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Abstract Microglia continuously monitor synapses, but active synaptic remodeling by microglia

in mature healthy brains is rarely directly observed. We performed targeted photoablation of single

synapses in mature transgenic mice expressing fluorescent labels in neurons and microglia. The

photodamage focally increased the duration of microglia-neuron contacts, and dramatically

exacerbated both the turnover of dendritic spines and presynaptic boutons as well as the

generation of new filopodia originating from spine heads or boutons. The results of microglia

depletion confirmed that elevated spine turnover and the generation of presynaptic filopodia are

microglia-dependent processes.

Introduction
Microglia are highly motile cells that regularly survey their environment within the central nervous

system and are responsible for immune defence in the brain (Nimmerjahn et al., 2005). Activation

of microglia in response to infection or during ischemia, stroke and CNS trauma results in a release

of different inflammatory signaling mediators (Davies et al., 2019; Greenhalgh et al., 2020) and

can be associated with synaptic elimination by microglia (Brown and Neher, 2014; Wake et al.,

2009).

Also, non-activated microglia in the healthy mouse brain can interact with synapses

(Davalos et al., 2005; Wake et al., 2009) and thus play a critical role in neural circuit remodeling

and brain plasticity during the development of the brain (Akiyoshi et al., 2018; Miyamoto et al.,

2016; Paolicelli et al., 2011; Weinhard et al., 2018). At this stage, microglia employ complement-

dependent mechanisms to eliminate synapses (Schafer et al., 2012; Stevens et al., 2007). In mature

brains, microglia constantly make brief direct contacts with pre- and postsynaptic elements

(Akiyoshi et al., 2018; Nimmerjahn et al., 2005; Reshef et al., 2017; Wake et al., 2009). The fre-

quency of contacts is increased during synaptic plasticity at postnatal day P30 (Pfeiffer et al., 2016).

The interaction between microglia and neurons has been demonstrated to contribute to synaptic

modulation during motor learning (P30 and P60) (Parkhurst et al., 2013), sensory plasticity (P30)

(Tremblay et al., 2010), forgetting of remote memories (P70–P84) (Wang et al., 2020), and chronic

stress-related synaptic remodeling (P60-120) (Milior et al., 2016).

However, the direct observation of structural plasticity caused by resting microglial contact with

synapses in the healthy adult brain has been hampered due to the infrequency of sporadic structural
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synaptic alterations at this stage (Grutzendler et al., 2002; Holtmaat et al., 2006). Therefore, we

developed an approach to evaluate the role of microglia in synaptic remodeling by transiently

attracting microglial processes to synapses in a temporo-spatially controlled manner using a laser-

induced focal injury. This is an acute injury model that while subtle is likely to involve a combination

of injury-specific and more general mechanisms shared by homeostatic/synaptic activity-driven

microglia-synapse interactions.

We used two-photon microscopy to visualize the structural dynamics of microglia and their inter-

actions with dendritic spines and axonal boutons in 16 adult (3–4 months old at the beginning of

imaging) Cx3cr1Cre/Tomato x GFPM Thy-1 male mice, which expressed red fluorescent protein (tdTo-

mato) in all microglia cells and enhanced green fluorescent protein (EGFP) in a subset of cortical

pyramidal neurons (Figure 1A). The retrosplenial cortex (RSC) was chosen for imaging as an area

crucial for spatial navigation, memory, and history-dependent value coding (Hattori et al., 2019). To

avoid a complex global inflammatory response of microglia (e.g. triggered by traumatic injury or

infection) and maximize the contribution of local mechanisms potentially shared by synaptic repair

and experience-dependent plasticity, we employed photodamage (PD) of single synaptic elements.

Three types of experiments were performed, by targeting (i) a single dendritic spine (Spine-PD) to

attract microglia to the damaged, imaged dendritic site; (ii) an area near a spine (Near-Spine-PD) to

promote microglial approach but avoid direct damage to the imaged spine; or (iii) an area close to

an axonal bouton (Near-Bouton-PD) to attract microglia but avoid direct damage to the imaged

axon (Figure 1B). First, we collected time-lapse images every 10 min for 2 hr under basal conditions.

Then, three photodamages, one of each type, were performed, and structural changes were tracked

every 10 min during an additional 2 hr (Figure 1A). Data from each replicate were averaged per

mouse before being used for statistical analysis.

The contact area between microglia and dendrites/axons, defined by colocalization of microglia

and neurons, increased after all types of photodamage in comparison with the baseline. Despite the

evident colocalization of microglia with spines or boutons in our experiments, the resolution of light

microscopy used here does not allow us to claim that this apparent contact represents the physical

contact between these both cells. The temporal profiles of fast-onset expansion in the contact area

were similar in Spine-PD and Near-Spine-PD experiments and different from the slow increase in the

contact area observed in the Near-Bouton-PD experiments (Figure 1C2,D2,E2, and Figure 1—

source data 1). The mean microglia-neuron contact area increased during 2 hr, from 0.53% and

0.24% before photodamage to 4.39% and 3.79% after Spine-PD and Near-Spine-PD, respectively.

