
1Scientific Reports | 6:20726 | DOI: 10.1038/srep20726

www.nature.com/scientificreports

A Trans-omics Mathematical 
Analysis Reveals Novel Functions of 
the Ornithine Metabolic Pathway in 
Cancer Stem Cells
Jun Koseki1,*, Hidetoshi Matsui2,*, Masamitsu Konno3,*, Naohiro Nishida4, 
Koichi Kawamoto3,4, Yoshihiro Kano3,4, Masaki Mori4, Yuichiro Doki4 & Hideshi Ishii1,3

Bioinformatics and computational modelling are expected to offer innovative approaches in human 
medical science. In the present study, we performed computational analyses and made predictions 
using transcriptome and metabolome datasets obtained from fluorescence-based visualisations of 
chemotherapy-resistant cancer stem cells (CSCs) in the human oesophagus. This approach revealed 
an uncharacterized role for the ornithine metabolic pathway in the survival of chemotherapy-resistant 
CSCs. The present study fastens this rationale for further characterisation that may lead to the 
discovery of innovative drugs against robust CSCs.

Recently, many transcriptome and metabolome analyses have been reported. Transcriptome analyses have been 
extensively used to investigate gene expression in individual cells. On the other hand, metabolome analyses have 
been used to identify changes in the biochemical behaviour of metabolites, such as amino acids, fatty acids and 
other organic substances. Initial efforts have been separately focused on the two analyses, mainly because of a 
lack of appropriate models or methods for analysis. However, it is clear that the strong correlation between the 
resulting datasets would be useful for predicting the biophysical and biochemical behaviours of cells. Accordingly, 
the development of mathematical models of the relationship between transcriptome and metabolome analyses is 
highly desirable.

In medical science, recent studies have suggested that the subpopulations of tumour-initiating cells, or can-
cer stem cells (CSCs), are responsible for the heterogeneity of tumours. This heterogeneity is involved in their 
refractoriness to chemoradiation therapy as well as their subsequent relapse1. In an analogy to somatic stem cells, 
CSCs reportedly survive in hypoxic areas. Hypoxic glycolysis refers to the production of lactate and to a lesser 
extent to the contribution of oxidative phosphorylation and the additional relevance of reactive oxygen species 
production in mitochondria2. Furthermore, recent studies have indicated that stimulation for the induction of 
the epithelial-to-mesenchymal transition results in the activation of the CSC property3,4, suggesting that the elu-
cidation of transcriptome and metabolome linkages may allow the precise prediction of the biological behaviours 
of CSCs.

We recently reported that a fluorescence-based vector with a degron motif originating in ornithine decarbox-
ylase (ODC) was useful for the visualisation of CSCs5–9. In these reports, the relationship between proteasome 
activity and ODC in oesophageal, cervical, colorectal and bone cancer was investigated. Previous studies by others 
and ourselves showed that although proteasome activity was not associated with the intensity of green fluorescent 
protein fused by the degron motif, cells sorted by fluorescence indeed showed high tumourigenicity and therapy 
resistance. These properties correspond to those of CSCs5–9, indicating that the degron vector system was useful 
for tracing CSCs and suggesting that cancer stemness may reflect intracellular natures other than only proteasome 
activity. We accordingly studied the combination of transcriptome and metabolome in degron-positive CSCs and 
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degron–negative non-CSCs. To this end, we developed novel technologies that combine the transcriptome and 
metabolome for identifying the events occurring in CSCs that support cell survival during exposure to therapy. 
We performed a bioinformatic and computational modelling study to link the transcriptome and metabolome 
for CSCs and ‘differentiated cancer cells’ (non-CSCs) and then compared these two results (Fig. 1). This approach 
allowed the identification of a novel function of the ornithine metabolic pathway as an important feature in the 
survival of chemotherapy-resistant CSCs.

