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This paper presents an expert diagnosis system based on cloud computing. It classifies a user’s fitness level based on supervised
machine learning techniques. This system is able to learn and make customized diagnoses according to the user’s physiological
data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented
to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving
average of past observations. The experimental results show that Naı̈ve Bayes is the best classifier with the highest accuracy
(90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign
corresponding computation resources to ensure the quality of service.

1. Introduction

The aging society is a continually growing and accelerating
trend [1]. According to a world population report from the
United Nations [2], there were approximately 810 million
persons aged 60 years or over in the world in 2012, and
this number will increase to more than 2 billion by 2050.
Moreover, the United Nations estimates that 40% of older
people live alone or only with a spouse. Among this older
population, frailty, a status of multiple systems declining,
producing negative outcomes (e.g., metabolic syndrome)
[3–7], is a prevalent phenomenon. To help older people
to counter this problem and have a healthier life, numer-
ous studies have been proposed. In these studies, physical
activity has been validated as one of the most effective
and economical methods against aging [8–10]. It not only
helps older people against metabolic syndrome and mood
disturbance [11] but also enhances central nervous system
health and cognitive functions [12]. It is obvious that physical
activity has positive effects on health. However, moderate
activity requires specialized knowledge from experts; without

such knowledge, it will not enhance health status and may
even cause injury. Now, along with the trend of the aging
society, the fast-growing demands of physical activity can
be expected, so expert resources to satisfy these needs are
critical. Because expert resources are very limited and life is
priceless [13], more cost-effective and flexible methods are
required.

In recent years, cloud computing has been a hot topic.
Cloud computing delivers reliable and high-quality service to
users on a scalable and elastic infrastructure; it can be a set
of heterogeneous computing units organized together, but it
works like a homogenous single machine. Cloud computing
systems can be easily scaled up and down, so it provides
huge potential for solving complex problems and ensures
quality of service (QoS). In supervised machine learning
[14], a computing system automatically learns classification
logics from data that are manually collected by experts, and
when the learning is finished, the system runs intelligently,
like an expert, and thus can be treated as an expert system.
A traditional expert system is built on a single machine,
and it is no longer able to handle the enormous number
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of requests from the Internet. However, when an expert
system is combined with cloud computing, it can deal with
the massive demands from the Internet. In this paper, we
aim to provide an expert system on a cloud infrastructure.
This system provides fitness status diagnoses based on a
supervised machine learning technique, and it can also
automatically scale up and down based on a resource alloca-
tion algorithm for improving the QoS. The remainder of this
paper is organised as follows: Section 2 presents related work,
Section 3 describes the proposed system, Section 4 shows the
experimental results, and Section 5 draws conclusions.

2. Related Work

Physical activity is a critical factor in healthcare, and it has
direct relevance for mortality. According to a report from
the World Health Organization (WHO) in 2008, insufficient
physical activity is among the top four risk factors for
mortality. About 3.2 million deaths are caused by insufficient
physical activity, so it is recommended that people participate
in 150 minutes of moderate physical activity a week. More-
over, in regions with the most insufficient physical activity,
such as the Americas and the Eastern Mediterranean region,
almost 50% of women are insufficiently active, while the
prevalence for men is 40% [15]. However, a more detailed
survey conducted by Kokkinos in 2012 [16] indicates that,
although the threshold for a significant reduction inmortality
risk appears to be at a caloric expenditure of approximately
1,000Kcal per week, this activity must be customised to meet
individual needs. It also indicates that the risk of death during
physical activity for a person with a sedentary lifestyle is
2.5 to 30 times higher than that of a person with habits of
regular physical activity. Given this supportive evidence, we
can see the urgency of providing customised and intelligent
healthcare services for users to monitor their physical status
and thus to enhance it for a better life.

2.1. Current Expert Systems in Healthcare. Expert systems in
the medical domain have been continually developed since
1970. De Dombal et al. proposed a computer-aided system,
which performs diagnosis of acute abdominal pain [17].
In 1970, the computation capacity of computers was quite
limited, so the nature of the model in expert systems was
näıve [18], but today, with the huge advance in technology,
more sophisticated and advanced approaches are proposed.