The microglia-neuron contact area was significantly higher in Spine-PD than in Near-Spine-PD and

Near-Bouton-PD (Figure 1—source data 2). More detailed analysis of contacts per spine and bou-

ton revealed that the number of microglia-contacted synaptic sites increased after Spine-PD and

Near-Spine-PD but not after Near-Bouton-PD, compared with the baseline (Figure 1—source data

2). Strikingly, the contact between microglial processes and spines/boutons lasted much longer after

Spine-PD (60.97 ± 3.33 min), Near-Spine-PD (50.33 ± 3.22 min), or Near-Bouton-PD (70.57 ± 6.35

min) than during baseline imaging (~23.77 ± 4.9 min for spines and 21.18 ± 2.53 min for boutons)

(Figure 1—source data 2). The prolonged duration of the contact between microglia processes and

spines/boutons found after photodamage is similar to the values reported after induction of ische-

mia (Wake et al., 2009).

All types of photodamage resulted in a higher turnover of spines and axonal boutons compared

with the baseline (Figure 1—source data 1 and Figure 1—Videos 1–3), when spine and bouton

turnover rates were less than 0.05%. Importantly, the temporal dynamics of turnover matched those

of microglia-neuron contact during the 2 hr evaluation period (Figure 1C2,D2,E2, and Figure 1—

source data 1). To summarize the remodeling of spines and boutons, we calculated a mean turnover

over the 2 hr of observation. It was higher after Spine-PD compared with other photodamage types

(Figure 1—source data 2). There were no differences between the percentages of gained and lost

spines after Spine-PD and Near-Spine-PD (Figure 1C3,D3). However, the rate of bouton formation

after Near-Bouton-PD was higher than the elimination rate (Figure 1E3). Interestingly, we observed

the formation of spine-head filopodia and new filopodia at boutons after Spine-PD/Near-Spine-PD

and Near-Bouton-PD, respectively (Figure 1—figure supplements 1 and 2 and Figure 1—Videos

4–6). These structures were not observed during the baseline period and have been suggested to

be important for the formation of multiple spine synapses following induction of long-term potentia-

tion (Toni et al., 1999). The filopodia occurrence rate after Near-Bouton-PD (79.55%) was

Cangalaya et al. eLife 2020;9:e58435. DOI: https://doi.org/10.7554/eLife.58435 2 of 16

Short report Neuroscience

https://doi.org/10.7554/eLife.58435


Figure 1. Synaptic photodamage induces microglia contact and promotes spine and bouton turnover and filopodia formation in the RSC. (A) Timeline

of the experiments. Mice received intraperitoneal injections of tamoxifen at 1 month of age to trigger the expression of red fluorescent protein in

microglia. After 1.5 months, a glass coverslip was implanted over the RSC and 1 month later imaging of the RSC was performed. Typically, the baseline

(2 hr) and responses to three types of PD (2 hr) were imaged in parallel at three locations, in two animals per day. (B) Short horizontal bars ( » 1 mm)

illustrate locations of laser-irradiated areas in three types of photodamage experiments. (C–E) Summary graphs showing structural changes after

photodamage (white line = scale bar, 3 mm). From left to right, sequential images of microglia (red) - dendrite/axons (green) interactions (yellow) before

the photodamage (0 min) and 10, 30, 50, 60, and 120 min afterwards (orange line denotes position of PD laser target). Stable (white arrowheads

pointing to spines/boutons that remained stable over 2 hr of imaging), gained (blue arrowheads pointing to spines/boutons appeared from time point

to time point) and lost (purple arrowheads pointing to spine/boutons disappeared) structures were identified in these images (C1,D1,E1). Using this

information, we calculated turnover rates and normalized microglia-neuron contact areas (colocalization) before and after photodamage (shown on the

same plot as mean + s.e.m. with two different y-axes) (Spine-PD: n = 16 mice, 47 dendrites; Near-Spine-PD: n = 16, 35 dendrites; Near-Bouton-PD:

n = 14, 34 axons). The contact area curves of baseline and after photodamage differ significantly (Spine-PD: p=0.001, Near-Spine-PD: p=0.016 and

Near-Bouton-PD: p=0.040, Generalized Estimated Equation (GEE)) (C2,D2,E2). The colocalization area curve of Near-Bouton-PD was different in

comparison with the Spine-PD and Near-Spine-PD curves (Spine-PD vs. Near-Spine-PD: p=0.687; Spine-PD vs. Near-Bouton-PD: p=0.003, and Near-

Figure 1 continued on next page
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remarkably higher than after Spine-PD (11.98%) and Near-Spine-PD (23.61%) (Figure 1C4,D4,E4).

All the boutons which formed filopodia were apparently contacted by microglia for an average dura-

tion of 87 ± 33.7 min. Spines and boutons were classified according to their stability during the 2 hr

of observation as newly formed, transient (existing spines/boutons that disappeared at least for one

frame), and stable (existing spines/boutons that remained completely stable for 2 hr) (Figure 2A1,

B2,C1). New and transient spines and boutons were closest to the photodamage site (Figure 2A2,

B2,C2 and Figure 2A3,B3,C3) and were more often in contact with microglia when compared with

stable spines/boutons after all types of photodamage (Figure 2A4,B4,C4). The duration of the

microglial contact was longer with the newly formed and lost spines than with the stable spines

(Figure 2A5,B5,C5). After Near-Spine-PD the filopodia always appeared at stable spines, while after

Near-Bouton-PD the filopodia originated more often at newly formed than at stable or lost boutons

(Figure 2A6,B6,C6).

The temporal and spatial association between the photodamage-induced stable microglia-neuron

contact and increased turnover of spines, boutons, and filopodia suggested that at least some of

these morphological changes were mediated by microglia. To test this hypothesis, we depleted

microglia in the whole brain using PLX3397 as an inhibitor of colony-stimulating factor one receptor,

the activity of which is vitally important to microglial cells (Elmore et al., 2014; Spiller et al., 2018).

