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A B S T R A C T

Perillae Folium (PF) is a well-known food and herb containing different chemotypes, which affect its quality. 
Herein, a method was proposed to classify and quantify PF chemotypes using gas chromatography–mass spec-
trometry (GC–MS) and Fourier transform-near infrared spectroscopy (FT-NIR). GC–MS results revealed that PF 
contains several chemotypes, including perilla ketone (PK) type, α-asarone (PP-as) type, and dillapiole (PP-dm) 
type, with the PK type being the predominant chemotype. Based on FT-NIR data, different chemotypes were 
accurately classified. The random forest algorithm achieved >90 % accuracy in chemotype classification. 
Furthermore, the main components of perilla ketone and isoegomaketone in PF were successfully quantified 
using partial least squares regression models, with prediction to deviation values of 3.76 and 2.59, respectively. 
This method provides valuable insights and references for the quality supervision of PF and other foods.

1. Introduction

Aromatic foods and herbs are widely used in spices, flavoring agents, 
and herbal remedies owing to their distinctive colors, aromas, and 
functions (Carvalho Costa et al., 2015). Perillae Folium (PF), derived 
from the annual herbaceous plant Perilla frutescens (L.) Britt. of the 
Lamiaceae family, is widely distributed in Asia, particularly in China, 
Japan, Korea, India and Nepal (Yu et al., 2017). As a popular aromatic 
food, PF is commonly used as a culinary spice and flavoring agent in 
soups, roasts, vegetable salads, and food colorants because of its 
distinctive aroma, basil-like taste, and pleasant green or purple hues 
(Fan et al., 2022). In addition to its edible value, PF is an important 
herbal medicine used to treat ailments such as food poisoning from fish 
or crab, food allergies, and common cold (Wu et al., 2023). Modern 
studies have found that volatile components, amino acids, fatty acids, 
phenolic acids, and flavonoids are the key nutritional and medicinal 
constituents of PF. These functional components exert various biological 
effects, including antioxidant, antimicrobial, antiallergenic, and anti-
depressant activities (Hou et al., 2022; Yu et al., 2017).

The quality of aromatic foods and herbs plays an important role in 
determining their flavor and commercial value, and many factors affect 
their quality, such as geographical origin (Cui et al., 2023), processing 
method (Zhao et al., 2023), and harvest time (Lu et al., 2023). As the 
most abundant constituents of PF, volatile compounds are commonly 
found in essential oils and are recognized as active and flavoring sub-
stances. The major volatile compounds identified in PF include perilla 
ketone, isoegomaketone, perillaldehyde, perillene, piperitenone, asar-
one, dillapiole, and caryophyllene (Ghimire et al., 2017; Jin et al., 
2023). Owing to the various types and contents of volatile components, 
researchers have recently classified PF samples into distinct chemotypes 
(Ahmed & Tavaszi-Sarosi, 2019; Ghimire et al., 2017). The classification 
of chemotypes typically depends on the volatile compound content of 
the different samples (Rodríguez-Solana et al., 2014). High levels of 
these components are often considered key factors in determining the 
quality of PF and other aromatic foods and herbs.

PF has typically been subdivided into several chemotypes, including 
the PK type (primarily containing perilla ketone and isoegomaketone), 
PA type (primarily containing perillaldehyde), PL type (primarily 
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containing perillene), PT type (primarily containing piperitenone), PP 
type (primarily containing phenylpropanoid), and other composite 
chemotypes comprising two or three major volatile constituents (Ahmed 
& Tavaszi-Sarosi, 2019). Because of variations among these chemotypes, 
the flavor and quality of PF can differ considerably. Among all PF che-
motypes, the PK type is commonly distributed in China and other 
countries (Zhou et al., 2023), and the main components of perilla ketone 
and isoegomaketone have been found to exhibit promising antifungal, 
antiobesity, and anti-inflammatory activities (Wang et al., 2022). Given 
the significant differences in aroma and quality among PF chemotypes, 
qualitative and quantitative analyses based on chemotypes may offer a 
new approach for PF quality assessment.

Traditional methods for assessing PF chemotype include gas chro-
matography (GC) and GC–mass spectrometry (GC–MS) (Sa et al., 2023). 
Although these methods provide high accuracy and reproducibility for 
chemotype identification, long analysis time and tedious sample prep-
aration remain challenges. Near infrared spectroscopy (NIR) is a com-
mon vibrational spectroscopic technique that acquires spectral 
information by measuring the overtones and vibrational combinations 
related to hydrogen-containing groups (O–H, N–H, C–H) in the NIR 
wavelengths ranging from 750 to 2500 nm, indirectly reflecting chem-
ical composition (Nagy et al., 2022). As a rapid, nondestructive, and 
environmentally friendly method, NIR coupled with chemometric 
analysis has been successfully applied for both qualitative and quanti-
tative analyses of foods and herbs (He et al., 2023; Peng et al., 2024). 
Studies have shown that NIR can establish quantitative models based on 
volatile components for the rapid quality evaluation of Florists chrysan-
themum (Fan et al., 2023) and Monechma ciliatum (Elrasheid Tahir et al., 
2023). However, no reports have yet utilized these techniques to eval-
uate the quality of different PF chemotypes or other aromatic foods and 
herbs.

