on the SANS and SAPS Global Rating Scales
(these include: attention, bizarre behavior, positive formal
thought disorder, avolition/apathy, and alogia), with considerable
cross-validated accuracy obtained by applying the EN sparse
multivariate regression model to the supervoxel link-weight
features from the whole brain: statistically significant, surviving
Bonferroni correction, Spearman correlations ranged between 0.2
and 0.5. It is notable that most prior work has considered only
univariate correlations between symptom scales and features of
interest.18

Machine learning approaches have been used in other multi-
site schizophrenia datasets, such as MCICshare,23 reporting
classification accuracies around 70%, with some variations.29

Recently, Cheng et al.18 reported an overall classification accuracy
of 75.8% on a large multicenter dataset that included 398 schizo-
phrenia patients and 375 healthy controls. However, the Cheng
et al.18 reported accuracy might be an overly optimistic estimate
of true generalization accuracy, since the features used in

classification were selected based on statistical significance testing
on the full dataset, rather than within each CV data subset (fold) as
implemented in our paper. That approach is considered “double-
dipping” and may typically result in overly optimistic estimates of
the generalization error (see Methods). Our prior work2 gave an
example showing that such double-dipping (i.e., selecting the
relevant-to-class-label features on all of the data, including train
and test sets), could result in an apparently high accuracy of 93%
using Gaussian Naïve Bayes (GNB) on 100 top-ranked degree
features, while doing the variable selection properly, i.e. separately
on each CV training subset, results into a more appropriate
measure of accuracy, which was 20% lower (see also Molla et al.30

and van ‘t Veer et al.31 for an example based on analysis of
genomics data with respect to breast cancer prognosis).
Classification accuracies in smaller datasets with a more homo-
geneous patient group, recruited at a single site, are generally
higher2, 32 (see also Wolfers et al.29 for a review). This highlights
the challenges of generalizing to larger datasets. Overall, aiming at
achieving high classification accuracy in large datasets is essential
in moving towards deployment of neuroimaging and machine
learning in clinical applications and thus remains an important
direction for future research.

A closer look at the most-discriminative stable subset of links
We observed that a subset of only 30 top-ranking supervoxel link-
weights out of a total of 161,596 provided the lowest CV error
(26.8%) using linear SVM. Note that this is the lowest average error
on the full dataset involved in leave-one-subject-out CV. Though a
slightly lower error of 26.0% was obtained with over 1000 features
using the logistic regression classifier, for the purposes of better
interpretability and visualization of the results, we focus on the
subset of only 30 features, since the corresponding error was
comparable to (within 5% from) the lowest error, but achieved on
a much smaller feature subset. We see that the most significant
link connected thalamus to the primary motor cortex (next to the
primary sensory area). Disrupted thalamo-motor/sensory connec-
tivity was previously reported in some studies18, 33, 34; however,
this prior observation involved only resting-state fMRI data, so it is
quite interesting to see similar disruptions in a task-based fMRI
setting. The subset also included several disrupted connections
from the left superior parietal lobule (precuneus or Brodmann area
BA7.L as shown in Fig. 4) to thalamus, as well as Brodmann areas
BA9, and BA44, both in the right hemisphere (inferior prefrontal
gyrus) and putamen. Abnormal connectivity involving precuneus
(BA7) was previously reported in another schizophrenia study
based on an auditory language-based task2, and also in some
other related studies in schizophrenia (e.g., Mashal et al.35 with
respect to metaphor comprehension). Disruptions in BA44 area
(inferior frontal gyrus) has also been reported repeatedly in the
literature36 on schizophrenia.

Most-discriminative vs. most-significant brain regions
There was some overlap in brain areas involved in the most
discriminative pairwise correlations (link-weights between super-
voxels) (Fig. 4) and areas corresponding to the most significant
difference in voxels log-degrees (Fig. 1). These included Brodmann
areas BA7 (precuneus) and BA39 (lateral occipital cortex) left. Also,
the right thalamus, which was heavily involved in the most
discriminative links (via thalamo-cortical connections between the
right thalamus and the areas BA7.L [precuneous] and primary
motor.R cortex), was also among the areas with aberrant log-
degrees; coordinates of the local maximum of the cluster located
at the right thalamus: X = 17.60, Y = −29.75, Z = −2; see also the 8th
and 9th panels in Fig. 1. Other brain areas containing the most-
significant voxels included BA6 left and right (precentral gyrus,
inferior frontal gyrus) and BA30 (cingulate cortex), while the areas
involved in the most predictive links included primary motor
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(postcentral gyrus) right and BA44.R. Note that the labels for
nodes involved in classification represent the center of the
supervoxels, each covering a relatively large area of 13.75 ×
13.75 × 15mm. Supervoxel may, therefore, partially involve other
adjacent brain regions.