Twelve mice were randomly allocated to two groups: six mice were fed a diet containing PLX3397

for 28 consecutive days, and the other six control animals received the same diet but without

PLX3397 (Figure 3A). The number of microglia was dramatically reduced after 1 week of PLX3397

treatment and dropped to 0.6% after 4 weeks (Figure 3B, Figure 3—figure supplement 1A–D).

During baseline imaging, we observed that PLX3397 treatment did not affect the turnover of spines/

boutons, which remained very low before and after the treatment in both the control and treated

groups (Figure 3—figure supplement 2B,F,J).

However, the depletion of microglia resulted in suppression of the spine turnover associated with

photodamage. Comparing mean turnover values before and after PLX3397/control-treatment for

each type of photodamage, we detected no differences in the control group (Figure 3C2,D2,E2),

while turnover in the PLX3397-treated group decreased only after Spine-PD (19.13 ± 3.35 vs.

Figure 1 continued

Spine-PD vs. Near-Bouton-PD: p=0.006; GEE). The middle plot shows the average percentage change (during 2 hr) in gained and lost spines 2 hr

before (baseline) and after photodamage (C3,D3,E3) (Spine-PD: n = 16 mice, 47 dendrites; Near-Spine-PD: n = 16, 35 dendrites; Near-Bouton-PD:

n = 14, 34 axons). Plots on the right show the changes in filopodia occurrence (percentage of replicates per mouse where at least one filopodium was

observed) after the photodamage (C4,D4,E4), paired two-sided Wilcoxon test was used for comparisons (Spine-PD, n = 16 mice, 47 dendrites; Near-

Spine-PD, n = 16, 35 dendrites; Near-Bouton-PD, n = 14, 34 axons). All data points indicate the average value per mouse. Significant differences are

shown as *p<0.05; **p<0.01; ***p<0.001; ns - not significant. Figure 1—Videos 1–3 correspond to images shown in panels (C1), (D1), and (E1),

respectively.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. Time-course analysis for microglia-neuron contact area and turnover before and after PD and between experiments (Spine-PD, Near-

Spine-PD and Near-Bouton-PD).

Source data 2. Analysis of structural changes induced by different types of photodamage (Spine-PD, Near-Spine-PD and Near-Bouton-PD).

Source data 3. These data sets contain the mean values of each parameter per animal, related to each panel in Figure 1.

Figure supplement 1. Scheme illustrating filopodia quantification for spines and boutons.

Figure supplement 2. Time-lapse sequences of filopodia formation from spines and boutons after photodamage.

Figure 1—video 1. Structural changes after Spine-PD (10’ - 120’) compared with a basal image (0’).

https://elifesciences.org/articles/58435#fig1video1

Figure 1—video 2. Structural changes after Near-Spine-PD (10’ - 120’) compared with a basal image (0’).

https://elifesciences.org/articles/58435#fig1video2

Figure 1—video 3. Structural changes after Near-Bouton-PD (10’ - 120’) compared with a basal image (0’).

https://elifesciences.org/articles/58435#fig1video3

Figure 1—video 4. Formation of transient head filopodium from a spine adjacent to the microglia-contacted structure selected for PD.

https://elifesciences.org/articles/58435#fig1video4

Figure 1—video 5. Head filopodia formation from the spine near to PD after microglia contact in a Near-Spine-PD experiment.

https://elifesciences.org/articles/58435#fig1video5

Figure 1—video 6. Formation of filopodia from both adjacent and targeted boutons during microglia contact and after Near-Bouton-PD.

https://elifesciences.org/articles/58435#fig1video6
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Figure 2. Characterization of microglia interaction with spines and boutons after photodamage. Spines or boutons (which were studied after PD of

spine (A1–A6), near to spine (B1–B6) and near to bouton (C1–C6) were categorized according to their stability as stable (defined as the spines or

boutons that persisted for 120 min), transient (defined as existing spines or boutons that can disappear or reappear during the 120 min studied) or new

(defined as newly formed spines) and averaged per mouse. The total sample size was for Spine-PD: n = 16 mice, 47 dendrites, 700 spines (Stable = 506,

New = 61, Transient = 133); for Near-Spine-PD: n = 16 mice, 35 dendrites, 490 spines (Stable = 439, New = 24, Transient = 27); for Near-Bouton-PD:

n = 14 mice, 34 axons, 230 boutons (Stable = 196, New = 27, Transient = 7). Left graphs show cumulative stability percentage curves (A1,B1,C1),

highlighting a separation between the three categories of spines/boutons according to their stability (dots represents the mean value per time). The

distribution of spines and boutons across dendrite and axons are shown in A2,B2,C2. 0 value in X axis represents the position of the selected spine or

bouton for photodamage, which were not included in these plots. From middle to right graphs (Spine-PD: Stable 16 mice/45 dendrites/506 spines,

New 14/37/61, Transient 14/42/133; Near-Spine-PD: Stable 16 mice/35 dendrites/439 spines, New 15/20/24, Transient 13/17/27; Near-Bouton-PD:

Stable 14 mice/35 axons/196 boutons, New 14/25/27, Transient 5/6/7), quantification of the distance between each individual spine/bouton with the

targeted PD position (A3,B3,C3), the number of spines/boutons that had been contacted by microglia during 2-hour imaging session (A4,B4,C4),

duration of microglia contact with individual spines and boutons (A5,B5,C5), and filopodia occurrence rate (A6,B6,C6) after microglial contact with

damaged and near damaged spines or boutons. Means and s.e.m. as error bars are showed in all plots and each dot represents an animal. Statistical

significance is represented by asterisks (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns - not significant) for multiple comparisons after paired two-

sided Wilcoxon test.