Hence, to develop a rapid and effective method for the chemotype 
discrimination of PF, this study investigated the feasibility of using NIR 
combined with chemometrics to distinguish different PF chemotypes 
and predict the contents of major volatile components. The specific aims 
were as follows: 1) detect the main volatile components using the 
GC–MS system and determine the chemotypes of PF, 2) obtain the NIR 
data of PF to construct discrimination models based on chemometric 
analysis, and 3) develop and optimize quantitative models using the 
partial least squares regression (PLSR) algorithm with NIR and GC–MS 
data to predict the contents of the main components in PF. The results 
are expected to facilitate rapid, environmentally friendly, and compre-
hensive quality evaluation of chemotypes in PF or other aromatic foods 
and herbs.

2. Materials and methods

2.1. Samples and reagents

In this study, sixty-three batches of commercial PF samples were 
collected from different markets in China (Table 1S). All samples were 
taxonomically identified as Perillae Folium by Prof. Qinan Wu (Nanjing 
University of Chinese medicine), and voucher specimens were deposited 
in the School of Pharmacy, Nanjing University of Chinese Medicine. The 
PF samples were initially pulverized using a high-speed grinder (FW-80, 
Tianjin Taisite Instrument Co., China) and then filtered through a 50- 
mesh sieve (355 μm ± 13 μm) to achieve a fine particle size powder. 
The prepared samples were stored in centrifuge tubes and kept in a 
desiccator until analysis. Reference standards of perilla ketone, iso-
egomaketone, L-limonene, α-asarone, and apiole (purity ≥95 %) were 
purchased from Chengdu Desite Bio-Technology Co., Ltd. (Chengdu, 
China). Reference standard of perillaldehyde with a purity ≥98 % was 
obtained from Chengdu MUST Bio-Technology Co., Ltd. (Chengdu, 
China). The chromatographic grade n-hexane and n-hexadecane (in-
ternal standard, purity ≥98 %) were purchased from Aladdin Chemical 
Reagents Co., Ltd. (Shanghai, China). The n-alkanes (C7 – C40) were 

obtained from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, 
China). The ultrapure water was supplied by a Mill-Q system (Millipore, 
United States).

2.2. Volatile component analysis via GC–MS

2.2.1. Extraction of volatile components by simultaneous distillation 
extraction

The volatile compounds in the PF samples were extracted using the 
simultaneous distillation extraction (SDE) method, as described in our 
previous study, with a slight modification (Zhou et al., 2021). Specif-
ically, 5.0 g of the PF sample was weighed and mixed with 200 mL of 
ultrapure water in a round-bottom flask. Another flask containing 10 mL 
of n-hexane was used to collect the volatile components. Both flasks 
were connected to the SDE device and heated to a light boil using an 
electric heating mantle. The condensate system was turned on, and the 
process was performed for 1 h after the solvent in the flasks started to 
boil. Finally, when no liquid drop remained in the condensation tube, 
the extracted solutions were collected in brown vials and treated with 
anhydrous sodium sulfate to remove the water. The samples were stored 
in a refrigerator at − 20 ◦C for 24 h for subsequent analysis.

2.2.2. GC–MS conditions
An Agilent 7890B gas chromatograph system coupled to an Agilent 

7000C triple quadrupole mass spectrometer (Agilent Technologies, 
Santa Clara, CA, USA), equipped with an HP-5MS fused silica capillary 
column (30 m × 0.25 mm, 0.25 μm), was used to detect and separate the 
volatile compounds in PF. For the GC conditions, the temperature of the 
injection port was set to 220 ◦C, injection volume was 1 μL, split ratio 
was 10:1, and carrier gas was high-purity helium (99.999 %) at a flow 
rate of 1.0 mL/min. The oven temperature program started from 50 ◦C 
(held for 3 mins), then increased to 100 ◦C at a rate of 10 ◦C/min (held 
for 3 mins), subsequently heated to 200 ◦C at a rate of 5 ◦C/min (held for 
3 mins), and finally ramped to 220 ◦C, remaining for 3 mins. For MS 
conditions, an electron impact (EI) ionization chamber, operating in the 
full-scan mode, were used. The EI energy was 70 eV, and the ion source 
temperature was 230 ◦C. The transfer line temperature was 280 ◦C. The 
full-scan mode was operated at a mass range of 50.0–500.0 amu with a 
quadrupole temperature of 150 ◦C. The scanning time was 150 ms, and 
the solvent delay time was 3 min.

