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Abstract: Within the family Solanaceae, Withania is a small genus belonging to the Solanoideae
subfamily. Here, we report the de novo assembled chloroplast genome sequences of W. coagulans,
W. adpressa, and W. riebeckii. The length of these genomes ranged from 154,162 to 154,364 base pairs
(bp). These genomes contained a pair of inverted repeats (IRa and IRb) ranging from 25,029 to
25,071 bp that were separated by a large single-copy (LSC) region of 85,635–85,765 bp and a small
single-copy (SSC) region of 18,457–18,469 bp. We analyzed the structural organization, gene content
and order, guanine-cytosine content, codon usage, RNA-editing sites, microsatellites, oligonucleotide
and tandem repeats, and substitutions of Withania plastomes, which revealed high similarities among
the species. Comparative analysis among the Withania species also highlighted 10 divergent hotspots
that could potentially be used for molecular marker development, phylogenetic analysis, and species
identification. Furthermore, our analyses showed that even three mutational hotspots (rps4-trnT,
trnM-atpE, and rps15) were sufficient to discriminate the Withania species included in current study.

Keywords: ashwagandha; chloroplast genome; indels; medicinal plants; mutational hotspots;
phylogenomics; Solanaceae; substitutions; Withania

1. Introduction

The globally distributed megadiverse Solanaceae family includes 93 genera and 2700 species [1–3].
The genus Withania Pauq., belonging to the subfamily Solanoideae, contains 10–20 species [1]. Among
the worldwide list of Withania species, ashwagandha or winter cherry (W. somnifera (L.) Dunal) and
paneer booti or ashutosh booti (W. coagulans (Stocks) Dunal) are considered highly important due to
their therapeutic potential. Withania species are pivotal in the Ayurvedic medicine system in Southeast
Asia, and W. somnifera has been used for medicinal purposes for around 3000 years [4,5]. Many studies
of Withania have described various pharmacological properties of these species, (e.g., anti-inflammatory,
anticancer, antidepressant, neuroprotective, and hepatoprotective) [6–9]. The ubiquity of such herbal
products has expanded globally in recent decades. The worldwide market for medicinal plants is
anticipated to reach 5 trillion USD by 2050, with Europe driving the market [10]. Although medicinal
plants are outstanding sources of innovative drug development, assessing their pharmacological
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properties and effectiveness requires comprehensive approaches. Ashwagandha (Withania species)
products show irregularities in quality through the herbal medicinal value chain affecting their impact
and safety [11]. The quality of these manufactured herbal products is globally highly variable, and
consistent analytical approaches are required to identify and monitor their quality along the value chain.
The herbal medicine industry has considered DNA barcoding as a method that can be consistently
applied in quality control over the manufactured products and to identify medicinal materials to
protect consumers from dishonest suppliers. In addition, this method can also be used to identify toxic
herbal materials in life-threatening situations, prevent poisoning, and improve control procedures of
herbal drug substances [12].

The structure and composition of the chloroplast genome (or plastome) can be utilized to generate
molecular markers that can be used in DNA barcoding [13]. Chloroplasts are important and universal
organelles that are essential for photosynthesis. Chloroplasts are also associated with the synthesis of
vitamins, pigments, fatty acids, and amino acids through various biochemical pathways [14]. Among
many plant species, plastomes are 75–250 kilobases (kb) in size [15] and contain 120 genes, which
include protein-encoding, ribosomal RNA (rRNA), and transfer RNA (tRNA) genes [16]. The structure
of angiosperm plastomes varies from circular to linear even within the cells of the same individual [17].
Circular-formed plastomes show a typically quadripartite in structure, with two inverted repeats (IRs)
separating the large single-copy (LSC) and a small single-copy (SSC) regions [15,18,19]. Plastomes
show frequent variation in the number of tandem repeats, insertions and deletions (indels), single
nucleotide polymorphism (SNPs), and as well as other rearrangements including translocations and
inversion [19–21]. Plastomes have been termed as “super barcodes”, due to their comparatively
conserved organization, gene content, adequate level of nucleotide substitution in protein-encoding
genes, and uniparental inheritance, which make them excellent sources of phylogenetic reconstruction
and species identification at diverse taxonomic levels [22–25]. Plastome-sequencing data can also be
useful for agricultural trait improvement [26], transplastomics [27,28], population genetics [29], and
conservation of species facing extinction [30].