Direction of the functional connectivity changes
While there is a general consensus on disruption of functional
connectivity (in several brain areas) in schizophrenia, so far there is
no consensus on the direction of the alteration, with some studies
reporting hyper-connectivity and others hypo-connectivity, as well
as a mixture of the two.16, 37, 38 Here, we observed that a large
fraction of whole-brain connections had increased link-weight as
well as nodal degrees in schizophrenic patients (Supplementary
Figs. S3 and S5). This phenomenon was preserved after regressing
out motion parameters (mean absolute and mean frame-to-frame
motion displacement) from the features, in a control experiment,
to rule out the possibility of motion-related artifacts (Supplemen-
tary Fig. S5), as a persistent source of methodological concern in
fMRI data analysis.39, 40 In addition, our preprocessing focused
particularly on eliminating possible motion artifacts, and, as
discussed in the Methods section, included standard FSL motion
correction, and an additional step involving tCompCorr denoising.
We also applied low-pass temporal filtering to further eliminate
possible motion artifacts. (Motion parameters were not included
as regressors at any stage of our main analyses, including
preprocessing, features post-processing, or prediction.)
Our observation of increased connectivity in schizophrenia is

consistent with the Yang et al.26 report of hyperconnectivity in
schizophrenia as a result of an increased excitation to inhibition
ratio, simulated using a neural model. Hyperconnectivity in the
resting-state default mode network (DMN) in patients with
schizophrenia has been reported elsewhere.16, 38 Also, DMN
deactivation during cognitive tasks may be deficient in schizo-
phrenia,41 which might relate to the overall higher functional
connectivity in patients vs. controls, similar to our observations in
this task-based fMRI study. In addition, some studies have
reported increased thalamo-sensorimotor connectivity in schizo-
phrenia,18, 33, 34 although they also reported decreased thalamo-
frontal connectivity in this context, which was not observed in our
analysis (there were no thalamo-frontal links in the stable links
subset). This difference in findings may be related to the task-
based nature of our data, i.e. the Auditory Oddball paradigm,
which could perhaps contribute to an overall increase in observed
connectivity strengths compared to resting-state studies.18

Prediction of specific symptoms
In addition to successful classification, link-weight features,
extracted from the whole brain, were predictive of the severity
of several symptoms in patients, including global rating of
attention, severity of bizarre behavior, positive formal thought
disorder, avolition/apathy, and alogia. The relationship between
aberrations in brain functional connectivity and clinical symptoms
as an independent measure of illness severity is yet unknown.
While some recent studies have considered the correlation
between symptoms and neuroimaging features,18, 36, 42, 43

reporting correlations in a range typically below 0.5 (e.g., Cheng
et al.18 reported below 0.17 correlations between functional
connectivity features involving the thalamus and the PANSS
scales), only very few studies have attempted multivariate
prediction of scales using neuroimaging features.44, 45 (Koch
et al.44 used leave-subject-out support vector regression to predict
the PANSS negative scale and activation pattern in ventral
striatum in the context of gain anticipation in schizophrenia.
Tognin et al.45 reported prediction of symptom progression in
individuals at ultra-high risk for psychosis at a 2-year follow-up
(correlation = 0.34, p = 0.026) using cortical thickness and

relevance vector regression. While our manuscript was under
review, we learned about a recent paper46 that reported
accuracies as high as correlation = 0.7 and 0.78, respectively in
prediction of MCCB cognitive and PANSS symptomatic scores in
schizophrenia using multimodal MRI data (fMRI, DTI and MRI). The
authors used several levels of feature selection (including
removing features with low variability, regression ReliefF feature
selection, spatial clustering, and correlation-based feature selec-
tion) that reduced the number of voxel-wise features (fALFF,
fractional anisotropy, and gray matter) from thousands to dozens,
resulting in a much improved accuracy compared to using less or
none feature selection prior to regression.
We found consistencies between areas involved in classification