The online version of this article includes the following source data for figure 2:

Source data 1. These data sets contain the mean values of each parameter per animal, related to each panel in Figure 2.
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Figure 3. Microglia depletion prevents synaptic photodamage-induced spine turnover and bouton filopodia formation in the RSC. (A) Experimental

design. (B) Representative images of microglia (red) from a control mouse (-PLX) and a mouse treated with PLX3397 (+PLX) mixed with Nutella. Scale

bar, 50 mm. The upper-right graph shows the quantification of microglia depletion before (blue) and after 4 weeks of treatment with PLX3397 (green) in

the control and treated groups. Significant depletion was found only after the treatment with PLX3397 (p<0.001) (n = 6 mice for each group). The lower

Figure 3 continued on next page
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4.51 ± 3.97, p<0.001, Tukey’s post-hoc test) and Near-Spine-PD (6.38 ± 2.40 vs. 0.93 ± 1.06,

p<0.001, Tukey’s post-hoc test) and not after Near-Bouton-PD (Figure 3C2,D2,E2, Figure 3—

source datas 1 and 2 and Figure 3—Videos 1–3). Detailed analysis of the turnover revealed that

depletion of microglia reduced the mean percentages of gained and lost spines after Spine-PD and

Near-Spine-PD (Figure 3C3,D3,E3) and of bouton filopodia induced by Near-Bouton-PD

(Figure 3C4,D4,E4). There was, however, no effect of PLX3397 on filopodia length (Figure 3—fig-

ure supplement 2C,G,K) or stability (Figure 3—figure supplement 2D,H,L). Also, spine-head filo-

podia formation was independent of microglia (Figure 3C4,D4).

These observations provide evidence that microglia react rapidly to photodamaged synapses in

the mature brain and establish prominent contacts with synaptic structures to promote spine turn-

over, in agreement with studies of sporadic synaptic remodeling in the neocortex and somatosen-

sory cortex of adult mice (Akiyoshi et al., 2018; Parkhurst et al., 2013; Wake et al., 2009). We

think that our approach with targeting of single synaptic sites makes an important advance to mini-

mize the injury and standardize the signal that acutely drives microglial approach and interaction

with neurons, as compared to previous studies using single-cell or single-neurite laser-mediated pho-

toablation (Canty et al., 2013; Go et al., 2016; Haynes et al., 2006; Stoyanov et al., 2020). An

important component of that signal, as shown in single-cell photoablation studies, is photodamage-

released adenosine triphosphate (ATP) that attracts microglia via activation of P2Y12 receptors

(Haynes et al., 2006). This is also the mechanism of microglial attraction under physiological condi-

tions. Still, the changes in ATP may develop differently in time and magnitude and additional factors

may be released by PD, so our data do not necessarily inform what microglia do at synapses in the

context of synaptic activity-driven ATP release under normal healthy conditions. Here, we directly

show increased spine formation/elimination after laser light-induced prolonged microglial contact

and for the first time demonstrate the role of microglia in the induction of bouton filopodia. The

observed microglia-mediated increase in the rates of spine and bouton filopodia formation might

provide a substrate for formation of new associations and may be mediated by BDNF released by

microglia (Parkhurst et al., 2013). This hypothesis is based on the fact that BDNF release from

microglia and TrkB phosphorylation in neurons can be strongly stimulated by the binding of ATP -

Figure 3 continued

graph (mean+ s.e.m.) shows the percentage of surviving microglia in control and treated mice (n = 4 mice for each group). (C,D,E) Summary results for

three types of PD experiments. From left to right: representative time-lapse imaging of dendrites and axons before (0’) and after the photodamage (30’,

60’, 120’) (C1,D1,E1). PD laser targets are marked by orange lines. No evidence of microglial processes or direct colocalization was found. The

following panels show the change in overall mean turnover (C2,D2,E2), mean percentage of spines gained and lost (C3,D3,E3), and filopodia

occurrence (C4,D4,E4) before (blue) and after the PLX3397 treatment (green) in the control and treated groups (For Spine-PD: Control-Pre, n = 6 mice,

18 dendrites; Control-Post, n = 6, 15 dendrites; PLX-Pre, n = 6, 23 dendrites; PLX-Post, n = 6, 16 dendrites. For Near-Spine-PD: Control-Pre, n = 6 mice,

13 dendrites; Control-Post, n = 6, 18 dendrites; PLX-Pre, n = 6, 18 dendrites; PLX-Post, n = 6, 16 dendrites. For Near-Bouton-PD: Control-Pre, n = 6

mice, 16 axons; Control-Post, n = 6, 20 axons; PLX-Pre, n = 6, 14 axons; PLX-Post, n = 6, 20 axons). Data points indicate the average value per mouse.

*p<0.05; **p<0.01; ***p<0.001, ns - not significant for GEE post-hoc pairwise comparison with Tukey method (Figure 3—source datas 1 and

2). Figure 3—Videos 1–3 correspond to images shown in panels (C1), (D1), and (E1), respectively. See also Figure 3—figure supplements 1 and 2.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 3:

Source data 1. GEE analysis of structural changes induced by different types of photodamage (Spine-PD, Near-Spine-PD and Near-Bouton-PD).