Here, we aimed to assemble and compare the complete chloroplast genome sequences of
W. coagulans, W. adpressa Coss., and W. riebeckii Schweinf. ex Balf.f. in addition to the previously
reported W. somnifera genome [24]. We also sought to analyze the phylogenetic relationship of the genus
among the Solanaceae family and to analyze differences in the organization of Withania plastomes such
as repeats, indels, and substitutions, and to identify mutational hotspots for future DNA barcoding.

2. Materials and Methods

2.1. Genome Assembly and Annotation

Fresh green leaves of W. coagulans were obtained from Mianwali, Pakistan (32.5839◦ N 71.5370◦ E).
The leaf segments were washed in 70% ethanol and total genomic DNA extraction was carried out
according to the CTAB (cetyltrimethylammonium bromide) method of Lu et al. [31]. DNA quality and
concentration were assessed by Colibri spectrometer Nanodrop (Titertek-Berthold, Berthold Detection
Systems GmbH, Pforzheim, Germany) and 1% agarose gel electrophoresis. Genome sequencing was
carried out by the Beijing Institute of Genomics using the Illumina HiSeq PE150 platform (Illumina
Inc., San Diego, CA, USA). Furthermore, the Illumina sequence data of W. adpressa (5 Gb) and
W. riebeckii (5 Gb) were acquired from the sequence read archive (SRA) deposited under accession
numbers SRR8718119 and SRR8718120. The raw sequencing read quality was verified with the FastQC
tool [32]. We used Velvet 1.2.10 [33] with k-mer sizes of 31, 41, 51, and 71 to initially assemble the
large sequence contigs from raw paired-end reads. These contigs were then combined to produce
complete chloroplast genomes though de novo assembly carried out with Geneious R8.1 (Biomatters
Ltd., Auckland, New Zealand) [34]. The junction sites between LSC, SSC, and IR were determined for
these novel assembled plastomes. Annotations of these genomes were performed, using GeSeq [35]
and CPGAVAS2 [36]. The results were compared, inspected checking the start/stop codons manually.
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Additionally, tRNA genes were identified using tRNAscan-SE version 2.0 under default parameters [37]
and ARAGORN version 1.2.38 [38]. CPGAVAS2 [36] and Clico FS [39] were used to draw circular
maps of the genomes. The average coverage depths of the Withania species plastomes were determined
by mapping the reads to the de novo assembled plastome through the Burrows–Wheeler aligner
(BWA) [40] and visualizing in the Tablet [41]. The novel annotated plastomes were deposited in NCBI
under the following accession numbers: W. coagulans (MN216390), W. adpressa (BK010847), and W.
riebeckii (BK010849). The plastome of W. coagulans was also deposited in the GWH database of the
National Genomics Data Center [42] (accession number GWHACBF00000000).

2.2. Comparative Chloroplast Genome Analysis

All de novo chloroplast genomes were aligned with multiple alignment using fast Fourier
transform (MAFFT) 7.309 [43], using default parameters. Protein-encoding genes, intergenic spacer
(IGS) regions, and introns were extracted to calculate the average number of nucleotide differences
per site or nucleotide diversity (π) with a 100 bp window size as implemented in DnaSP v6 [44].
The substitution, transition (Ts), and transversion (Tv) rates were resolved from the MAFFT alignment,
using W. somnifera as a reference. Each structural element, including the LSC, SSC, and IR, was
aligned individually to analyze SNPs and indel polymorphisms with Geneious and DnaSP, respectively.
The junction sites of the IRs and their border positions were compared using all Withania species and
six additional Solanaceae outgroup species (Table S9), using the default setting of the IRscope [45].
The intergeneric comparison was carried out to gain insight to differences and syntenies that may exist
between Withania and other Solanaceae species. Circoletto [46] was used to compare structural features
of Withania chloroplast genomes using blastn search (e-value of <1 × 10−10) to create a Circos output.