Results
To identify the events occurring in CSCs in response to therapy, we performed a bioinformatic study of the 
metabolites and enzymes involved in polyamine metabolism. In our analysis, three independent moieties 
involved in polyamine metabolism were considered, as shown in Fig. 2. The first moiety focused attention on only 
the reactions of inflow to and outflow from putrescine (  Y Y Y Y;2 1 2 3). The second moiety focused on 
only the compounds around spermidine (  Y Y Y Y;3 2 3 4). The final moiety focused on the interconver-
sion of spermidine and spermine ( Y Y Y;4 3 4). We defined these three reaction moieties as the putrescine, 
spermidine and spermine moieties, respectively. Our analysis focused on the variability of the reaction coeffi-
cients over time after exposure to 5-fluorouracil (5-FU) or cisplatin (CDDP). Table 1 shows the coefficients 
obtained from fitting each reaction moiety in cells displaying high concentrations of ZsGreen-cODC (Zs +  ; 
CSCs) or low concentrations of ZsGreen-cODC (Zs− ; non-CSCs), as well as cross-validation (CV) errors. We 
considered that the CV errors that resulted from our parameter fitting were sufficiently small to be useful for 
qualitative understanding.

We first investigated transcription and metabolism involved in the polyamine metabolism pathway at the zero 
time point (T0). As shown in the supplemental Fig. 1, there was no difference between CSCs and non-CSCs in the 
amount of enzyme transcription. The metabolome analysis indicated that CSCs have higher putrescine and sper-
midine contents than non-CSCs, downstream cell populations, whereas ornithine was lower in non-CSCs, show-
ing that the flux of polyamine metabolism plays a role in biosynthesis in CSCs, compared with non-CSCs, at T0.

We show the changes in the coefficients over time as a line graph in Figs 3–5 (blue dashed line: Zs +  , brown 
dotted line: Zs− ), for the putrescine, spermidine and spermine moieties, respectively. These lines do not show 
interpolation between the time points. Positive values in these plots correspond to acceleration of the forward 
enzymatic reaction and negative values to that of the backward reaction.

In the putrescine moiety of non-CSCs (Zs− ), exposure to an anti-tumour agent accelerates the reaction from 
Y1 to Y 2. Despite increasing the concentration of Y 2, the reaction between Y 2 and Y 3 leads to a further increase in 
the concentration of Y 2 over time. For CSCs, the change in the ODC coefficients over time means that exposure 
to an anti-tumour agent led to the sudden acceleration of the backward reaction, although some recovery could 
be seen 72 h later. In addition, the reaction from Y 3 to Y 2 is promoted. This promotion means that CSCs struggled 
to maintain the concentration of Y1 during the rapid reverse reaction, but that non-CSCs became conducive to 
conversion of Y1 into Y 2.

With respect to the spermidine moiety, we propose that the changes in the coefficients over time show similar 
tendencies in CSCs and non-CSCs. In the reaction between Y 2 and Y 3, non-CSCs inactivated the reaction, 
whereas CSCs slowed it after promoting the reverse reaction. This behaviour means that the exposure to the 
anti-tumour agent maintains the amount of Y 2, with a low reverse reaction rate from Y 3 to Y 2 in both cells. In 
contrast, in the –Y Y3 4 reaction, we found a very interesting tendency upon exposure to the anti-tumour agent. 
The conversion changes rapidly to the reverse reaction (from Y 4 to Y 3) in differentiated cancer cells, whereas the 

Figure 1.  Schematic illustration of our analysis linking transcriptome and metabolome for cancer stem 
cells and differentiated cancer cells (non cancer stem cells). 
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changes show little response in CSCs. In other words, within the limitation of the spermidine moiety, although 
the polyamine metabolism reaction was controlled to maintain the concentration of putrescine in non-CSCs, the 
reaction toward putrescine was promoted in CSCs. Finally, the coefficient order of spermidine/spermine 
N1-acetyltransferase 2 (SAT2) is different from that of spermine synthase (SMS) at the spermine moiety. Our 
analysis may capture the feature of promoting the reaction from Y 4 to Y 3 in both CSCs and non-CSCs. Additional 
information about the coefficient order is presented in the Supplemental Fig. 2. We could find out that there are 
some enzyme governed and not contributed the direction of pathway flow in each reaction moiety. For example, 
in Spermidine moiety, SMS and SAT2 make a larger contribution to decision of direction of pathway flow. 
Meanwhile, SRM and SAT1 have less contribution.