2.2.3. Qualitative and quantitative analyses
The metrics of retention index (RI) values and R match values were 

used to identify the volatile components in PF. Generally, an experi-
mental RI value that does not differ from the reported RI value by >30 is 
considered a key indicator for compound identification. At the same 
time, a higher R match value, based on mass spectral comparison, is 
recognized as an indicator of identification (Biancolillo et al., 2022). 
Herein, the potential volatile compounds in PF were initially identified 
based on R match values of >750. An n-alkane (C7 – C40) solution was 
then analyzed via GC–MS under the same conditions to calculate the RI 
values of each peak in PF. The corresponding compounds were identi-
fied by comparing the measured RI values with the theoretical RI values 
from the National Institute of Standards and Technology (NIST, version 
14.0) library, while also referencing the highest R match scores. Finally, 
some volatile standards were used to verify the accuracy of the identified 
results. The specific calculation formula is shown in Eq. (1): 

RI = 100×n+100×
tx − tn

tn + 1 − tn
, (1) 

where RI is the retention index, n is the number of carbon atoms in the n- 
alkane, tx is the retention time of the compound to be identified, tn is the 
retention time of the n-alkane corresponding to n carbon atoms, and tn+1 
is the retention time of the n-alkane corresponding to n + 1 carbon 
atoms.
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Relative quantification was performed according to the ratio of the 
ion flow peak area of each component in the total ion flow chromato-
gram to the internal standard (n-hexadecane) peak area according to the 
following formula (2): 

Ci =
Ai
A0

×C0, (2) 

where Ci represents the relative content of the identified compounds, C0 
represents the content of the internal standard, Ai represents the peak 
area of the identified volatile compounds, and A0 refers to the peak area 
of the internal standard.

2.3. FT-NIR analysis

2.3.1. Acquisition of NIR spectra
The NIR spectra of the PF samples were acquired using an Antaris™ 

II FT-NIR spectrophotometer (Thermo Fisher Scientific Co., USA) 
equipped with a rotating sample-cup spinner, an extended InGaAs de-
tector, and a tungsten halogen lamp as the light source. The FT-NIR 
parameters were set as follows: diffuse reflectance mode, 32 scans 
within the range of 10,000–4000 cm− 1 and resolution, 8 cm− 1. The 
Result software (Antaris™ II System, Thermo Fisher Scientific Co., USA) 
was used to acquire NIR data. The entire NIR procedure was conducted 
at a room temperature of 20 ◦C – 24 ◦C, with relative humidity ranging 
from 30 % to 35 %. A specific desiccant was used to keep the NIR device 
dry and ensure the reliability of the acquired spectra. Each NIR spectrum 
was recorded in triplicate, and the average spectrum was used for 
further analysis.

2.3.2. Preprocessing of NIR spectra
Generally, some irrelevant interference factors, including back-

ground noise and instrumental noise, can arise during NIR acquisition. 
These undesirable effects may be attributed to light scattering, optical 
range differences, and sample particle size (Biswas & Chaudhari, 2024). 
It is essential to apply various preprocessing methods to obtain effective 
NIR data. Herein, eight pretreatments were employed, including mul-
tiplicative scatter correction (MSC), standard normal variate trans-
formation (SNV), first and second derivative (1st Der and 2nd Der) 
methods, as well as their combinations: MSC + 1st Der, MSC + 2nd Der, 
SNV + 1st Der, and SNV + 2nd Der. The MSC and SNV methods were 
employed to eliminate the interference caused by light scattering and 
particle size. The 1st Der and 2nd Der methods were applied to correct 
baseline drifts and separate the overlapping spectral bands. All pre-
treatments were performed using the Savitzky–Golay (SG) algorithm to 
reduce experimentally generated noise. Specifically, the SG algorithm 
was configured with 17 smoothing points and a polynomial order of 3 
for qualitative models and 13 smoothing points and a polynomial order 
of 3 for quantitative models. These preprocessing methods were com-
bined to filter the most suitable combinations for further modeling 
analyses.

2.4. Model construction

2.4.1. Discriminative models
Herein, traditional pattern recognition methods and modern ma-

chine learning algorithms were used to classify the chemotypes of the PF 
samples. Initially, principal component analysis (PCA) was performed 
for the categorical exploration of the generated data. As an unsupervised 
model, PCA reduces the dimensionality of complex data by projecting 
the variables into the first few components, providing intuitive group 
clustering visualization (Zhou et al., 2020). Subsequently, two common 
supervised models, partial least squares-discriminant analysis (PLS-DA) 
and orthogonal partial least squares-discriminant analysis (OPLS-DA), 
were employed to separate the different groups. Based on partial least 
squares (PLS) theory, PLS-DA and OPLS-DA can address the issues of 

intricate variables and covariance in classification (Yu et al., 2022). 
Finally, three machine learning algorithms, including K-nearest 
neighbor (KNN), decision tree (DT), and random forest (RF), were 
developed to extract the most effective information and improve clas-
sification accuracy. Briefly, the KNN algorithm selects k objects closest 
to the test samples in a given space based on Euclidean distance and then 
fits the optimal discriminative model (Zhang & Wang, 2023). The DT 
algorithm divides the training dataset into groups with the highest 
variance between the dependent and independent variables, which can 
be used to construct decision trees for classification. RF is an ensemble 
algorithm that generates a forest of decision trees, thereby reducing the 
impact of outliers and model overfitting and improving the modeling 
accuracy (Sun, Li, et al., 2021).