The predictive RNA editor for plants-chloroplast genes (PREP-cp) was used to predict putative
RNA editing sites using default settings [47], while codon usage and amino-acid frequencies were
analyzed in Geneious R8.1. The ratios of synonymous (Ks) and non-synonymous (Ka) substitutions for
each extracted protein-encoding gene were calculated with DnaSP for all Withania, using W. somnifera
as reference. The data were interpreted as: Ka/Ks > 1, Ka/Ks = 1, Ka/Ks < 1, representing positive,
neutral, and purifying selection, respectively. Microsatellites in Withania plastomes were detected with
the microsatellite-web (MISA) [48], using a minimal repeat number of 7 for mononucleotide simple
sequence repeats (SSRs), 4 for dinucleotide SSRs, and 3 for tri-, tetra-, penta-, and hexanucleotide SSRs.
REPuter [49] was also used to locate forward (F), reverse (R), palindromic (P), and complementary (C)
repeats with the following parameters: min. repeat size 30 bp, Hamming distance 3, min. similarity
percentage of two repeat copies 90%, and max. computed repeats 500. A subsequent search for repeats
was also carried out with tandem repeat finder [50] using default parameters.

2.3. Phylogenomic Analysis

We included all available Withania plastome sequences in our analysis and added further Solanaceae
plastomes (Organelle Genome Resources of NCBI, accessed on 21 January 2020) from closely related
groups of Physaleae and additional taxonomic groups from the so-called ‘x = 12 clade’. This group
encompasses species of the traditional subfamily Solanoideae, Nicotiana L. and the Australian endemic
tribe Anthocercideae belonging to Nicotianoideae. This strongly supported group is united with
the cytological synapomorphy of chromosome numbers based on 12 pairs [1]. We used Petunia ×
atkinsiana (Sweet) D. Don ex W.H. Baxter (Syn.: Petunia × hybrida Vilm.) as an outgroup to root
our tree, since this was the only available complete chloroplast genome sequence outside the x = 12
clade. For phylogenetic analysis, we removed one of the IR regions (IRa), and subsequently excised
all protein-encoding genes from the plastomes. The reading frames were manually verified during
extraction by checking the start and stop codons. We discarded accD, ycf 1, and ycf 15 from our final
alignment, because these genes were highly variable in size. The trans-spliced rps12 was also not
included in the phylogenetic alignment together with sequence of the inf A pseudogene. The nucleotide
sequences of 74 protein-coding genes were aligned with MAFFT (default setting) via the Geneious shell.
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IQ-TREE [51] was used to determine the best-fitting models for each partition of concatenated matrix
using the TESTMERGEONLY and AICc (Akaike information criterion corrected for small sample
sizes) options in the built-in ModelFinder [52]. The maximum likelihood (ML) tree search was carried
out using the ultrafast bootstrap approximation (UFBoot; [53]) with 1000 replicates. UFBoot reduces
computing time and provides an efficient alternative to standard bootstrap [53]. Branch supports were
also assessed using the SH-like approximate likelihood ratio test (SH-aLRT), while final phylogenetic
trees were edited using TreeDyn [54,55].

For further analyses we divided the dataset into protein-coding gene subsets according to the
heuristic searches carried out with Partition Finder v1.1.1 [56] and default settings using Bayesian
information criterion (BIC). Intron regions were regarded as distinct subsets. Partitioned Bayesian
phylogenetic analyses were carried out with MrBayes v.3.2.3 [57]. jModelTest [58] was used with
default settings to infer fitting substitution models (see Table S10). One cold and three heated Markov
chains were run parallel with 2 × 106 generations sampling every 100th tree per generation, with
unlinked parameters across partitions. Branch length and topology parameters were set unlinked.
Convergence was checked using the average standard deviation of split frequencies (ASDFs; <0.01)
was used to measure convergence of the runs. A majority-rule consensus tree was constructed from
the runs with a 25% burn-in removal.

3. Results

3.1. Organization and Characteristics of Withania Plastomes

Our comparative analysis revealed that Withania species have similar plastome structures (Figure 1
and Table 1). The length of the assembled plastome varied between 154,162 and 154,364 bp. The average
coverage depth of the assembled plastomes of W. coagulans, W. adpressa, and W. riebeckii was 573×,
566×, and 590×, respectively. The total guanosine-cytosine (GC) content of the de novo assembled
Withania plastomes was 37.7%, as was the previously sequenced species.