Discussion
Considering a future application of reaction pathways whose detail of inflow and outflow are unknown, we have 
divided the reaction pathways into independent moieties. In our analysis, however, we should not compare the 
absolute values of coefficients between reaction moieties, because the coefficients of each moiety are estimated 
independently. Thus, in our analysis, it is essential to understand direction of pathway flow in each reaction moi-
ety. In view of the qualitative changes in the coefficients of each reaction moiety over time, the inflow to putrescine 
in non-CSCs after exposure to anti-tumour agent stands out, as its reaction rate slowed with time. In contrast, it 
appears that the polyamine reaction is controlled in such a way as to increase ornithine to a certain level in CSCs, 
although the general reaction variation is small compared with that of non-CSCs, as shown in Fig. 6a.

Cancer cells have higher levels of ornithine-derived polyamines than normal cells, and polyamines contribute 
to cell growth, survival and proliferation10. Thus, polyamine metabolism is strictly controlled in cancer cells under 
physiological conditions11. The present study showed that CSCs reduce their polyamine level when exposed to 
5-FU or CDDP. This reduction leads to the deceleration of the cell cycle. In contrast, non-CSCs increase their 
polyamine level when exposed to 5-FU or CDDP, leading to an acceleration of the cell cycle. 5-FU and CDDP are 
effective against cells with a high multiplication rate. It thus appears that a reduction in polyamines is an impor-
tant strategy of CSCs for resisting the effects of 5-FU or CDDP (Fig. 6b). Moreover, previous reports have sug-
gested that polyamine catabolic enzymes such as SAT1, SAT2, N1-acetylpolyamine oxidase and spermine oxidase 
(SMO) share high similarity in overall structure with the histone demethylase LSD1. The amino acid sequence 
of SMO, in particular, shares over 60% similarity with that of LSD112. This similarity suggests that polyamines 
inhibit LSD1, which act as an epigenetic regulator of histone demethylase13. The histone methylation level in gene 
promoter regions regulates the level of gene expression. For example, H3K4 me1 (monomethylated H3K4) marks 
gene enhancers, whereas H3K4 me3 (trimethylated H3K4) associates with active promoters of gene expression14. 
Many studies have indicated that LSD1 function has an important role in cancer. Cancer cells that highly express 
LSD1 contribute to increasing risk of cancer recurrence, suggesting that LSD1 promotes cancer survival15. For 

Figure 2.  The relationship between our simple reaction model for polyamine metabolism and associated 
enzymes, (X1) ODC1, (X2) SRM, (X3) SAT1, (X4) SMS and (X5) SAT2, as well as the structural formulas of 
(Y1) ornithine, (Y2) putrescine, (Y3) spermidine and (Y4) spermine. ODC, ornithine decarboxylase; SAT2, 
spermine N1-acetyltransferase 2; SMS, spermine synthase.
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this reason, it is thought that inhibition of LSD1 is a key phenomenon in the reactivation of silenced tumour sup-
pressor genes in cancer cells16. In our analysis, CSCs showed decreased polyamine levels during chemotherapy 
and resisted this therapy. These results suggest that polyamines inhibit LSD1 enzyme activity and change gene 
expression levels to influence cell survival. In this study, we showed that CSCs reduce polyamine levels to resist 
chemotherapy. In contrast, polyamines in non-CSCs are maintained at a high level. This high polyamine level 
may act to inhibit LSD1 activity and induce epigenetic changes that increase cell survival, as suggested in previous 
reports. The present study shows that a mathematical model connecting transcriptome to metabolome analysis 
is a powerful approach to understand the multiple features of biological pathways in the fields of cancer research 
and medical science.