Source data 2. Tukey’s post-hoc tests of structural changes induced by different types of photodamage (Spine-PD, Near-Spine-PD and Near-Bouton-PD).

Source data 3. These data sets contain the mean values of each parameter per animal, related to each panel in Figure 3.

Figure supplement 1. Ex-vivo confirmation of microglia depletion after the administration of PLX.

Figure supplement 1—source data 1. These data sets contain the mean value of each parameter per animal, related to each panel in Figure 3—fig-

ure supplement 1.

Figure supplement 2. Baseline evaluation and filopodia characterization.

Figure supplement 2—source data 1. These data sets contain the mean of each parameter per animal, related to each panel in Figure 3—figure sup-

plement 2.

Figure 3—video 1. Structural changes after Spine-PD (10’ - 120’) compared with a basal image (0’) in a microglia-depleted brain.

https://elifesciences.org/articles/58435#fig3video1

Figure 3—video 2. Structural changes after Near-Spine-PD (10’ - 120’) compared with a basal image (0’) in a microglia-depleted brain.

https://elifesciences.org/articles/58435#fig3video2

Figure 3—video 3. Structural changes after Near-Bouton-PD (10’ - 120’) compared with a basal image (0’) in a microglia-depleted.

https://elifesciences.org/articles/58435#fig3video3
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derived from the photodamaged cells (Davalos et al., 2005) to the purinergic receptor P2X4R

(Khakh and North, 2012).

Interestingly, our results revealed that after Spine-PD there was higher microglia attraction

toward the targeted spine in comparison with Near-Spine-PD and Near-Bouton-PD. Also, higher var-

iability in responses was observed in the latter conditions, particularly after the Near-Bouton-PD. It

could be explained by the ability of microglia to respond to neurotransmitters during acute injury

(Pocock and Kettenmann, 2007). It is possible that after a single spine cut there is a release of neu-

rotransmitters that stronger attracts microglia processes in comparison with Near-Bouton-PD and

Near-Spine-PD. On the other hand, the microglial response after Near-Bouton-PD and Near-Spine-

PD could vary due to a photodamage of astrocytes or various non-Thy1-EGFP-positive neurons.

Our observation of microglia-mediated spine remodeling is in line with recent indirect data on

the role of microglia in eliminating synaptic components in the adult hippocampus and the observa-

tion that depleting microglia or inhibiting microglial phagocytosis prevented forgetting of remote

memories (Wang et al., 2020). Acknowleding a difference in the mechanisms of focal injury and

homeostatic microglia-synapse interactions, we still anticipate that the proposed methodology will

be instrumental in further elucidating some aspects of synaptic surveillance by microglia

(Akiyoshi et al., 2018; Nimmerjahn et al., 2005) and the mechanisms of microglia-independent and

dependent forms of synaptic remodeling during synaptic injury. The latter may help to dissect the

multiple contributions of microglia to memory formation and updating under normal and neurode-

generative conditions.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Mice)

Gt(ROSA)
26Sortm9(CAG-tdTomato)Hze

The Jackson
Laboratories

Stock No: 007905
RRID:IMSR_JAX:007905

On C57BL/6
background

Strain, strain
background
(Mice)

Cx3cr1tm2.1(cre/ERT2)Jung The Jackson
Laboratories

Stock No: 020940
RRID:IMSR_JAX:020940

On C57BL/6
background

Strain, strain
background
(Mice)

Tg(Thy1-EGFP)MJrs The Jackson
Laboratories

Stock No: 007788
RRID:IMSR_JAX:007788

On C57BL/6
background

Antibody anti-Iba1, rabbit
polyclonal
antibody

Wako Cat# 019–19741,
RRID:AB_839504

IF(1:500)

Chemical
compound,
drug

PLX3397 MedChemExpress HY-16749/CS-4256

Software,
algorithm

Fiji http://imagej.
net/Fiji

RRID:SCR_002285

Software,
algorithm

R (https://www.
R-project.org/)
R Foundation
for Statistical
Computing

RRID:SCR_001905

Software,
algorithm

GraphPad Prism GraphPad
Software
(http://www.
graphpad.com/)

RRID:SCR_002798

Animals
Mice expressing enhanced green fluorescent protein (EGFP) under the control of a modified Thy1

promoter region (Feng et al., 2000) (# 007788 from The Jackson Laboratory) and mice expressing

red fluorescent protein dtTomato in microglia under the control of the endogenous Cx3cr1 locus
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(Yona et al., 2013) (obtained by crossbreeding of # 007905 and # 020940 lines from The Jackson

Laboratory) were crossbred to simultaneously visualize microglia and neurons; 23 two-month-old

male mice were used in this study. CreERT2-mediated recombination was induced by five consecu-

tive i.p. injections of tamoxifen at P30. The mice were housed individually under a fixed 12 hr light/

dark cycle with food and water available ad libitum.

In this initial study, we used males to maximize our chances to detect microglial effects, as it is

known that microglia exhibit gender-specific responses to stimuli and male microglia have higher

motility capacity (Lenz and McCarthy, 2015) and are more prone to inflammatory activation than

female microglia (Villa et al., 2018).