The IRs showed a higher GC content (43.2%) compared to the large- (35.7%) and small-single
copy regions (31.8%), which could have been due to the occurrence of rRNA genes containing GC-rich
regions [19,59–61]. The plastomes of the de novo assembled Withania species had 132 genes from
which 18 were represented in duplication in the inverted repeats (Table 2, Figure 2). All Withania
plastomes contained 86 protein-encoding, 37 tRNA, and 8 rRNA genes. The IR regions contained 18
duplicated genes and out of these 7 were protein-encoding, 4 were rRNA, and 7 were tRNA genes.
The clpP and ycf 3 genes had two introns in their nucleotide sequence, while rps16, atpF, rpoC1, petB,
petD, rpl16, ndhA, rpl2, and ndhB had only one. The 5′ end exon of the trans-spliced gene rps12 was
found in the LSC and the 3′ end exons were located in the IR. The GC content was the highest among
tRNAs (53%) and rRNAs (55.3%). Hydrophobic amino acids were abundant, while the acidic amino
acids were present in the least amount in plastomes of the genus Withania. These amino acids were
adenine-thymine (AT)-rich sequences in all species (Figure 3A). The analysis of codon usage and amino
acids frequencies indicated leucine (Leu) as the most frequent and cysteine (Cys) as a rare amino acid
in Withania plastomes (Figure 3B). The codon usage also revealed a shift towards A/T at the third codon
position (Table S1).
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green arcs, while red arcs represent forward repeats. 

Figure 1. Structural comparison of Withania plastomes showing a high level of synteny and the lack of
large rearrangements. The start and end points of the sequences are marked by green and orange blocks.
The colored blocks outside the sequences refer to the score/max bit core ration, with green ≤ 0.50,
orange ≤ 0.75, and red > 0.75. Blue blocks and chords represent the inverted repeats (IRs).

Table 1. Summary of Withania chloroplast genome features.

Characteristics W. somnifera W. coagulans W. adpressa W. riebeckii

Size (base pair; bp) 154,386 154,196 154,364 154,162

LSC length (bp) 85,688 85,659 85,765 85,635

SSC length (bp) 18,464 18,467 18,457 18,469

IR length (bp) 25,117 25,035 25,071 25,029

Number of genes 132 132 132 132

Protein-coding genes 86 86 86 86

tRNA genes 37 37 37 37

rRNA genes 8 8 8 8

Duplicate genes 18 18 18 18

GC content

Total (%) 37.7% 37.7% 37.7% 37.7%

LSC (%) 35.7% 35.7% 35.7% 35.7%

SSC (%) 31.8% 31.8% 31.8% 31.8%

IR (%) 43.2% 43.2% 43.2% 43.2%

CDS (%) 38.2% 38.2% 38.2% 38.2%

rRNA (%) 55.3% 55.3% 55.3% 55.3%

tRNA (%) 53% 52.9% 53% 53%

All gene (%) 40% 39.8% 39.8% 39.8%

Protein coding part (CDS) (%bp) 50.9% 51.0% 51.0% 51.0%

All gene (%bp) 72.06% 72.11% 72.07% 72.13%

Non-coding region (%bp) 27.94% 27.89% 27.93% 27.87%
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Table 2. Genes and their functional categories in Withania chloroplast genomes.