and scales prediction: BA7 (precuneus) was involved in the stable
subset of most-discriminative links as well as prediction of all five
FDR surviving scales (SS35, 60, 69, 27, and 23); see also
supplementary Fig. S9. Moreover, bilateral BA7 was also present
in the areas involved in significantly disrupted log-degrees.
Primary sensory cortex (BA1, or primary motor region adjacent
to BA1) was consistently observed among the stable set of links
involved in prediction of all five scales as well as classification.
Area BA6 (premotor cortex) was also repeatedly observed in
prediction of all five scales as well as in the disrupted log-degree
maps, but was not involved in the stable links subset for
classification. There were also differences: for example, while
thalamus (especially in the right hemisphere) was considerably
involved in predictive supervoxel links and also showed altered ss-
log-degrees, it was not among the areas involved in prediction of
any of the (five FDR-surviving “predictable”) scales.
Curiously, links that were most important for prediction of

various scales (i.e., links that had the largest coefficients in the EN
model) were not among the links that were most significantly
different between the patient and control group (i.e., had the
smallest p-values based on two-sample t-tests ran on the full
dataset). Supplementary Fig. S8a shows the p-values of the EN-
selected links, for both a CV-stable subset as well as the union of
the links selected in each CV data subset, for SS69 (positive formal
thought disorder) as an example. The scatter plot in Supplemen-
tary Fig. S8b also shows that the mean values of the EN-selected
links are not the most different between the two groups, i.e., not
necessarily very far from the diagonal line. The feature selection
methods in the (healthy vs. patient) classification task vs. the
disease severity prediction task were, however, different as:

(1) the SANS and SAPS scales are measured only in the patient
group and thus a similar features ranking approach as the
one used for classification (p-value of t-test) could not be
used for scale prediction; and

(2) the scale prediction task was regarded as regression, where
the output (symptom severity) varied between 0 and 5 (vs. a
binary output, {patient, healthy} in the classification task) and
thus a t-test was not useful here.

Nevertheless, other filter-based approaches can be used, such
as ranking the features based on the correlation between the
features and the scales severity (which can be applied to both
classification and scale prediction tasks). Alternatively, classifica-
tion approaches with embedded feature selection can be used for
discriminating between patients and healthy controls. We aim to
exploit sparse classification methods further in our future work. It
would be interesting to use similar feature selection approaches
for both classification and scale prediction before comparing
features that contribute to each task.

Strengths and limitations
Clearly, there are multiple directions for future research. (1) We
want to test the candidate model (classifier/feature set) on
different schizophrenia datasets to further evaluate the proposed
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methodology and learning algorithms. We also aim to develop
further the stability analysis to estimate the predictive features’
reproducibility rate (i.e., stability) in other datasets. In addition,
given the complexity and possible subtlety in patterns discrimi-
nating between schizophrenia and healthy control subjects, as
well as the large variability in patients’ symptoms, much larger
datasets are necessary to generate more accurate models of
schizophrenia. One of our future directions is to analyze larger-
scale datasets, such as those shared on schizconnect (http://
schizconnect.org). (2) While the brain areas and connections
visualized here may provide useful insight into dysconnectivity
patterns revealed by fMRI, the links (and corresponding areas)
discussed here are only a sufficient set of features, meaning other
sets of features may exist that can yield similar prediction
accuracies. Indeed, it might be possible that a learner without
access to these features could still produce a classifier (that
necessarily uses a different set of features) with comparable
prediction accuracy. An earlier paper by Rish et al.47 showed such
a property in predicting levels of pain using fMRI data (referred to
as “holographic” information representation). Haxby et al.48