2.4.2. Quantitative models
The PLSR algorithm was used to establish quantitative models for 

predicting the content of the main components in the PF samples. As the 
most widely utilized spectral multivariate correction analysis, PLSR can 
fully leverage spectral information to obtain the best correction model. 
This method decomposes the spectral matrix and the content matrix, 
removes the irrelevant noise signals from both matrices, and then obtain 
the relevance between the eigenvectors and indicators (Metz et al., 
2021). In the present study, the NIR spectral data were represented by 
matrix (X) and the contents of volatile components based on GC–MS 
were represented by matrix (Y), from which regression models were 
established.

2.5. Statistical analysis and model evaluation

The clustering heat map, box diagrams, and PCA model were 
generated using Origin 2021b software (Northampton, MA, USA). The 
PLS-DA and OPLS-DA models were completed using the SIMCA-P soft-
ware (Version 14.1, Umetrics, Sweden). The fitting and predictive effi-
ciency of the PLS-DA and OPLS-DA models were assessed using 
coefficients of determination (R2X and R2Y) and predictive capability 
(Q2) parameters. R2X and R2Y represent the variance scores of the X and 
Y matrices, respectively. The X matrix refers to GC–MS or FT-NIR data, 
whereas the Y matrix corresponds to the associated categories. Q2 rep-
resents the prediction accuracy of the model. R2X, R2Y, and Q2 values 
equal to 1.0, suggesting highly effective models (Fu et al., 2021; Li et al., 
2024). Machine learning algorithms, including KNN, DT, and RF, were 
applied to establish classification models based on FT-NIR data using 
MATLAB R 2022b software (MathWorks Inc., Natick, MA, USA). The 
area under the curve (AUC), accuracy, precision, recall, and F1-scores 
were used to evaluate the performance of KNN, DT, and RF models; 
ideally, these indices are close to 1.00 (Yu et al., 2022).

The PLSR model was implemented in TQ Analyst 9.0 software 
(Thermo Fisher Scientific Co., USA). The parameters, including the co-
efficient of determination for calibration (R2

c), coefficient of determi-
nation for prediction (R2

p), root mean square error of estimation 
(RMSEC), root mean square error of prediction (RMSEP), and values of 
prediction to deviation (RPD), were obtained to evaluate the perfor-
mance of PLSR models. Generally, a good calibration model should have 
high values of R2

c and R2
p and low values for RMSEC and RMSEP. Addi-

tionally, RPD scores reflect the overall predictive ability of the PLSR 
model, with RPD of >2.5 indicating excellent performance (Zou et al., 
2024).

3. Results and discussion

3.1. Volatile component analysis of the PF

3.1.1. Identification and quantification of volatile compounds via SDE- 
GC–MS

Herein, the volatile compounds in the PF samples were detected and 
analyzed using the SDE-GC–MS system. The total ion chromatograms of 
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all the PF samples are shown in Fig. 1A. Using the NIST 14 database, 20 
main volatile components were identified by comparing their mass in-
formation (Fig. 1S). The identified compounds include major volatile 
components of PF previously reported (Jin et al., 2023), such as perilla 
ketone, perillaldehyde, isoegomaketone, caryophyllene, β-asarone, 
α-asarone, dillapiole, and apiole (Table 1). Based on the peak area of 
each identified compound, the relative contents of the PF samples were 
calculated using the ratio of the peak intensity of the sample to that of 

the internal standard. As shown in Table 2S, the relative contents of 
perilla ketone, isoegomaketone, caryophyllene, α-asarone, and dilla-
piole were significantly higher than those of the other volatile com-
pounds in PF. Owing to the significant variances in the types and 
contents of the major volatile components, 63 PF samples were classified 
into three chemotypes. Specifically, 41 PF samples were grouped into PK 
(isoegomaketone) types, whereas 22 PF samples were categorized into 
phenylpropanoids (PP) types, respectively. The PP type samples can be 

Fig. 1. The total ion chromatogram (TIC) of the PF samples (A); the clustering heat map of PF (B); percentage of different chemotypes in PF (C); the relative contents 
of perilla ketone (D), isoegomaketone (E), dillapiole (F), and α-asarone (G) in different PF chemotypes.
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further classified into PP-as and PP-dm types based on the distinctions 
between α-asarone and dillapiole. The clustering heat map (Fig. 1B) 
shows a clear distribution of different chemotypes in PF, with higher 
contents of perilla ketone and isoegomaketone in PK type samples and 
higher levels of dillapiole or α-asarone in PP type samples. The PK type 
samples accounted for >65 % of PF, with the remaining PP-as and PP- 
dm types accounting for nearly 35 % (Fig. 1C). This indicates that PK 
type is the predominant chemotype in commercial PF, consistent with 
the findings of previous reports (Zhou et al., 2023). Regarding the spe-
cific contents of different chemotypes, the mean values of perilla ketone 
and isoegomaketone in PK type samples were 0.7625 and 0.5000 mg/g, 
respectively, which were significantly higher than those in the PP type 
samples (Fig. 1D and E). The average content of dillapiole in the PP-dm 
type was 1.8459 mg/g, whereas the mean value of α-asarone in the PP-as 
type was 3.0105 mg/g (Fig. 1F and G). Although the PK type samples 
also contained dillapiole and α-asarone, their levels were lower than 
those of perilla ketone and isoegomaketone. Overall, the commercial PF 
samples can be categorized into three common chemotypes. Consider-
able variations in the contents of major compounds among the different 
PF chemotypes may be attributed to genetic and environmental factors. 
Therefore, the classification and assessment of the qualities of various PF 
chemotypes are crucial.