Seto et al. [19] presented a phone-based expert system
for telemonitoring in 2012; this system detects heart failure
according to a set of predefined rules that are constructed and
iteratively modified by heart failure clinicians. The process of
defining rules is time consuming and not computationally
flexible. However, this system can be distributed by smart
phone, and it can be widespread in a client-server mode;
when a rule set on the server side is modified, every client can
get the latest version through the Internet, so it still maintains
some efficiency. Ongenae et al. proposed another rule-based
expert system [20], but in contrast to the research of Seto
et al., the rule set of the system is automatically generated

from the patient’s physiological data through a decision
tree algorithm [21]. They proposed a system framework and
implemented a specific use case, using a decision tree to
detect systemic inflammatory response syndrome (SIRS). In
this system, clinicians no longer need to define static rules
nor modify them; they only need to identify whether the
patient has SIRS or not. Next, the physiological data of the
patient can be collected through an electronic sensor, and a
decision tree [22] can be applied to the physiological data
for rule learning. This system is more flexible and more
cost effective, which reduces the intervention of clinical
experts. In the research of Lo et al. [23], more complex
methods were used for daily diet recommendations. They
used micro sensors combined with RFID (radio-frequency
identification) to collect the daily vital data of a user, and
these vital data are examined by an expert and corresponding
diet suggestions are recommended for health management.
Then, several techniques, TF-IDF (term frequency-inverse
document frequency) [24], K nearest neighbor (KNN) [25],
latent semantic analysis (LSA) [26], medical ontology [23],
and the curative food stemming mechanism [23], are applied
for supervised learning. It is obvious that the trend of the
system design is moving toward self-learning based upon
data that are systematically collected with little intervention
of experts. However, we rarely see a self-learning system
proposed on the topic of physical fitness. Although Acikkar
et al. [27] proposed an expert system based on support
vector machine (SVM) [28] for detecting the fitness level
of the athlete; the data they used to train the SVM [28]
are inconvenient to measure for ordinary people (e.g., the
speed of the user and the grade of the user). Furthermore,
to the best of our knowledge, an expert system built on a
cloud computing scale is also rare. Current expert systems in
healthcare are still built on a single machine in a client-server
mode [29]. However, with the continually growing healthcare
requests, we believe that this mode cannot cover the future
demands and challenges.

2.2. Motivation. The motivation of this work comes from
the urgent need for physical fitness diagnoses for improving
the health status of older people, and current state-of-the-
art expert systems do not address this issue. Moreover, to
help older people diagnose their health status, we cannot rely
on conventional method that applies a universal standard
for measuring fitness level [30]. The diagnosis must be
customised according to the elder person’s personal features,
such as gender, age, and fitness level. In the research of Belza
et al. [31], personal instructors were involved; they can give
more appropriate adjustments during fitness measurement.
However, this approach is expensive and cannot be deployed
in a cost-effective way (e.g., without the intervention of an
expert). This led us to build an automatic expert fitness
diagnosis system that has not been proposed before. This
systemmakes customised diagnosed methods for elders, and
it is deployed on the cloud computing scale. It can automat-
ically allocate computational resources to maximise the QoS
(quality of service) to the client while saving computation
resources on the server side.



The Scientific World Journal 3

iFit

Elder community Elastic computing IaaS infrastructure

Expert fitness advisor system

Physiological raw data repository

Expert cloud

Expert fitness diagnosis web service

XML/JSON communication

Autoscaling monitor

Figure 1: Overview of expert cloud architecture.

3. Proposed System

3.1. Overview. Figure 1 illustrates the overview of the pro-
posed cloud architecture. The iFit [32] is a user-friendly
platform for fitness promotion in the elder community. It
measures the user’s degree of fitness through a game-like
activity. The expert cloud is a prototype cloud system that
provides expert fitness diagnoses through a Web service.
This Web service receives physiological data and returns the
corresponding fitness level. The Web service is deployed on
an elastic cloud computing IaaS (infrastructure as a service)
infrastructure, and the autoscaling mechanism dynamically
supplies computing resources according to external requests
from the Internet. The expert fitness diagnosis system is
the core of the expert cloud, and it makes inferences based
on a knowledge database. This system is built by machine
learning techniques, and the analytical results of user fitness
level are learned from a physiological raw data repository.
The repository stores the general physiological data of users
without identity information. iFit communicates with the
expert cloud via an XML/JSON form. When users measure
their fitness on iFit, it sends the users’ physiological data to
the expert cloud, the expert cloud returns the corresponding
fitness level to iFit, and then iFit gives fitness suggestions to
the user.