Tamoxifen preparation and administration for induction of CreERT2
activity
Tamoxifen (T5648, Sigma) was diluted in corn oil to make solution of 20 mg/ml, which was protected

from light. Tamoxifen solution was freshly prepared the day prior to injections and placed on a rota-

tor shaker to dissolve tamoxifen overnight at room temperature. Mice were then given intraperito-

neal injections of 2 mg Tamoxifen (100 ml volume) per day, for a total of 5 consecutive days

(Madisen et al., 2010).

PLX3397 treatment
To study the role of microglia-neuron interactions, we used the drug PLX3397 (inhibitor of the recep-

tor to CSF-1 of myeloid cells) (Elmore et al., 2014) from MedChemExpress (# HY-16749/CS-4256).

Mice received PLX3397 mixed with Nutella (1:1000) via oral administration every day for 4 weeks

(Spiller et al., 2018). The daily dose was between 1 and 1.5 mg of PLX3397 in 1–1.5 g of Nutella

(~40–50 mg/kg of body weight) (Mok et al., 2014; Spiller et al., 2018). This mix and the control

(Nutella) were added to polystyrene Petri dishes and placed on the cage floor. All mice received a

dose of Nutella 48 and 24 hr before the start of the treatment, to avoid the novelty effect and initial

avoidance. Our pilot study revealed that microglial cells that remained after PLX treatment were still

attracted to the photodamage sites. To ensure that we completely deplete microglia in large areas

of RSC in all mice used for synaptic remodeling analysis, we used the above-described treatment to

control the exact amount of drug that each mouse consumed and performed longitudinal monitor-

ing of microglia depletion in the RSC of treated mice every week.

Surgery and in vivo two-photon imaging
Cranial windows were prepared in 2-month-old mice that were anesthetized with isoflurane at 1.5–

2% and oxygen to 0.4 l/min. Mice were placed under a heating pad to keep the temperature of the

mouse body at 37˚C. The cranial window was located at 2 mm anteroposterior and 2 mm mediolat-

eral from Bregma. After removing the overlaying skull, a round glass coverslip (5 mm diameter,

Thermo Scientific) was fixed directly above the brain onto the skull by applying cyanoacrylate glue

(Pattex-Henkel, Germany). Once the glue was dry, the surroundings of the coverslip were sealed

with dental cement (Paladur, Heraeus Kulzer, Germany). The animals were then transferred to their

cages and analgesics were given for three days (ketoprofen, 5 mg/kg of body weight). Then, all ani-

mals were allowed to recover for 1 month prior to imaging. Seven of the 23 mice used in this study,

in which the craniotomy window was not optically clear at this time, were excluded and their brains

were kept for immunofluorescence experiments (see the experimental design header).

In vivo two-photon imaging was performed using a multiphoton microscope (LSM 7 MP, Carl

Zeiss, Germany) with a Ti:Sapphire laser (Chameleon Vision II, Coherent). Imaging of the retrosple-

nial cortex was performed with a 20x water immersion objective lens (Zeiss, N.A. = 1.0). The laser

was tuned to 900 nm for EGFP imaging and to 850 nm for photodamage experiments (150–200

mW). dtTomato fluorophore was excited at 1040 nm. Thirty minutes before placing a mouse under

the microscope, it was anesthetized intraperitoneally with ketamine (90 mg/kg body weight) and

xylazine (18 mg/kg of body weight) in 0.9% NaCl solution. The eyes were protected with eye oint-

ment (Bepanthen) and a heating pad (37˚C) was placed under the mouse to maintain the body tem-

perature. To avoid photodamage to the sample, the pixel dwell time was kept between 1 and 2.5

ms.

Cangalaya et al. eLife 2020;9:e58435. DOI: https://doi.org/10.7554/eLife.58435 9 of 16

Short report Neuroscience

https://doi.org/10.7554/eLife.58435


Imaging began 4 weeks after the craniotomy, which proved to be an optimal time for quantifica-

tion of the turnover of dendritic spines and axonal branches (Pryazhnikov et al., 2018). In general,

three fields of view containing several dendritic elements (second and higher order branches) and

axonal branches per mouse were selected and recorded with low magnification (20x objective, zoom

factor: 1.5; 1024 � 1024 pixels; image size 292.01 mm x 292.01 mm; a z-stack of 20 optical sections

with 2 mm z-spacing). Care was taken to achieve close to identical fluorescence levels across imaged

fields of view. For each field, two dendrites and one axon (separated by >250 um) were selected for

further imaging. Then, high-magnification images of the previously selected dendrites and axon

were collected in parallel using the position module of the Zeiss Zen software. Recordings were

done before (baseline) and after photodamage during 2 hr every 10 min (20x objective, zoom factor:

5; 1024 � 1024 pixels; 85.02 mm x 85.02 mm; a z-stack of 5–10 optical sections with 1 mm z-spacing).

Thus, recordings lasted 4 hr per animal, and two animals were imaged per day (Figure 1A). Typi-

cally, this protocol was repeated 2–3 times per animal (exact sample sizes are given in Figure 1—

source data 2), then a new pair of mice was imaged.