3.1.2. Chemometric analysis via traditional PCA, PLS-DA, and OPLS-DA 
methods

To better understand the distribution trends of the different che-
motypes in the PF samples, several pattern recognition models, 
including PCA, PLS-DA, and OPLS-DA, were employed. The PCA model 
was initially applied for the unsupervised exploration of the generated 
data. Despite some overlap, the PK, PP-as, and PP-dm types were clus-
tered into three categories (Fig. 2A), indicating acceptable separation. 
As shown in the loading plot (Fig. 2B), perilla ketone and iso-
egomaketone significantly contributed to the classification of the PK 
type samples. α-Asarone and dillapiole played important roles in the 
categorization of PP-as and PP-dm type samples, respectively. Compared 
with the PCA model, PLS-DA and OPLS-DA are supervised methods that 
maximize the separation between observation groups, resulting in better 
prediction capability. In the PLS-DA model, good separation was ach-
ieved for PF samples of different chemotypes, with the main parameters 
of R2X = 0.502, R2Y = 0.849, and Q2 (cum) = 0.737, indicating strong 
explanatory and predictive capacity. The three chemotypes were 
significantly classified compared with the PCA model (Fig. 2C). 

Permutation tests were conducted 200 times to determine whether the 
model was overfitting. The results (Fig. 2D) indicated that the intercept 
of Q2 (− 0.408) was <0.05, which enhanced the robustness and reli-
ability of the model. The OPLS-DA model was conducted using one 
predictive component and two orthogonal components through seven- 
fold cross-validation, with R2X = 0.416, R2Y = 0.870, and Q2 =

0.793. Better separation efficiency was achieved, with the PK and PP 
type samples on the left and right sides, respectively (Fig. 2E). Permu-
tation tests also demonstrated that the OPLS-DA model was not over-
fitting because the intercept of Q2 was <0.05 (Fig. 2F). Overall, the PCA, 
PLS-DA, and OPLS-DA models confirmed their feasibility in discrimi-
nating different PF chemotypes using volatile component data combined 
with multivariate statistics. The above results show that PF samples from 
different sources can be classified into different chemotypes. The quality 
of PF may be affected by variations in the major volatile components of 
different chemotype samples. However, because of undesirable factors 
such as tedious extraction in SDE and the long analysis time of GC–MS, 
further studies are necessary for the rapid discrimination of chemotypes 
in PF.

3.2. Qualitative analyses based on FT-NIR spectroscopy

3.2.1. NIR spectral features and optimal preprocessing
The raw NIR spectra of PF were collected in the wavenumber range 

of 10,000–4000 cm− 1 (Fig. 3A). Overall, the intensity of the absorption 
peaks increased, as seen in the weaker absorption peaks between 5000 
and 4000 cm− 1, and higher absorption values between 10,000 and 5000 
cm− 1. The average NIR spectra exhibited valuable chemical information 
about PF from different chemotypes. It can be seen that the character-
istic peaks of the NIR spectrum were primarily located at 8396, 6876, 
5782, 5168, 4628, 4331, and 4254 cm− 1 (Fig. 3B). Generally, the ab-
sorption peak at 8396 cm− 1 is from the second overtone of C–H 
stretching (Zhao et al., 2024). The peak around 6876 cm− 1 is assigned to 
O–H or N–H stretching vibrations in the first overtone (Hong et al., 
2019). The band at 5782 cm− 1 is induced by the first overtone of C–H 
stretching vibrations, and the wavelength of 5168 cm− 1 corresponds to 
the combination of O–H and C–O stretching (Zhao et al., 2020). The 
absorption peak near 4628 cm− 1 corresponds to the combined vibra-
tions of C–H2 symmetric stretching and bending. The band around 
4331 cm− 1 is related to the overtone vibrations of C–H bending, 
whereas the band at 4254 cm− 1 corresponds to the first overtone of the 
C–H stretching vibrations (Xia et al., 2024).

Table 1 
The main volatile components identified in PF by GC–MS.