Category for Gene Group of Gene Name of Gene

Photosynthesis-Related
Genes

Photosystem I psaA psaB psaC psaI psaJ

Photosystem II

psbA PsbB psbC psbD psbE

psbF psbH psbI psbJ psbK

psbL psbM psbN

Cytochrome
b/f complex

psbT psbZ petN petA petL

petG petD * petB *

ATP synthase atpI atpH atpA atpF * atpE

atpB

Assembly/stability
of photosystem I ycf 3 ** ycf 4

NADPH
dehydrogenase

ndhB *,a ndhH ndhA * ndhI ndhG

ndhJ ndhE ndhF ndhC ndhK

ndhD

Rubisco rbcL

Transcription
and Translation
Related Genes

RNA Genes

Transcription
Small subunit
of ribosome

rpoA rpoC2 rpoC1 * rpoB rps16 *

rps7 a rps15 rps19 rps3 rps8

rps14 rps11 rps12 a,* rps18 rps4

rps2

Large subunit
of ribosome

rpl2 a,* rpl23 a, rpl32 rpl22 rpl14

rpl33 rpl36 rpl20 rpl16 *

Ribosomal RNA rrn16 a rrn4.5 a rrn5 a rrn23 a

Transfer RNA

trnV-GAC a trnI-CAU * trnA-UGC a,* trnN-GUU a trnP-UGG

trnW-CCA trnV-UAC * trnL-UAA * trnF-GAA trnR-ACG a

trnT-UGU trnG-UCC a,* trnT-GGU trnR-UCU trnE-UUC

trnY-GUA trnD-GUC trnC-GCA trnS-GCU trnH-GUG

trnK-UUU trnQ-UUG trnf M-CAU trnG-GCC trnS-UGA

trnS-GGA trnF-GAA trnM-CAU trnL-CAA *

trnI-GAU *,a trnL-UAG

Other Genes

RNA processing matK

Carbon
metabolism cemA

Fatty acid
synthesis accD

Proteolysis clpP **

Component of TIC
complex ycf 1 a

Hypothetical
proteins ycf 2 a Ycf 15

* Gene with one intron, ** gene with two introns, a gene with two copies, same genes in all Withania species.

3.2. Divergence Hotspots in Withania

Our comparison showed that all Withania genomes had similar nucleotide compositions in all
structural (LSC, SSC, and IR) and coding regions, which extended even to IGSs (Table S2). The number
of substitutions ranged between 25 and 116, while substitution types were shared among species
(Table 3). A/G and C/T SNPs occurred frequently among the genomes (Table 3), while the ratio of
Ts and Tv in the plastomes ranged from 1.04 to 1.25 in the LSC and between 0.5 and 1.5 in the SSC;
the ratio varied from 1.3 to 2 in the IR region (Table S3). In general, Ts were more frequent in Withania,
consistent with observations in other plant species [61,62]. Indels were frequent in the LSC region and
their number ranged from 32 to 46. The IRs contained only a few indels (Table 4). This may have
been due to the observation that IR sequences evolve under concerted evolution compared to LSC and
SSC regions that contain more substitutions [63]. When all positions with single- or multinucleotide
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variations as SNPs were considered, 207 SNPs were identified, which corresponds to a mean SNP
frequency of 0.2070 SNPs/kb in Withania species. Indels showed a mean frequency of 0.116/kb.

Table 3. Substitution and their distribution in Withania plastomes, compared to the W. somnifera
as reference.

Types W. coagulans W. adpressa W. riebeckii

A/G 4 19 28

C/T 10 15 30

A/C 3 11 18

C/G 2 2 3

G/T 4 14 25

A/T 2 5 12

Total 25 66 116

LSC 20 43 79

SSC 5 20 30

IR 0 3 7

Table 4. Insertions and deletions among Withania species compared to the W. somnifera reference genome.

W. coagulans Indel Length (bp) Indel Average Length

LSC 27 133 4.926

SSC 3 61 20.33

IR 2 82 41.00

W. adpressa Indel Length (bp) Indel Average Length

LSC 27 143 5.296

SSC 6 11 1.833

IR 5 68 13.60

W. riebeckii Indel Length (bp) Indel Average Length

LSC 34 213 5.917

SSC 6 103 17.16

IR 4 106 26.50

The indels and SNP mutational events in the plastome showed uneven distributions and clustered
as “hotspots” [64,65]. These fast evolving regions are ideally suited for DNA barcoding [66]. The IGS
were more polymorphic (average π = 0.0027) than protein-coding regions (π = 0.0011) and introns
(average π = 0.0015). Among the Withania species, the values ranged from 0.0003 (psaB) to 0.0119
(ndhl-ndhA region; Figure 4). We selected the 10 most polymorphic regions for further investigation
based on the analysis of mutation rates of the complete chloroplast genome sequences (Table 5). From
the selected regions, nine were IGSs, and one was a protein-coding gene (rps15). We assessed the
efficacy of these regions to discriminate among the four species of Withania and found that three regions
(rps4-trnT, trnM-atpE, and rps15) provided enough information for successful barcoding.