Laser ablation
In previous studies, laser ablation has been described as an effective method to dissect specific

structures without altering the tissue adjacent to the impacted target (Allegra Mascaro et al.,

2010). In this way, the cut of a dendritic branch (dendrotomy) (Sacconi et al., 2005) and axonal

branches (axotomy) (Allegra Mascaro et al., 2013) have been reported. Here, spines were cut with

a » 1 mm-long line scan (laser power of 150–200 mW, excitation wavelength of 850 nm, 60 cycles, 1

s total duration of irradiation). For the Spine-PD experiment, a z-stack was acquired with the two-

photon microscope to obtain a 3D reconstruction of the dendrite using a 20x water-immersion

objective (Zeiss, N.A. = 1.0). Second, laser photodamage was performed by creating a line of » 1

mm at the chosen segment. Near to spine PD and near to axonal bouton PD were performed using

the same settings as for the spine ablation experiments in a neighboring field of view on the same

day. For these experiments, the distance between the line scan and the spine or axonal bouton was

» 0.5 mm. To evaluate the success of our experiments, we measured the lifetime of each targeted

structure. To accept a spine PD experiment as successful (75%), we considered that the spine should

disappear during the first 30 min of recording. For the next to spine PD, the targeted spine should

be stable during the first 30 min (» 80% of experiments). The average lifetime of all ablated spines

was on average of 25.7 min in DP-SP experiments and 93.6 min for PD-NS experiments. In the case

of the next to bouton PD, experiments that resulted in an evident axotomy (because of axonal swell-

ing) were excluded (6%) and the lifetime of the targeted bouton was set to be more than 30 min for

a successful experiment (total average = 118.62 min, 78% of cases). Special care was taken to intro-

duce photodamage away from the dendritic branch and axonal shaft to avoid transient swelling.

Prior to the selection of spines/boutons for photodamage, we selected dendritic and axonal

branches with visually similar spine/bouton density and shaft thickness. Only tertiary or secondary

branches with no more than 2 mm of thickness and with the highest % of spines being located in one

single optical plane (Holmes and Berkowitz, 2014) were chosen. Using these branches, the follow-

ing inclusion criteria were taken into account in the selection of spines and boutons for photodam-

age: well-defined structures, not contacted by microglia (distance to microglia bodies from 23.9 to

75.8 mm) and without closely located neighbouring spines/boutons next to them to avoid their direct

laser targeting. After the selection of the spines/boutons for photodamage, we imaged dendritic

segments with the mean ± SD length of 27.34 ± 2.72 mm or axonal segments of 30 ± 2.98 mm. The

dendritic thickness was in the range of 1.11–1.33 mm, on average of 1.18 mm. The spines and axonal

boutons selected for PD were always located at the center of the segment studied (Figure 2A2,B2,

C2) and were well-defined structures, with an average size perpendicular to the dendritic/axonal

segment of 1.43 mm (1.10–1.82 mm) and 1.25 mm (1.03–1.47 mm), respectively.

To verify whether the structures selected for photodamage were within a spine/bouton clusters,

the mean distance between the targeted structure and the closest left and right neighbours was

compared with the mean of all the distances between neighbouring spines/boutons per each den-

dritic/axonal segment. The corresponding mean ± SD values and the Wilcoxon paired test p-values

(with segments as sampling unit) were for Spine-PD: 1.88 ± 0.38 mm vs 1.53 ± 0.44 mm, p=0.009; for

Near-Spine-PD: 2.07 ± 0.81 mm vs 1.77 ± 0.69 mm, p=0.023; for Near-Bouton-PD: 5.14 ± 4.39 mm vs

4.44 ± 3.83 mm, p=0.05. Thus, the structures selected for photodamage were not within clusters and
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were even slightly more distant from their left and right neighbouring spines as compared to all

spines/boutons in the selected segments.

Experimental design for microglia depletion
To confirm the role of microglia in the synaptic remodeling related to the photodamage, 12 mice

were selected and randomly subdivided into two groups of six animals each (simple randomization

method), as follows: (i) Nutella mixed with PLX3397 and (ii) Nutella. The sample size was estimated

based on previous studies (Miyamoto et al., 2016; Wake et al., 2009), in which 4–7 mice were used

per group to find structural changes of spines after the contact with microglia or after the treatment

with PLX3397. For this study, we needed a minimum total number of 12 animals to detect differen-

ces between the control and treated group with 80% power and a significance level alpha of 0.05

(G*Power version 3.0.10, the medium effect size of 0.25, F tests-ANOVA). Three days before the

start of treatment, the pre-treatment measurements were performed: 2 hr of baseline followed by 2

hr of follow-up after the photodamage (3x Spine-PD, 3x Near-Spine-PD and 3x Near-Bouton-PD)

using three fields of view per mouse (See Surgery and in vivo two-photon imaging header). In paral-

lel, before and after the beginning of the treatment, one additional field of view (low magnification)

was identified and tracked every 7 days for each mouse to follow-up the progression of microglia

depletion. For this repetitive imaging, the positions were identified with the help of vascular land-

marks and cell bodies of neurons. After 4 weeks of treatment, post-treatment baseline was recorded

and laser photodamage (3x Spine-PD, 3x Near-Spine-PD and 3x Near-Bouton-PD) was performed

again and followed by 2 hr of imaging. At the end of the post-treatment imaging sessions, all mice

were euthanized and the brains were collected for immunofluorescence studies. To have enough

time to obtain three biological replicates of each photodamage per mouse, mice were randomly

separated in six subgroups and each subgroup was imaged consecutively (one control mouse and

one PLX-treated mouse in each imaging session). Besides, four from the seven excluded animals

(with not acceptable cranial windows, please see details in Surgery and in vivo two-photon imaging

header) were used as a second control (Naı̈ve group, Figure 3—figure supplement 1) for further

immunofluorescence studies. These animals were fed with a normal chow diet and were euthanized

at the same time as the control and PLX3397-treated mice.