NO. RT (min) Compounds Formula CAS R Match RI (measured) RI (reference)

1 6.823 α-Pinene C10H16 7785-70-8 781 936 937
2 8.634 L-Limonene* C10H16 5989-27-5 868 1031 1036
3 10.283 Linalool C10H18O 106–24-1 827 1100 1099
4 13.438 Elsholtziaketone C10H14O2 488–05-1 862 1204 1177
5 14.849 Perilla ketone* C10H14O2 553–84-4 878 1251 1253
6 15.621 Perillaldehyde* C10H14O 18,031–40-8 846 1276 1272
7 16.377 Isoegomaketone* C10H12O2 34,348–59-9 765 1324 1302
8 19.768 Caryophyllene C15H24 87–44-5 882 1425 1419
9 20.655 (E)-β-Farnesene C15H24 18,794–84-8 770 1458 1457
10 20.667 Humulene C15H24 6753-98-6 847 1459 1454
11 21.627 (Z, E)-α-Farnesene C15H24 26,560–14-5 813 1496 1491
12 21.763 Bicyclogermacrene C15H24 24,703–35-3 840 1501 1495
13 22.329 Myristicin C11H12O3 607–91-0 884 1504 1519
14 23.830 Spathulenol C15H24O 6750-60-3 765 1586 1576
15 23.905 Caryophyllene oxide C15H24O 1139-30-6 861 1589 1581
16 24.368 Cedrol C15H26O 77–53-2 799 1609 1598
17 24.692 β-Asarone C12H16O3 5273-86-9 759 1623 1622
18 24.809 Dillapiole C12H14O4 484–31-1 758 1628 1628
19 26.044 α-Asarone* C12H16O3 2883-98-9 841 1682 1680
20 26.117 Apiole* C12H14O4 523–80-8 771 1686 1682

Note: RT: retention time; CAS: chemical abstracts service registry number; R Match: reverse matching score; RI (measured): retention index calculated by n-alkanes and 
actual measured value; RI (reference): the theoretical retention index in NIST 14 library; the * indicates that the ingredient was identified by standards.
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The vibrational differences between the NIR absorption peaks may 
be important factors for the quality discrimination of different chemo-
types in the PF samples. However, several invalid information exists in 
complex spectra, and it is difficult to interpret such information through 
visual observation. To solve this problem, eight NIR preprocessing 
methods were compared using the TQ Analyst software, and the pre-
diction accuracy and performance index were used to assess the reli-
ability of the models. Table 3S shows that except for SNV pretreatment, 
the preprocessing methods exhibited higher accuracy than the original 
spectra for discriminating PF chemotypes. Among them, the combina-
tion of SNV + 2nd Der was selected as the best method with a high 
predictive accuracy of 90.48 % and a good performance index of 85.0. 
The optimized NIR spectra are shown in Fig. 2S.

3.2.2. PF Chemotype discrimination by PLS-DA and OPLS-DA
Based on the optimal preprocessing method, the feasibility of NIR in 

discriminating PF chemotypes was further explored. The PLS-DA model 
was fitted using two principal components, with R2Y = 0.574 and Q2 =

0.354, indicating that 57.4 % and 35.4 % of the total variation can be 
explained and predicted, respectively. As shown in Fig. 3C, the PF 
samples of PK, PP-as and PP-dm types could be clustered independently 
with an initial tendency toward separation, and only a few PF samples 
were incorrectly classified into other categories. The OPLS-DA model 
was further employed to validate the reliability of the PLS-DA result. The 
main parameters R2Y and Q2 were 0.775 and 0.545, respectively, 
demonstrating that the OPLS-DA model has good explanatory power and 
predictive ability in classifying the PK and PP chemotypes of PF. Fig. 3E 
exhibited a distinctive result in chemotype classification, which was 

Fig. 2. Score plot (A) and loading analysis (B) of PCA model for three PF chemotypes; score plot of PLS-DA model (C) and OPLS-DA model (E) for different PF 
chemotypes; cross-validation results with 200 calculations using a permutation test (D and F).
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consistent with the modeling from GC–MS. In addition, 200 times of 
permutation tests were performed on the PLS-DA (Fig. 3D) and OPLS-DA 
(Fig. 3F) models, and the Q2 values were − 0.127 and − 0.385, 
respectively, indicating that the models did not overfit. The above re-
sults indicate that NIR spectral information can initially be used to 
classify PF chemotypes from different commercial sources. However, the 
Q2 parameters in PLS-DA and OPLS-DA were close to or below 0.5, 
indicating that the predictive ability of these models was not adequately 
strong for chemotype classification. Machine learning algorithms should 
be developed to construct a classification model to solve this problem.

3.2.3. PF Chemotypes discrimination based on machine learning
To verify the accuracy and reliability of the above results and achieve 

a more efficient classification of PF chemotypes based on NIR data, three 
machine learning algorithms, namely KNN, DT, and RF, were developed 

for further analysis. The optimal NIR spectra were processed using the 
SNV + 2nd Der method to construct data matrices and then imported 
into MATLAB 2020b software to create KNN, DT, and RF models. A 
flowchart illustrating the algorithmic process is presented in Fig. 4A, and 
the fitting results are presented in Fig. 5. Specifically, 60 % and 40 % of 
the PF samples were selected as the training and testing sets, respec-
tively, to construct the classification models. The receiver operating 
characteristic (ROC) curves were fitted to ensure the classification per-
formance of the three models (Fig. 4B). The AUC values were calculated 
from the ROC curves: 0.8987 for KNN, 0.9281 for DT, and 1.000 for RF. 
These results indicate that the three models achieved optimal perfor-
mance in the classification task. Accuracy is an important metric to 
assess the performance of algorithmic models. Herein, the training ac-
curacy of the KNN, DT, and RF classifiers was 100.0 %, 97.3 %, and 
100.0 %, respectively, and the total predictive accuracy was 84.6 %, 