observed a similar property in representation of the visual
information in the cortex: they showed that the category of an
object can still be accurately discriminated based on fMRI-induced
activation patterns even after the voxels that respond maximally
to that particular object category are removed.48 It would be
interesting to test this property in schizophrenia modeling, where
many assume that the whole brain network is involved.49 It would
also be useful to relate the findings of fMRI studies (including this
paper) to the abnormalities underlying the disease: blood-oxygen-
level-dependent (BOLD) fMRI signals provide only an indirect
measure of neural activity, which is often diluted with artifacts,
such as motion and physiological noise given the low BOLD signal
strength, which could lead to systematic changes in fMRI data in
one population vs. another.50 Here we have taken multiple steps
in data processing to reduce the effect of such artifacts.
Nevertheless, further investigations on mechanisms at the cellular,
molecular and system level are needed before reaching conclu-
sions about the anomalies underlying the disease. There is
possibility that brain functional networks in patients are influ-
enced by psychotropic medications.51, 52 Unfortunately, in this
dataset we could not investigate the effect of medication because
the majority of patients were medicated at the time of scans (39
out of 42 patients whose medication data was available) and non-
naïve to neuroleptics (34 out of 35 patients whose medication
status was available); see Supplementary Table S3 for details.
Our work, described here, represents a step towards finding

more reliable objective neuroimaging biomarkers for diagnosing
schizophrenia, which have higher reproducibility and general-
ization accuracy compared to the potential “biomarkers” reported
in association studies, which are typically extracted solely based
on univariate statistical tests on all of the data. We were successful
in predicting several symptom severity scales using sparse
multivariate regression, which is likely to be extremely important
in the move towards incorporating the RDoC approach to
schizophrenia as a spectrum rather than a binary label.

MATERIALS AND METHODS
Dataset
Data used for this study were accessed from the FBIRN phase II fMRI
dataset,53, 54 downloaded from Function BIRN Data Repository, Project
Accession Number 2007-BDR-6UHZ1 (fbirnbdr.nbirn.net:8080/BDR). These
data include structural and task-based functional MRI data for subjects
with DSM IV-defined schizophrenia or schizoaffective disorder and age-
matched and sex-matched healthy control subjects, recruited at multiple
scanning sites; for scanner details for the sites included in this study, see
Supplementary Table S1. Various clinical measurements were also
provided, including ratings on the Scales for the Assessment of Positive

(SAPS)25 and Negative Symptoms (SANS)24; See Keator et al.54 for details.
All subjects had normal hearing (no more than a 25-db loss in either ear),
an IQ greater than 75 as measured by the North American Adult Reading
Test, and no major medical illness, previous head injury, or alcohol/
substance dependence. Control subjects with a history of major
neurological or psychiatric illness and subjects with schizophreniform
disorder were excluded. Patients had no significant changes in their
psychotropic medications in the 2 months preceding the study.
We focused on the Auditory Oddball task-related fMRI data (for details

see Supplementary Information) from five different sites, which were in
compliance with Institutional Review Board for this use of data. We used
95 subjects (46 patients, 49 controls) from a total of 164 subjects in the
FBIRN phase II dataset based on our preprocessing and quality control
criteria as described below. (See Supplementary Table S3 for subject
demographics information). We used data from the second scanning
session (denoted as ‘0003’ in the original data set), and excluded subjects
with fewer than 4 runs in the session. With 95 subjects and 4 runs per
subject, we had a total of 380 samples (instances). (The number of patients
and controls per site is given in the Supplementary Table S4).

Preprocessing
We performed routine, per subject, preprocessing steps using FSL
software.55 Motion correction was accomplished using MCFLIRT (rigid
body),56 followed (separately by subject) by tCompCor denoising,57 which
helped further remove physiological noise and motion-related artifacts;
see Supplementary Information for more details on tCompCor denoising.
Next, we performed spatial smoothing (5mm FWHH), high pass temporal
filtering (cutoff = 100 s), low-pass temporal filtering (cutoff = 2.5 TR), and
registration to the MNI template through the subject’s in-session T1 scan (7
and 12 degrees of freedom for each subject’s EPI to T1 and T1 to MNI 2
mm T1 template registration, respectively, with respect to a reference
image of size 53 × 64 × 37 voxel size: 3.4375 × 3.4375 × 5 mm).56 Subjects
with missing T1-weighted scans were excluded. This left a total of 26,949
brain voxels, after applying a universal mask, which was the intersection of
all subjects/runs/volumes, masked by the MNI template down-sampled to
the same resolution as the EPI images. Images with severe intensity
dropouts (or other physical problems, such as a reverse volume
orientation) were excluded through visual inspection of outlier data (i.e.,
data with mean intensity larger/smaller than the site’s mean ± 2 standard
deviations). Subjects with at least one problematic run were excluded as
we only used subjects with 4 acceptable runs. Applying an exclusion
criterion of translational motion larger than the voxel size or rotation larger
than 0.06 radians in any volume (out of the 137 volumes) on the remaining
subjects, no subjects were excluded. (Supplementary Table S2 gives the
average motion parameter per group.)