We also investigated the Ks and Ka substitutions and their ratio (Ka/Ks; Table S4). We selected 77
protein-encoding genes for further analysis and observed that 69 genes had Ks = 0 and 58 had Ka = 0,
while 72 genes had both Ks and Ka = 0. Of the protein-encoding genes, four (accD, ycf 2, ycf 1, and ndhF)
had Ka/Ks ratios > 1. ycf 1 and psbC showed Ka/Ks ratios > 0–1 for W. riebeckii, ndhF for W. coagulans,
and rps15 for W. adpressa and accD, ycf 2 showed Ka/Ks > 0 for W. adpressa and W. riebeckii, and rpoC2 for
W. coagulans and W. riebeckii. The low divergence of most chloroplast genes showed signs of purifying
selection to conserve the sequence and function of proteins related to photosynthesis.
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Table 5. Mutational hotspots among Withania species.

S. No Region Nucleotide Diversity T. No’s of Mutation Region Length

1 ndhI-ndhA 0.0119 2 84

2 trnY-GUA-trnE-UUC 0.0085 1 59

3 rpl14-rpl16 0.0080 2 125

4 rps19-rpl2 0.0071 1 70

5 rps15 0.0064 3 261

6 trnM-CAU-atpE 0.0053 2 221

7 rps4-trnT-UGU 0.0051 3 364

8 trnQ-UUG-psbK 0.0048 3 346

9 ndhH-rps15 0.0045 1 111

10 trnG-GCC-trnR-UCU 0.0041 1 164

3.3. Repeat Structure and Analyses

Chloroplast repeat sequences are important sources of variation for evolutionary studies, plant
breeding, and construction of linkage maps [67–69]. We performed a microsatellite analysis that
revealed shared microsatellite loci ranging from 376 (W. coagulans) to 379 (W. adpressa). Poly-A and
T SSR motifs were frequent in Withania chloroplast genome sequences, while AT/TA dinucleotide
stretches were also highly abundant. The mononucleotide motifs occurred in 7–17-unit repeats, while
dinucleotide repeats had a frequent 4–5-units, whereas other types of SSRs were present mainly in
3–5-unit repeats. Most SSRs occurred in the LSC, followed by IR and SSC (Figure 5) (Table S5). REPuter
was also employed to locate further tandem repeats in all Withania species. A total of 66 oligonucleotide
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repeats were found among Withania species. The F and P repeats were present in large numbers in
all species. The oligonucleotide repeats were variable in size (30–60 bp) and a large fraction of the
repeats was located in the LSC and existed in IGS regions, followed by gene, intron, and coding DNA
sequence (CDS) regions (Figure 6; Table S7). The number of tandem repeats varied from 22 to 25 bp
among Withania species (Figure 7; Table S6).
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repeats in intergenic spacer regions (IGS), genes, coding DNA sequences (CDS), and introns and their
proportionate occurrence.
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3.4. Comparative Plastomics and Inverted Repeat Boundaries

The plastome of land plants has a conserved quadripartite structure while variation frequently
occurs in a form of expansion and contraction of the junction sites that could rarely even lead to the
loss of the entire IR regions [70,71]. The size of each structural element of the plastome (LSC, SSC,
and IR) shows variation at the junction sites JL (LSC/IR) and JS (IR/SSC). Studying these boundaries
among plant linages could broaden our knowledge about chloroplast genome evolution and speciation
processes [72]. Syntenies among the junction sites could be conserved between species and could
explain relationships among them [73]. To investigate such events, we compared the JL (LSC/IR) and
JS (IR/SSC) junction sites of Withania plastomes (Figure 8). The resemblance at junctions revealed the
close resemblance among the Withania species. The rps19 gene was found at the junction site of JLB
(LSC/IRb), and a portion of this gene (8–59 bp) was copied in the IRa in all Withania genomes. The ndhF
gene was entirely present in the SSC region in W. somnifera and W. adpressa, but in W. coagulans (5 bp)
and W. riebeckii (3 bp) it was located in the IRb region.