Methods
Cell culture and sorting.  We purchased the human oesophageal cancer cell lines TE-4 and TE-8 from the 
Japanese Collection of Research Bioresources Cell Bank (Ibaraki, Japan). These cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine 
serum (FBS; Hyclone, Logan, UT, USA) and penicillin-streptomycin (Sigma-Aldrich) in an atmosphere of 5% 
CO2 at 37 °C. We used the retroviral vector pQCXIN-ZsGreen-cODC, which encodes the ZsGreen-cODC fluo-
rescent fusion protein6,7. The Platinum-A Retroviral Packaging Cell Line (Plat-A) was adopted. Plat-A was opti-
mized to produce high retroviral titers. We purchased the cells from Cell Biolabs (San Diego, CA, USA). These 
cells were cultured in DMEM supplemented with 10% FBS, 100 U/ml penicillin (Life Technologies, Gaithersburg, 
MD, USA), 1 μ g/ml promycin (Sigma-Aldrich) and 10 μ g/ml blasticidin (Sigma-Aldrich). To generate retro-
viruses, we transfected Plat-A cells with the retroviral vector described above using the FuGENE6 transfec-
tion reagent (Promega Corp., Madison, WI, USA). At 1 day after transfection, the medium was changed. One 
additional day later, the supernatant containing the retroviruses was collected. To induce cancer cell formation, 
we added this supernatant and 6 mg/ml polybrene (Sigma-Aldrich) to DMEM containing the cultured can-
cer cells. Cells with high ZsGreen-cODC (Zs +  ) expression and low ZsGreen-cODC (Zs− ) expression were 
separated after two rounds of FACS and defined as CSCs and non-CSCs, respectively. We washed these cells 

Time point (h)

0 24 72 CV error

Reaction moiety

  Putrescine

    Zs+ 

      ODC1 3.93E-04 − 5.87E− 05 4.53E-05

      SRM − 4.33E− 04 − 8.29E− 04 − 1.16E− 04 1.67E-09

      SAT1 − 6.59E− 06 1.16E-05 1.24E-04

    Zs− 

      ODC1 1.00E-05 1.89E-04 3.07E-04

      SRM − 3.22E− 05 − 4.02E− 04 − 6.73E− 04 3.78E-11

      SAT1 1.56E-04 5.47E-05 2.35E-05

  Spermidine

    Zs+ 

      SRM 1.69E-06 − 4.44E− 05 1.53E-05

      SAT2 1.15E-05 − 1.12E− 04 3.67E-07 8.84E-13

      SAT1 − 3.23E− 04 − 2.25E− 04 − 1.37E− 04

      SMS − 4.51E− 05 − 1.16E− 04 − 8.62E− 06

    Zs− 

      SRM 6.12E-05 2.48E-06 1.15E-05 1.67E-12

      SAT2 − 1.03E− 05 1.97E-03 1.12E-06

      SAT1 − 3.39E− 04 − 1.27E− 04 − 1.33E− 04

      SMS − 5.85E− 05 − 7.35E− 04 − 7.76E− 06

  Spermine

    Zs+ 

      SMS 1.95E-09 1.07E-05 9.49E-05 8.03E-15

      SAT2 − 6.13E− 03 − 4.50E− 03 − 5.04E− 04

    Zs− 

      SMS 5.13E-09 7.63E-05 6.43E-10 2.79E-15

      SAT2 − 4.85E− 03 − 4.57E− 03 − 3.95E− 03

Table 1.  The variability of coefficients for each reaction moiety over time after exposure of Zs + cells 
(cancer stem calls) and Zs− cells (non cancer stem cells) to anti-tumour agents. CV errors are shown for 
each cell. CV, cross-validation; ODC, ornithine decarboxylase; SAT2, spermine N1-acetyltransferase 2; SMS, 
spermine synthase.
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with phosphate-buffered saline, trypsinized them by adding 0.25% trypsin–ethylenediaminetetraacetic acid  
(Life Technologies) to the medium and sorted them with a BD FACSAria II cell sorter system (Becton-Dickinson, 
Franklin Lakes, NJ, USA).