Functional network feature evaluation: significance, stability and
predictive power
Our methodology includes the following steps: (1) computing whole-brain
functional networks and extracting specific network features as discussed
below; then (2) evaluating these network features according to several
criteria that go beyond standard statistical significance, and involve
stability across data subsets, as well as generalization (prediction) accuracy
in the context of multivariate predictive modeling, which involves both
binary classification of schizophrenia patients vs. controls, and sparse
regression approach to predicting clinical symptoms severity measured by
SANS and SAPS.

Feature extraction
In our analysis, each sample corresponds to 1 run per subject. There are
26,949 voxels and 137 brain volumes (time points) per sample, resulting
into more than 3.6 million variables. Thus, dimensionality reduction
(perhaps feature extraction) is useful prior to learning a predictive model.
Here, we focus on features extracted from functional brain networks,19, 58

which compress the data across the time-dimension, while keeping the
spatial dimension. For each subject, and each run, we constructed a
separate functional network and compute two main types of network
features:

Voxel-level log-degree. For each pair of nodes (voxels), we compute pair-
wise Pearson correlation coefficients among all pairs of time-series (BOLD
signals); then we include a link between a pair of voxels in the network, if
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the correlation between the corresponding voxels’ BOLD signals exceeds a
specified threshold; here, we used the same threshold of c(Pearson) = 0.7
for all voxel pairs. The degree of a node in the network is the total number
of links connected to that node. We then converted the degrees into the
logarithmic space, log10(degree + 1); the transformed features yielded
better results; see below.

Supervoxel-level link-weights. We also extract functional brain networks
for the spatially down-sampled fMRI data, in which every block of 48 (4 ×
4 × 3) adjacent voxels forms a ‘supervoxel’ (size: 13.75 × 13.75 × 15 ×mm)
whose time-series is interpolated from the constituting voxels’ time series.
This reduces the number of spatial locations to only 569 (vs. 26,949 at the
voxel level), allowing the use of all pair-wise correlations across the brain: a
total of 161,596 (vs. over 360 million correlations at the voxel level).

Within-site standardization. To account for the variance between different
sites, we z-transformed every feature within each site before combining
the samples from different sites (see also Supplementary Information). The
resulting features are denoted as ss-log-degree, and ss-link-weights.

Mass-univariate statistical hypothesis testing
For each single feature of a given type (e.g., ss-log-degree of each voxel,
and ss-link-weight of each network link), we performed a two-sample t-test
and ranked the features of a given type by their p-values, where lower p-
values are associated with higher significance of the corresponding
features. Since we need to perform one t-test for each of the features,
which is extremely large (26,949 degree features and 161,596 link-weight
features), we corrected for multiple comparisons to control the FP rate. We
tried both the FDR and the Bonferroni corrections, both with the FP rate
threshold α = 0.05. (Variance of the z-transformed features were similar
across the two group: σH = 1.02 ± 0.037 S.D. vs. σP = 0.97 ± 0.037 S.D. for ss-
log-degree and σH = 0.98 ± 0.036 S.D. vs. σP = 0.99 ± 0.044 S.D. for ss-link-
weights, in the healthy vs. patient group, respectively. σ denotes the
average standard deviation of all features’ standard deviations. Also, the
majority of features were normally distributed within each group,
according to Kolmogrov–Smirnov tests ran on each feature individually.)