3.5. Putative RNA-Editing Sites

RNA editing is the molecular processes that can alter the sequence of the transcribed RNA by
insertion, deletion, or nucleotide substitution [46]. RNA editing aids in creating transcripts and
maintaining protein diversity [74], thus several sites are conserved in the plastome of angiosperms [75].
To examine the RNA editing in Withania species, we predicted putative sites in the plastomes using
PREP-cp. This revealed 37 putative sites in 15 genes of W. somnifera, while 35, 39, and 37 editing sites
were found in 13 genes of W. coagulans and in 14 genes of W. adpressa and W. riebeckii, respectively.
The gene clpP has editing sites only in W. somnifera and ccsA only in W. adpressa. Among Withania
species ndhB (9), ndhD (7), and rpoB (5) had the highest number of RNA-editing sites. All species
had high levels of conversion for serine (Ser) to leucine (Leu; 60%, 53.8%, and 59.4%, respectively),
followed by proline (Pro) to Leu (14.28%, 17.94%, and 16.21%, respectively), and Ser to phenylalanine
(Phe; 8.57%, 10.2%, and 10.8%, respectively). Of the putative RNA-editing sites detected, 33 (94.2%),
34 (87.1%), and 33 (89.1%) codons were substituted on the second nucleotide and two (5.71%), five
(12.8%), and four (10.81%) codons were substituted in the first nucleotide in W. coagulans, W. adpressa,
and W. riebeckii, respectively. Many amino acids were converted from Ser to Leu helping to form
hydrophobic amino acids, e.g., valine (Val), Leu, and Phe (Table S8).
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3.6. Phylogenetic Analysis

We performed maximum-likelihood (ML) and Bayesian analysis for phylogenetic reconstruction for
19 Solanaceae species, based on selected protein-coding gene sequences extracted from whole-plastome
sequences. Based on a 69,582-bp alignment, our tree was reconstructed and resolved identical topologies
for both methods and a phylogenetic tree were supported by high bootstrap values and posterior
probabilities (Figure 9). The genus Withania was represented by W. adpressa, native to North Africa,
Morocco, and Algeria, W. coagulans from the eastern distribution area, W. riebeckii native to the island
of Socotra, Jemen, and finally, the widespread W. somnifera. Our phylogenetic analysis with limited
taxonomic sampling resolved Withania as a monophyletic of the genus. However, further sampling is
needed to investigate the relationship of the allied genera especially from Athenaea Sendtn., Aureliana
Sendtn., and Mellissia Hook. f. not included in our analysis, which were shown to be closely related to
Withania [76]. Our results were consistent with previous findings based on plastid intergenic atpB-rbcL
spacer [77], ndhF and trnLF [1], or whole plastome sequences [18].
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4. Discussion

Chloroplast DNA (cpDNA) is frequently used in plant phylogenetics at various levels (i.e.,
generic level and above) [19,66,78]. It has also been used in Solanaceae systematics to infer family level
phylogenetic relationships and to identify major clades and dispersal events [79]. Thus, we characterized,
annotated, and analyzed the plastome of Withania species, which was further used in phylogenetic
inference. Withania species belong to a rather diverse and widely distributed Withaninae clade within
the so-called physaloid group. Species of the genus Withania are morphologically similar: the flowers
are found in lateral clusters (fascicles) lacking a supporting inflorescence stem (peduncle). The flower
petals (corollas) are bell or elongated cup-shaped, sometimes urn-shaped, circular and flattened (rotate),
or trumpet-shaped (salverform), while the filaments often form nectar grooves with lateral attachments.
The Withaninae clade consists of approximately seven small often monotypic genera mostly found
in the Old World, e.g., Tubocapsicum (Wettst.) Makino, Mellissia, Aureliana, or Discopodium Hochst.
D’Arcy [80] considered Withania to be one of the truly Old-World genera, while Symon [81] regarded
it as a distinctive African Gondwanan element. Withania has a center of distribution around Spain,
NW Africa extending to the Canary Islands, while another is located in India, the southern region
of the Arabian Peninsula, and the Horn of Africa. The phylogenetic relationships within the genus
are poorly known, and the biology, chromosome numbers, and the exact number of species are also
lacking. Chromosome counts showed that most species of Withania are polyploids with 2n = 2x =
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48 [82], derived from the x = 12 haploid chromosome number typical for the majority of Solanaceae
species. In addition to the currently accepted Withania taxa, there are 35 unresolved botanical names
that need further investigation to clarify the taxonomy of the genus.