Figure 3.  (a) The change over time of the coefficients of variability for ODC1, SRM and SAT1 after exposure 
of Zs +  and Zs−  cells to anti-tumour agents and (b) the difference in reaction flow via these metabolites for the 
putrescine moiety. ODC, ornithine decarboxylase; SAT2, spermine N1-acetyltransferase 2.

Figure 4.  (a) The change over time of the coefficients of variability for SRM, SAT2, SAT1 and SMS after 
exposure of Zs +  and Zs−  cells to anti-tumour agents and (b) the difference in reaction flow via these 
metabolites for the spermidine moiety. SAT2, spermine N1-acetyltransferase 2; SMS, spermine synthase.
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Metabolome analysis.  We performed non-targeted metabolome analysis using dishes of cultured cells  
(106 cells/sample). Targeted cells were first washed twice with 5% mannitol solution and treated with 800 μ l 
of methanol. The extracted cells were then treated with 550 μ l of internal standards (H3304-1002, Human 
Metabolome Technologies, Inc., Tsuruoka, Japan) in Milli-Q water. After they were left to rest for 30 s, they were 
centrifuged at 2,300 g for 5 min at 4 °C. Additionally, to remove extra proteins, 800 μ l of the upper aqueous layer 
was centrifugally filtered with a Millipore 5 kDa cutoff filter at 9,100 g for120 min at 4 °C. To obtain peak infor-
mation, including m/z and migration time (MT) from the CE-TOFMS measurement, as well as the peak areas, 
we recorded the peaks using the automatic integration software package MasterHand (Keio University, Tsuruoka, 
Japan). After removal of the peaks corresponding to isotopomers, adduct ions and some product ions of known 
metabolites, the remaining peaks derived from putative metabolites were identified via the HMT metabolite 
database based on their MT and m/z values determined by MS. We set the tolerance ranges for peak annotation 
at ±  0.5 min for MT and ±  10 parts per million for m/z. The peak areas were normalized against the areas of the 
internal standard. Furthermore, the relative areas were renormalized by the amount of target sample. We per-
formed hierarchical cluster analyses and principal component analyses using the in-house software packages 
PeakStat and SampleStat, respectively.

Microarray analysis.  The extracted total RNA (500 ng) was labelled with cyanine-3 using the Low Input 
Quick Amp Labeling Kit (Agilent) after checking to ensure sufficient quality for microRNA microarray experi-
ments. The cRNA yield and dye incorporation were checked using a NANODrop ND-2000 Spectrophotometer. 
These labelled RNAs were hybridized with the Agilent Mouse GE 8 ×  60 K Microarray in a rotating Agilent 
hybridisation oven for 17 h at 65 °C. After the hybridisation, the microarrays were washed at room temperature 
for 1 min with GE Wash Buffer 1 (Agilent, Tokyo, Japan), and then washed for 1 min with GE Wash buffer 2 
(Agilent) at 37 °C. Finally, they were dried immediately by brief centrifugation. The fluorescence signals were 
determined using an Agilent DNA Microarray Scanner (G2565CA) after stringent washes with GE Wash Buffer 
1 and 2 (Agilent) for 1 min each. The fluorescence signals were analysed with Feature Extraction Software 10.10 
(Agilent).

Mathematical modelling.  Suppose we have n sets of observations ( )( ), ( ) ,x t y tij m il m  where xij are enzymes, 
yil are metabolites, i is an index for each subject and ,j l are indices of enzymes and metabolites, respectively. 
Furthermore, they are repeatedly measured at different time points tm  ( = , , )m 1 2 3 , where 
= , = , =t t t0 24 and 721 2 3 . An illustration of the relationship between metabolites and enzymes (transcripts) 

involved in polyamine metabolism is shown in Fig. 2. In this study, we adopted a simple reaction model with only 
five enzymes: (X1), ODC1; (X2), spermidine synthase; (X3), SAT1; (X 4), SMS and (X5), SAT2 and four metabo-
lites: (Y1), ornithine; (Y 2), putrescine; (Y 3 ), spermidine and (Y 4), spermine. When we focus on putrescine, the 
linear model that represents the relationship between enzymes and metabolites has the following form:

+ ( ) ( ) = ( ) ( ) + ( ) ( ) ( )k t y t k t y t k t y t{1 } 1i m i m i m i m i m i m2 2 1 1 3 3

for = , , ,m 1 2 3  where β( ) = ( )k t x tij m jm ij m  with reaction efficiencies β jm  and indices for enzymes 
∈ = , ,j J {1 2 3}. The problem is to estimate β ,jm  which correspond to the coefficient parameters in regression 

models.
We consider estimating parameters using the penalized least-squares method17; that is, minimizing the follow-

ing penalized squared criterion with respect to β jm:

Figure 5.  (a) The change over time of the coefficients of variability for SMS and SAT2 after exposure of 
Zs +  and Zs−  cells to anti-tumour agents and (b) the difference of reaction flow via these metabolites for the 
spermine moiety. SAT2, spermine N1-acetyltransferase 2; SMS, spermine synthase.
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∑ ∑β β β λ β( ) − ( ) + ( ) − ( ) + ,
( )= =

y t z t z t z t{ }
2i

n

i m m i m m i m m i m
j

jm
1

2 1 1 2 2 3 3
2

1

3
2

where ( ) = ( ) ( )z t x t y tij m ij m ij m  and λ ( > )0  is a regularisation parameter that controls the degree of penaliza-
tion. Advantages of the penalized least squares method are that it provides more stable estimators than the ordi-
nary least squares method and that it can construct statistical models applicable to the prediction of data to be 
obtained in the future. Then, we have estimators of coefficient vectors β β β β= ( , , )m m m m

T
1 2 3  (where T  denotes 

the transpose of a matrix or a vector) as

β λ= ( + ) , ( )
−

 yZ Z I Z 3m m
T

m m
T

m
1

where = ( , …, )z zZm m nm
T

1  with = ( ( ), − ( ), ( ))z z t z t z tim i m i m i m
T

1 2 3 , = ( ( ), …, ( ))y y t y tm m n m
T

12 2 , and I  
denotes an identity matrix.

Because the estimated model is strongly affected by the value of the regularisation parameter λ, we selected its 
value using leave-one-out CV18. The value of λ is selected as follows. First, we assign a preliminary candidate value 
to λ. Next, we obtain the estimator of the coefficient parameter βm and thus obtain a value for the CV. We repeat 
this sequence for different values of λ and then obtain the corresponding values of the CV. Finally, we select the λ 
that minimizes the CV and then adopt the corresponding model as the optimal one. For details of such tuning 
parameter selection, see Green and Silverman19. In the above process of CV, it is expected that some parameters 
influenced by experimental error are excluded.

These coefficient parameters are fitted to our metabolome and transcriptome analysis at the points represent-
ing 0, 24 and 72 h after exposure to the anti-tumour agent 5-FU or CDDP. In our analysis, the data of 5-FU and 
CDDP are treated as equivalent sampling points to fit the best parameters for post-exposure points. Given that 

Figure 6.  (a) A graphical image of reaction responses after exposure to anti-tumour agents in cancer stem cells 
(left) and non cancer stem cells (right). (b) A schematic diagram of the relationship between the total amount of 
polyamine and cancer cell survivability.
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the one metabolome and two transcriptome analyses were performed with each anti-tumour agent at each time 
point, we actually used four sets of experimental data. Under ordinary circumstances, we might have to choose 
the varying-coefficient model of Hastie and Tibshirani20, because the above regression model uses only the data 
for one time point each and does not leverage the data for the other time points. However, experimental data 
could be obtained at only a limited number of time points owing to the high cost. Thus, using this small amount of 
time point data might lead to an incorrect result with the varying-coefficient model, because the parameters have 
high flexibility. The simplicity of the reaction model of polyamine metabolism shown in Fig. 2 might also increase 
the possibility of obtaining an erroneous answer. In fact, we found that the error value using the leave-one-out CV 
was larger than the error for a linear model. For these reasons, we selected the regression model. If we focus on 
other metabolites, we construct the model in a similar way by reference to Fig. 2.
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