Feature subset selection
To reduce the risk of overfitting, for each experiment, we first performed
feature selection using a simple filter-based approach. For the classification
task, we ranked the features using a function that measures the relevance
of the feature to the class label (here schizophrenic patient vs. control
subject), and thus the discriminative ability of the feature, and then
selected the k top-ranking features constituting a k-size feature subset. We
used the p-value resulting from the two-sample t-test as a ranking
function, with the null-hypothesis that the feature’s values corresponding
to samples of different classes came from distributions with respectively
equal means and variances (assuming the variables have Gaussian
distributions). t-test-based ranking was performed separately on each CV
fold (i.e., for each training data subset selected during k-fold CV) in order to
avoid “double-dipping” into test data during feature selection. While such
filter-based approaches do not necessarily select the most-predictive
subset of features,3 they provide a computationally efficient alternative to
an otherwise computationally intractable search for the most-predictive
subset of k variables. The variables were then ranked in the ascending
order of their p-values, with the lower ranks indicating more informative/
relevant features.
For the scale prediction task, we used an embedded feature selection

approach, in which relevant features were selected during learning a
regression model on the data (see Supplementary Information), rather
than as a preprocessing step as in filter-based feature-selection
approaches. Note that, unlike the classification task (patient vs. healthy
control), scale prediction was a regression problem, each scale’s values are
in the range between 0 and 5, with the larger scores representing more
severe symptoms. Thus, a regression approach with inherent feature
selection was used for modeling the symptom severity scales
(the Discussion discusses other possible approaches for scale prediction
as well as classification).

Feature stability analysis
The goal of this analysis was to assess the stability of the features selected
across various subsets of the data (i.e., sets of samples). For this, we

generated 95 data subsets, leaving one subject out in each fold (this
includes four samples corresponding to the 4 runs per subject). The feature
selection procedure was then performed in each fold for various-size
feature subsets. The stability analysis determined what fraction of the
features in each feature subset was common across the folds (for the
embedded feature selection approach, used in the scale prediction task,
feature selection occurred as an embedded part of the EN classifier
training for various size feature subsets).

Classification: schizophrenic patients vs. controls
A series of classifiers was then trained using various-size feature subsets (as
input), to discriminate between patients and healthy controls (class labels,
{patient, control}, as output). The process was repeated for each feature
type separately: first ss-log-degree then ss-link-weights. Various classifiers
were considered for the patient vs. control classification task: nearest
neighbors, linear SVM, RBF SVM, decision tree, random forests, logistic
regression, GNB, and linear discriminant analysis; see Supplementary
Information for tuning of hyperparameters. Each of the models’ (classifier/
feature set) were evaluated using leave-one-subject-out CV; see below.

Predicting disease symptom severity
Next, we experimented with the scale prediction task. Following previous
studies,18 univariate correlations were first computed between link-weight
features and each of the rating scales reflecting the severity of
schizophrenia. Nine Global Rating Scales were used, from the negative
(SANS) and positive (SAPS) symptom scales (each involving scores for a
total of 24 and 34 different scales, respectively) provided for patients. (A list
of the Global Rating Scales and their distribution in the patient group—
demonstrating the heterogeneity of disease symptoms in the patient
group—is presented in Supplementary Fig. S1.)
In contrast to previous work, our objective was to go beyond the

univariate analysis on a single dataset, and evaluate generalization
accuracy of link-weight features when used by multivariate regression
models (each scale was modeled separately) to predict the scales of
previously unseen subjects; here we used the EN sparse linear regression
model59; see Supplementary Information for more details on the EN model.

Evaluation via CV
For each predictive model, whether it was a classifier on a feature subset of
a certain size, or a regression model, we computed an estimate of model’s
generalization error to previously unseen data using k-fold CV approach.
We used leave-one-subject-out CV to evaluate each model’s performance:
we generated S = 95 train/test set combinations of the samples (CV-folds),
where each of the folds would set aside as a test set the four samples for a
particular subject (we used S = 46 for disease symptom severity prediction).
Then, we learned a model on the remaining samples, where the learning
process involved both feature ranking and subset selection. The model is
then tested on the test set involving four samples corresponding to the
left-out-subject.
To avoid a biased estimate of generalization error, as mentioned above,

variable selection was performed separately on each CV training dataset.
Indeed, performing variable selection on the full dataset would constitute
“double-dipping” producing overly optimistic results, since the learning
process should use absolutely no information about the test data labels
during the training phase, which also includes variable selection.

Data availability
Data used for this study were accessed from the FBIRN phase II fMRI
dataset,53, 54 downloaded from Function BIRN Data Repository, Project
Accession Number 2007-BDR-6UHZ1 (fbirnbdr.nbirn.net:8080/BDR).

Code availability
Code for classification is available upon request.
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