Fig. 3. Average raw NIR spectra (A) and characteristic peaks (B) of the PF samples; score plots of PLS-DA model (C) and OPLS-DA model (E) for different PF 
chemotypes; cross-validation results with 200 calculations using a permutation test (D and F).
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88.5 %, and 92.0 %. This result indicates that the three classifiers suc-
cessfully distinguished different PF chemotypes and exhibited strong 
explanatory ability. The confusion matrix diagrams are shown in Fig. 4D 
and E. It is clear that the RF model exhibits the highest discriminative 
accuracy, with only two PP-dm type samples misclassified into the PP-as 
type group. The PF samples from the PP-dm type were misjudged in all 
three classifiers. In addition to accuracy, other metrics (precision, recall, 
and F1-scores) were calculated to evaluate the reliability of the 

algorithms (Fig. 4C), and these metrics were satisfactory for each model, 
further enhancing the stability and robustness of the classification. 
Furthermore, we explored the discriminant accuracy of classifying the 
PK and PP types based on the three algorithms. The modeling results and 
evaluation indicators are shown in Fig. 3S and 4S. When grouping the 
PP-dm and PP-as type samples, the accuracy of the model improved, as 
RF misclassified only one sample. The results demonstrated that NIR 
spectral information can rapidly achieve the classification of 

Fig. 4. The basic flowchart of three machine learning algorithms (KNN, DT, and RF) (A); the ROC curves and AUC values in three classifiers (B); the evaluation 
metrics of three algorithms (C); confusion matrixes of training sets (D) and testing sets (E) for classification of three chemotypes (PK, PP-as, and PP-dm types) based 
on three models.
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chemotypes in PF, and the RF classifiers showed the best discriminatory 
performance in both two or three chemotypes. Overall, the FT-NIR 
technique combined with machine learning algorithms can be recog-
nized as an effective tool for discriminating PF samples from different 
chemotypes.

3.3. Quantitative analysis based on FT-NIR spectroscopy

3.3.1. Selection of the spectral pretreatment method
As key constituents, perilla ketone and isoegomaketone play crucial 

roles in determining the flavor quality of PF. Previous studies have 

revealed that perilla ketone and isoegomaketone are the primary in-
dicators of the PK chemotype in PF and they can also be detected and 
quantified in other PF chemotypes (Zhou et al., 2023). Given that NIR 
spectra contain rich chemical information, the feasibility of the quan-
titative prediction of perilla ketone and isoegomaketone in PF was 
investigated. PLSR was employed to establish quantitative models, 
which were analyzed using multivariate calibration through a linear 
correlation between the independent variable X (actual concentration of 
volatile compounds based on GC–MS analysis) and the dependent var-
iable Y (spectral data from FT-NIR analysis). Eight different pre-
treatments (MSC, SNV, 1st Der, 2nd Der, MSC + 1st Der, MSC + 2nd Der, 

Fig. 5. The modeling training and testing process of KNN (A), DT (B), and RF (C) algorithms in three chemotypes (PK, PP-as, and PP-dm types).

D.-x. Yu et al.                                                                                                                                                                                                                                   Food Chemistry: X 24 (2024) 101881 

9 



SNV + 1st Der, and SNV + 2nd Der.) were compared and the main 
metrics of the different PLSR models are listed in Fig. 6A and Table 4S. 
Regarding perilla ketone, an optimal quantification model was devel-
oped after preprocessing MSC + 1st Der, with an RPD value of 3.76, R2

c 
and R2

p values of 0.9065 and 0.8965, and RMSEC and RMSEP values of 
0.2420 and 0.1320, respectively. When comparing the eight pre-
treatments, only 1st Der, MSC + 1st Der, and SNV + 1st Der showed 
better prediction in PLSR than that using the raw spectra, indicating that 
1st Der played an important role in correlating perilla ketone with 
spectral information of PF. For isoegomaketone, all pretreatments 
resulted in better predictions than those based on raw spectra. Inter-
estingly, the combination of MSC + 1st Der also exhibited the best 
prediction performance, with an RPD value of 2.59, R2

c and R2
p values of 

0.9389 and 0.8361, and RMSEC and RMSEP values of 0.1090 and 
0.1100, respectively. Generally, the 1st Der method can remove baseline 
drifts, separate overlapping NIR bands, and reduce the effects of noise, 
thereby improving the accuracy of prediction results (Nagy et al., 2022). 
After combining MSC with the 1st Der, the PLSR models achieved the 
best results, indicating that MSC further enhanced the utilization of 
spectral information by eliminating the interference from spectral light 
scatter and particle size (Zheng et al., 2023). The RPD value is a key 
parameter for evaluating the PLSR model, reflecting the overall pre-
dictive ability of the model. In this study, the RPD values in the two 
optimal PLSR models were > 2.5, indicating that the selected MSC + 1st 
Der method exhibited excellent content prediction performance (Zou 
et al., 2024). In addition, the R2

c and R2
p values were close to each other in 

both optimal PLSR models, demonstrating that the established models 
were neither underfitted nor overfitted (Chen et al., 2024). Overall, the 
spectral pretreatment using the MSC + 1st Der combination improved 

the performance of the PLSR model for the quantitative prediction of 
perilla ketone and isoegomaketone in PF.