3.2. iFit. iFit [32] is designed as a platform for elders to
monitor and enhance their physical fitness (see Figure 2). It
includes a monitor, two bases, a cushion, a handrail, and
a stand pad. The system architecture of iFit contains three
modules, and their relationships are illustrated in Figure 3.
When an elder is using iFit, the elder will first use an RFID
card that represents the elder’s identity to log in to the system,
and then the member management module will search for
the corresponding identify information and display it on the
screen. This module will also provide instructions to guide
the user during the process. Next, a game-like evaluation
module provides four game-playing scenarios, stealing eggs,

Figure 2:The iFit for physical fitness measurement and promotion.

making dumplings, jet skiing, and parachuting, which test
flexibility, grip strength, balance, and reaction time, respec-
tively. The four games are designed to motivate elders to
engage in the test. When the tests are finished, the results
will be saved into a physiological database. Finally, a personal
health management module will fetch the physiological data
and combine them with the elder’s personal features, sex,
age, and BMI. These data will be sent to the expert fitness
diagnosisWeb service for a fitness diagnosis, and the analysed
fitness level of the elder will be sent back and displayed on the
screen. The fitness levels are classified as strong, moderate,
and weak.They are used to represent the level of health of the
elder’s flexibility, grip strength, balance, and reaction time.
According to the fitness levels of each test, corresponding
sport suggestions will be also displayed on the screen.

The difference between the iFit in this work and previous
work [32] is that the previous work classified the fitness level
of an elder according to a comparison with the performance
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Figure 3: The system architecture of iFit.

of another group of elders of the same age. However, this scale
is too general, so it fails to capture differences in age, BMI,
and sex. To design a universal standard accounting for these
features, voluminous efforts are required. Thus, an expert
system based on machine learning is provided to solve this
problem; the personal features of elders will be incorporated
during fitness level classification so more accurate fitness
levels can be achieved.

3.3. Expert Fitness Diagnosis System Construction. The pro-
cess of building the expert fitness diagnosis system is illus-
trated in Figure 4. Expert fitness diagnosis is an automatic
classification system. It includes a set of classifiers. In the
learning phase, iFit extracts a user’s raw fitness data and stores
them in the physiological information database. These data
will be uploaded to the physiological raw data repository
on the cloud before classifier learning. We investigate three
classification techniques, KNN [33], Näıve Bayes [18], and
discriminate analysis [34]. In preprocessing, the data will be
normalised into a form that the classification techniques can
process. Then, after classifier learning is finished, a classifier
will be built and stored. In the online phase, iFit extracts the
physiological data from the user and sends it to the classifier
through JSON communication.The classifier will classify the
fitness level of the user and return the result to the user.

Table 1: Descriptions of features.

Feature Description
Gender The gender of the user (male: 1, female: 0)
Age The age of the user (years)
Weight The weight of the user (kg)
Body mass index The BMI of the user
Flexibility The flexibility of the user tested by iFit
Reaction time The reaction time of the user tested by iFit
Grip strength The grip power of the user tested by iFit
Balance The balance of the user tested by iFit