In the Hepper’s treatment [83], Withania consisted of 10 species, which were extended by
Hunziker [84] with the addition of nine mesophytes from the genera Mellissia Hook. and Physaliastrum
Makino. These additions extended the geographical range of the genus from the Canary Islands in
the west, through Asia to China and Japan in the east. Symon [81] also emphasized the similarity
of Mellissia (a critically endangered endemic of St Helena) to Withania but retained them as distinct
genera. In contrast, Hunziker [84] included Mellissia within Withania and molecular results support
this placement [1]. There is no consensus on the positions of the small clades related to Withania, while
its closest relatives are also debated. In our analysis, Withania formed a clade together with Physalis,
similarly to the findings of Deanna et al. [82], although this branching is supported by only weak
bootstrap values.

Plastome sequences could be used as tools to further elucidate species boundaries and investigate
the phylogenetic relationships among the small clades of Withaninae and resolve the taxonomic debate
over the placement of Melissia and other monotypic genera. For such barcoding studies our results
could provide valuable reference genomes for assemblies. The hotspot regions described in our study
could be useful in such phylogenetic or even population genetic investigations. It was previously
demonstrated that identifying highly variable regions by comparative plastomics could provide reveal
loci that could be used in DNA barcoding [85–87]. Such divergent hotspots in the plastomes can be
applied for DNA barcoding at the generic level [29,88–90]. Thus, the set of 10 polymorphic regions
identified among Withania in our study could be applied for DNA barcoding. Moreover, similar to the
aforementioned studies, our identified mutational hotspots showed high discrimination properties
and from the 10 mutational hotspots, three regions were found to be sufficient for the identification of
the four Withania species included in our study.

We analyzed Ks substitutions and Ka substitutions of protein-coding genes and recorded greater
Ks substitutions relative to the Ka substations. Such observations are essential markers in evolution
for defining slow- and fast-evolving genes [91]. The Ka/Ks ratio also informs us about the selection
pressure on these genes. When the Ka/Ks value is minimal, it represents purifying selection, while
values similar to it or equal to 1 represent neutral evolution, and values greater than 1 denote positive
selection [85]. Most plastid genes showed a minimal Ka/Ks ratio (<1), demonstrating that purifying
selection is acting over these genes, due to functional constraints of the plastome. However, atpB, ndhD,
ndhF, rpoA, rpoC1, rps2, and rps12 showed greater Ka/Ks values (>1), possibly indicating selective
pressure acting over these genes that was previously proposed in other groups [92–95]. Our sampling
in the Withania clade was limited to explore the biological causes of the elevated Ka/Ks ratios observed
in cases involving these genes. Here, we suggest that the following set of genes could be the principal
candidates in investigations of these environmental interactions and their effects on plastid genes. Such
investigations should include a nearly complete phylogenetic sampling of Withania and consider the
effects of arbitrary variations in Ka and Ks values leading to false positive inferences and values higher
than 1. These shortcoming can be bypassed by complete sampling and additional tests of selective
pressure also stressed here for future analyses.

5. Conclusions

It has been shown that DNA barcoding can fail in complicated groups [96]. Solanaceae includes
many species complexes with tangled taxonomy such examples of species groups can be found in
potatoes and its wild relatives, e.g., Solanum brevicaule complex [97], or the eggplant and its wild relatives
(S. melongena complex [98]) but in other clades of the family for example in the genus Petunia [99] or
closely related Physalis [100]. In these complicated groups well known plastid barcode regions (e.g.,
trnH-psbA, matK) could lack enough polymorphism and thus could fail to provide species-specific
information necessary for differentiation [96]. It has been shown that plastid genome based “super
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barcoding” could overcome these difficulties and could differentiate species in difficult taxonomic
groups. This approach has been successfully employed in the S. melongena complex to trace the
ancestors of cultivated eggplant and differentiate closely related wild species [98]. Here, we compared
the complete plastome sequences of four Withania species and investigated if plastid genomes based
“super barcoding” could be applied among closely related ashwagandha species. The structure of these
genomes showed synteny with a previously reported organization of Solanaceae species. We identified
sequence divergence hotspots and located repeat sequences and indels in the plastomes of Withania
species. These regions may constitute a useful means to develop suitable molecular markers for species
identification and DNA barcoding of ashwagandha medicinal products. It is hoped that our study will
aid the development of DNA barcoding markers to clarify the taxonomic identity of Withania species
in medicinal plant production. Such plastome-based “super barcoding” could be repeatable, reliable,
and sensitive enough to distinguish look-alike species of ashwagandha.
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