3.3.2. Regression curves of the main components obtained using the PLSR 
model

The calibration models for the PF compounds were constructed using 
the selected optimal PLSR models. The quantitative regression curves in 
Fig. 6B (for perilla ketone) and Fig. 6C (for isoegomaketone) demon-
strate that the NIR spectra of the PF samples have a linear relationship 
with the content values of perilla ketone and isoegomaketone. Gener-
ally, the regression line represents the most desirable result in a quan-
titative model, and scatter points close to this line indicate that the 
model is excellent (Sun, Liu, et al., 2021). All the data points in the 
calibration and prediction sets are tightly clustered around the diagonal 
lines, indicating the excellent predictive ability of the models for the 
studied quality components, allowing for better practical applications 
(Tang et al., 2023). Currently, some reports exist on the rapid prediction 
of volatile compounds in various foods using FT-NIR and GC–MS tech-
niques, providing methodological references for the quality control of 
volatile components (Fan et al., 2023; Tahir et al., 2021). However, 
related studies on PF are lacking. When using FT-NIR combined with 
PLSR to rapidly predict volatile compounds in various foods, our 
research observed a similar trend (Elrasheid Tahir et al., 2023). The 
current findings confirmed that the PK chemotype can be clearly sepa-
rated, and the two main volatile compounds can be accurately and 
simultaneously predicted using FT-NIR spectroscopy.

Fig. 6. The main parameters of PLSR models for determination of perilla ketone and isoegomaketone based on different preprocessing methods (A); quantitative 
regression curves of perilla ketone (B) and isoegomaketone (C) in PK type by PLSR model.
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3.4. Summary

To the best of our knowledge, this is the first study to use FT-NIR for 
the rapid classification of different PF chemotypes. As a fast and 
nondestructive method, FT-NIR offers unique advantages for the char-
acterization of chemical information. Machine learning algorithms 
exhibited high chemotype discrimination performance. The quantitative 
regression models successfully predicted the contents of major PF 
components. This study achieved the initial discrimination of PF che-
motypes, providing a rapid quality evaluation method for PF and other 
aromatic foods or herbs from a novel perspective based on chemotype 
variations. However, because of the limited sample size, the current 
strategy focused only on a few chemotypes with high PF percentages, 
such as the PK and PP types. According to other reports, PF also contains 
chemotypes such as PA type (perillaldehyde), C type (citral), EK type 
(elsholtziaketone), PL type (perilla perillene), PT type (piperitenone), 
and SF type (shisofuran) (Ahmed & Tavaszi-Sarosi, 2019). In the future, 
it will be essential to collect more PF samples with different chemotypes 
for further analysis using our established method and to develop 
quantitative models for other major components. In addition, this 
strategy can be explored for chemotype classification and quality eval-
uation in other aromatic foods and herbs, such as mint, anise, and 
pepper.

4. Conclusion

Herein, an accurate and rapid strategy was used for the first time to 
classify and quantify different PF chemotypes using FT-NIR and GC–MS 
techniques combined with machine learning methods. The GC–MS re-
sults showed that the PF samples can be divided into PK, PP-as, and PP- 
dm chemotypes based on the main volatile compounds. The average 
perilla ketone and isoegomaketone contents in the PK type samples were 
0.7625 and 0.5000 mg/g, respectively. Chemometric analyses using 
PCA, PLS-DA, and OPLS-DA demonstrated that different PF chemotypes 
can be accurately distinguished using GC–MS data. The FT-NIR tech-
nique was introduced to obtain spectral information from different 
sources and enhance the efficiency of PF chemotype classification. The 
PLS-DA and OPLS-DA models successfully facilitated the initial division 
of different PF chemotypes based on spectral fingerprints. The machine 
learning algorithms, including KNN, DT, and RF, achieved better 
discrimination than traditional statistical analyses, with the RF classifier 
attaining the highest accuracies of 92.0 % and 96.0 % for three types and 
two types of PF chemotypes, respectively. Subsequently, the two main 
compounds, perilla ketone and isoegomaketone, in the PK type were 
successfully quantified using the PLSR model based on FT-NIR and 
GC–MS data, with RPD values of 3.76 and 2.59, respectively. The 
quantitative regression curves exhibit high predictive performance. In 
conclusion, the present study provided a novel, rapid, and accurate 
method for chemotype discrimination and quantitative analysis of PF 
based on NIR spectral information combined with chemometrics. In 
addition, this approach, which differed from other evaluation perspec-
tives, such as geographical origin and processing method, yielded 
satisfactory results based on the differences in PF chemotypes.
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