3.3.1. Data Preprocessing and Classifier Learning. The pre-
processing task normalises the raw data of the user into an
instance that consists of a set of features; these features are
described in Table 1. For a 65-year-old female with a weight
of 50 kgs and a BMI value of 25, when she is using iFit, her
flexibility, reaction time, grip strength, and balance will be
tested and stored. Then the preprocessing will normalise the
data into a sequence of feature values as follows: instancei =
[0, 25, 50, 25, 29.4, 501, 12.2, 5.86]. The last four values tested
by iFit are not intuitively interpretable, but these data can be
automatically processed by classifier learning algorithms.
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Next, when preprocessing is completed, the raw data will
be converted into instances. Matlab is used to analyse the
performance of KNN,Näıve Bayes, and discriminate analysis.
However, since Matlab cannot be fully integrated with Java,
Weka [22], which is fullywritten in Java, is applied to build the
classifiers. In Weka, all instances share the same data format,
attribute-relation file format (ARFF), and various algorithms
can be applied to them to train a classifier. When the training
is over, the classifier is stored and deployed on a Tomcat Web
application server. A JSP (JavaServer Pages)Web page is built
as an interface to receive a JSON (JavaScript object notation)
request posted by iFit and return the classification result.

3.4. Autoscaling Mechanism. In a cloud computing system,
computational resources can be dynamically allocated. How-
ever, to determine how many computational resources are
needed, a detailed analysis is necessary. If the allocated
resources are greater than required, it wastes electricity
and produces unnecessary carbon dioxide. If the allocated
resources are less than required, it degrades the quality of ser-
vice. Hence, this section presents an algorithm based on the
Poisson distribution that predicts the required computational
capacity according to the number of past requests from the
Web service.

Let a period of time be divided into 𝑛 intervals and let
𝑡
𝑖
represent an arbitrary time interval. In 𝑡

𝑖
, there are several

classification requests from the Internet, and their number
is denoted by 𝑄

𝑖
. In a cloud computing system, there are

a number of running computational units in 𝑡
𝑖
; these units

are denoted by 𝑈. We assume that each unit has an equal

computational capacity that can process 𝐶 requests, so the
total computation capacity in 𝑡

𝑖
is 𝑈 × 𝐶, where 𝑈 × 𝐶 ≥ 𝑄

𝑖
.

In 𝑡
𝑖
, the required computational capacity in 𝑡

𝑖+1
is predicted

based on the Poisson distribution. The probability density
function of the Poisson distribution is expressed as follows:

𝑃 (𝑋 = 𝑘) =

𝜆
𝑖

𝑘
𝑒
−𝜆𝑖

𝑘!

, (1)

where𝑋 represents the number of requests and 𝜆
𝑖
represents

the average number of requests calculated at 𝑡
𝑖
. Equation

(1) calculates the probability of 𝑘 requests generated from
the Internet. To calculate 𝜆 more precisely, we apply an
exponential moving average, described as follows:

𝜆
𝑖
= 𝛼 × 𝑄

𝑖
+ (1 − 𝛼) × 𝜆𝑖−1

, (2)

𝛼 =

2

𝑤 + 1

, (3)

where 𝛼 ranges from 0 to 1. Equation (2) calculates 𝜆
𝑖

according to𝑄
𝑖
and the previous 𝜆

𝑖−1
, and 𝛼 is used to control

the relative weights of𝑄
𝑖
and 𝜆

𝑖−1
. A higher 𝛼 value indicates

a lower contribution from 𝜆
𝑖−1

and a higher contribution
from 𝑄

𝑖
. 𝛼 is calculated by (3) and 𝑤 denotes time period;

a higher value of 𝑤 indicates a lower value of 𝛼. To predict
the required computation capacity at 𝑡

𝑖+1
, we need to define

some parameters: (a) 𝐼 denotes the maximum number of
computational units which can be increased or decreased
from the current running units𝑈; (b) 𝑇ℎ𝑟𝑒

𝑖
and 𝑇ℎ𝑟𝑒

𝑑
range

from 0 to 1, and they represent the threshold for increasing
and decreasing computational units.



6 The Scientific World Journal

Input: 𝑄
𝑖
, 𝑈, 𝐶, 𝑤, 𝐼, Thre

𝑖
, Thre

𝑑

Output: Predicted computational capacity in 𝑡
𝑖+1

Method:
(1) Calculate the 𝜆

𝑖
in (2)

(2) Set 𝑖 ← 1
(3)while 𝑖 ≤ 𝐼
(4) if 𝑃 (𝑋 > (𝑈 + 𝑖) × 𝐶) ≥Thre

𝑖
//Calculated by (1)

(5) 𝑈 ← 𝑈 + 𝑖

(6) else if 𝑃 (𝑋 < (𝑈 − 𝑖) × 𝐶) ≥Thre
𝑑

//Calculated by (1)
(7) 𝑈 ← 𝑈 − 𝑖

(8) 𝑖 ← 𝑖 + 1
(9) End
(10) return 𝑈 × 𝐶

Algorithm 1: Elastic allocation.

In Algorithm 1, Step 1 calculates 𝜆
𝑖
given the requested

data in the past 𝑄
𝑖
. Steps 2 to 10 are an iterative process. In

each iteration, the probability of the need to increase 𝑖 units
and decrease 𝑖 units will be estimated. If the probability of
increasing the units is higher than the threshold 𝑇ℎ𝑟𝑒

𝑖
, the

computational units will be increased. If the probability of
decreasing the units is higher than the threshold 𝑇ℎ𝑟𝑒

𝑑
, the

computational units will be decreased. If both probabilities
are lower than their thresholds, the running units 𝑈 are
unchanged.

4. Experimental Results

4.1. Data Generation. To collect the physiological data from
users, we recruited 85 adults aged 55 to 85 years old, 36
males and 49 females, from the Chang Gung Health and
Culture Village in Taiwan. First, the elders were asked to
log in to iFit and use it to test their grip strength, balance,
flexibility, and reaction time. Second, a professional trainer
classified the result of each test into the strong, moderate,
and weak categories according to his knowledge. Finally, the
fitness level given by the trainer and the physiological data
collected from iFit are combined and treated as training data
for classifier evaluation.

4.2. Experimental Setup. The expert fitness diagnosis system
is built upon a cloud platform that consists of five server
workstations. The five workstations share the same hardware
standard: CPU E31270 V2, 3.5 GHz, 8GB memory, and
the Windows Server 2003 operating system. One of the
workstations serves as a master node with an autoscaling
mechanism, and the other workstations are treated as slave
nodes. The expert fitness diagnosis Web service is deployed
on a Tomcat Web server, and all workstations hold the same
Web service.

4.3. Performance Metrics. Precision, recalled from 𝐹1 [35], is
used to evaluate the classifier in this paper. The measures are
shown in Table 2, with the definitions shown below:

Table 2: Evaluation measures.

Measure Description

Precision
TP
𝑐

TP
𝑐
+ FP
𝑐

Recall
TP
𝑐

FP
𝑐
+ FN
𝑐

𝐹1

2 × Precision × Recall
Precision + Recall

𝐶: the total number of categories,
𝑐: a category,
TPc: the number of users correctly classified while the
fitness level is 𝑐,
FPc: the number of users incorrectly classified while
the fitness level is 𝑐,
FNc: the number of users belonging to fitness level 𝑐
but incorrectly classified.

The mean absolute percentage error (MAPE) [36] is
used to evaluate the performance of the elastic allocation
algorithm. The equation is described as follows:

1

𝑛

𝑛

∑

𝑡=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐴
𝑡
− 𝐹
𝑡

𝐴
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∗ 100, (4)

where𝐴
𝑡
represents the actual value,𝐹

𝑡
denotes the predicted

value, and 𝑛 is the total number of observations. If the elastic
allocation algorithm works well, the MAPE will be very close
to zero; otherwise, the value of MAPE will be very large.

4.4. Classifier Performance. The performance of classifiers is
tested by K-fold cross-validation, and the average 𝐹1 of each
trial is selected to represent the total performance.The results
are presented in Table 3.

Näıve Bayes has the best accuracy among other methods.
The performance of discriminate analysis is lower than that
of Näıve Bayes but much higher than that of KNN. KNN
has the worst performance. This shows that, when trying to
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Figure 5: The simulation results of a linear pattern.
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Figure 6: The simulation results of a logarithmic growth pattern.

Table 3: Classification performance (average 𝐹1 of 4-fold cross-
validation).

Flexibility Balance Grip
strength

Reaction
time

KNN 0.70 0.88 0.82 0.34
Näıve Bayes 0.87 0.95 0.97 0.84
Discriminate
analysis 0.82 0.84 0.86 0.71

classify the fitness level of an elder, it cannot make decisions
according to records of similar individuals. According to
the experimental results, the expert fitness diagnosis system
should include four Naı̈ve Bayes classifiers. However, if
a more accurate technique is found, say SVM, it can be
combinedwithNäıve Bayes or replace it if better performance
can be obtained.

4.5. Autoscaling Mechanism Performance. To estimate the
performance of elastic allocation algorithm, we start from a
simulation approach.The patterns include linear, logarithmic
growth, repetitive, and combined (linear and repetitive)
patterns. They are used to simulate the number of requests
from the Internet.Themaximum number of requests is set at
15,000, the minimum number of requests is set at 0, and 𝐶 is
set to 100.We assume that there are 150 machines running on
the cloud infrastructure.The initial value of𝑈 is set at 1.𝑇ℎ𝑟𝑒

𝑖

and 𝑇ℎ𝑟𝑒
𝑑
are set at 0.2. The total number of time intervals is

Table 4: The MAPE values of simulation results.

Pattern MAPE
Linear 2.68%
Logarithmic growth 1.10%
Repetitive 3.73%
Combined 9.19%

set at 1,000. The simulated results are presented in Figures 5,
6, 7, and 8, and the performance is described in Table 4.

The simulation results demonstrate that the elastic alloca-
tion algorithm is able to capture the trend of actual requests
from the Internet and provide accurate computation capacity.
InTable 4, 2.68%additional computation capacity is provided
in the linear pattern and 1.1% for the logarithmic pattern.The
combined pattern is the hardest pattern to predict; around
10% additional computation capacity is provided.

Next, we focus on a more realistic experiment. The
repetitive pattern is used and simulated on our cloud plat-
form, which consists of five computers. To save time, we
selected time intervals ranging from 75 to 100 in Figure 7
for the experiment. 𝐶 is set to 1,000, so each computer is
set to handle 1,000 requests. We wanted to test whether the
elastic allocation algorithm could effectively allocate the five
computers. First, the total running time for processing all the
requests was estimated.Then we assigned a different number
of computers to process the requests simultaneously and to
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Figure 7: The simulation results of a repetitive pattern.
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Figure 8: The simulation results of a combined pattern.

Table 5: The performance of multiple computers running simulta-
neously.

Number of assigned
computers

Total running
time

Average number of
assigned computers in
each time interval

1 743,870ms 1
2 443,644ms 2
3 421,508ms 3
4 362,589ms 4
5 316,873ms 5

test whether the total running time could be reduced. The
results are presented in Table 5.

In Table 5, it is obvious that the more computers we
assigned, the faster running time could be obtained. When
five computers are always assigned for processing requests,
the total running time is the shortest. However, the loading
is not always large enough to utilise five computers on the
cloud. The computation capacity should be allocated when it
is necessary.The elastic allocation algorithm is applied here to
run the same task, and the results are presented in Table 6.

Table 6 shows that elastic allocation algorithm can intel-
ligently allocate the computers; the average number of allo-
cated computers is 2.9, but the running time is close to the
running time of five computers working simultaneously.

Table 6: The performance of the elastic allocation algorithm.

Elastic allocation
mechanism

Total running
time

Average number of
assigned computers in
each time interval

Elastic allocation
algorithm 328,885ms 2.9

5. Conclusion

This paper presents a cloud-based expert fitness diagnosis
system; it measures a user’s fitness level based on iFit with
a combination of machine learning techniques. Discriminate
analysis, Näıve Bayes, and KNN are utilised to build this sys-
tem. This system classifies the user’s fitness level into strong,
moderate, and weak, and then iFit can give corresponding
sport suggestions to the user. To improve the processing
time of requests, this work presents an elastic allocation
algorithm to allocate computation resources automatically.
The experimental results show that Näıve Bayes has the
highest classification accuracy and that the elastic allocation
algorithm is able to capture the trend of requests in several
patterns. It dynamically increases computation capacitywhen
the loading is high and decreases it when the loading is
low. Thus, this system is elastic enough to cover numerous
requests from the Internet while providing high precision and
a customised fitness diagnosis.
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