Image and data analysis
We collected for each mouse mostly three replicates of each type of photodamage and their respec-

tive baseline images before and after the treatment with PLX. The recording of each replicate lasted

2 hr (every 10 min) and produced image stacks of 5–10 Z-slices, 13 time points and two channels

(EGFP and dtTomato). For image processing and parameter evaluation, we selected a region of

interest (ROI) of 50 mm x 50 mm using these image stacks. A database was created to facilitate the

annotation of findings.

Normalized microglia-neuron area contact
To estimate the contact area between microglia and dendrites or axons, we quantified the colocali-

zation area in mm2 between the EGFP and dtTomato channels in each time point (13 values). For this

purpose, a Fiji macro was used to set a colocalization threshold and run the Coloc2 plugin. We first

manually removed neighboring dendrites and axons to isolate a single dendrite and axonal branch

in the EGFP channel. Second, maximum intensity projection was generated from original z-stacks.

Third, to normalize the contact area, we used the EGFP-positive area that represented the area of

the studied dendrite/axonal segment. Finally, we calculated Microglia-Neuron interaction area in %

by dividing the Microglia-Neuron interaction area by the area of the dendrite or axon and multiply-

ing the result by 100. In addition, the mean Microglia-Neuron contact area in % was calculated by

averaging areas estimated in 13 time frames (the sum of the contact area of each time point divided

by the number of time points).

Spine turnover
For each collection of stacks containing one ROI, images were aligned with each other using the

dendritic branch and the Linear Stack Alignment with Sift and MultiStackReg Plugins

(Thévenaz et al., 1998) in Fiji. In each ROI, we selected a dendritic segment of » 30 mm of length.
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Spines were manually counted using original z-stacks and the 3D convolution viewer in ZEN software

(Carl Zeiss). Spine counting was performed without knowing the baseline configuration. To calculate

spine turnover, lost and gained spines were identified and quantified using previously validated cri-

teria (Holtmaat et al., 2005). Gained spines were considered as such when they had more than 0.4

mm (five pixels) (Holtmaat et al., 2005) in length and lost when the length was less than 0.4 mm (five

pixels). The spine length was approximately calculated from the base at the dendritic shaft to the tip

of the spine head. Besides, spines were scored as lost, if their position on the dendrite relative to

neighboring spines shifted by �0.5 mm (Cane et al., 2014; Holtmaat et al., 2005). The percentage

of spines appearing and disappearing from time point to time point were calculated as the turnover

percentage (%). The turnover (%) was the sum of gained and lost spines from the previous time point

to the analyzed time point divided by the sum of total spines from both time points and multiplied

by 100 (Fuhrmann et al., 2007). Then individual percentages of gained (formation) and lost spines

(elimination) were calculated by dividing the number of gained or lost spines by the number of total

spines in each time point and multiplied by 100.

Turnover ð%Þ
t1;t2

¼
ðNnewt2 þNlostt2Þ

ðNtotal t1 þNtotal t2Þ
� 100

Also, the mean turnover rate (%) was calculated as the total sum of turnover rates (%) in each

time point divided by the number of time points (13). In the same way, mean percentages of gained

or lost spines were calculated by adding percentages of gained or lost spines in each time point and

then dividing by the count of time points (13).

Axonal bouton turnover
In this study, we selected segments of axons (~40 mm) that were clearly visualized, had en passant

boutons (EPBs) with the area of 1–2 mm2 and had no terminal boutons. To identify gained and lost

axonal boutons across the time points, we used validated criteria (Holtmaat et al., 2008;

Holtmaat et al., 2006), where gained boutons had to be three times brighter than the axonal back-

bone. To score a loss, brightness had to drop to below 1.3 times backbone brightness. However, to

exclude the scoring of transport packets and moving organelles, EPBs included in the analysis had

to be present on the same site for at least two consecutive time points (10 min). To distinguish

between two close boutons, they have to be separated at least in one z-plane by 2 mm. The turnover

(%) for axonal boutons was calculated in the same way as for the spine turnover. Percentages of

gained and lost boutons were calculated as (boutons formed or boutons eliminated)/(total number

of boutons observed across imaging sessions).

Filopodia detection and measurements
Protrusions emerging from the spine head with a thickness of half or less than the spine head were

considered as spine head filopodia (Figure 1—figure supplement 1). Only protrusions with the

length of at least 0.5 mm were scored and measured. The same criteria were used for detection of

filopodia formation from EPBs with the exception that the protrusions shorter than 1 mm were

excluded (Wu et al., 2012). For analysis, three parameters were evaluated: filopodia occurrence,

size of filopodia and filopodial stability. The filopodia occurrence (%) was calculated as the total

number of replicates where at least one event (filopodia formation) appeared divided by the total

number of replicates per mouse and multiplied by 100. The filopodia size in length was calculated

from the border of the spine or bouton to the tip of the filopodia and expressed in mm for each

timepoint. The maximal filopodia length value was used for statistical comparisons of filopodial size.

Filopodial stability was expressed as a percentage, calculated by dividing the filopodial lifetime by

the total time of evaluation, i.e. 120 min.

Spine and boutons characterization according to stability
According to their stability in time, spines were classified into three types: stable, new and transient.

Existing spines or boutons that lived for the two hours were classified as stable (100%). Newly

formed spines or boutons across the two hours and after the first time point were classified as new.

Spines living for less than 2 hr were classified as transient. To present a clear separation between

categories, a cumulative stability percentage curve during the 2 hr was computed. For this purpose,
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the stability of each type of spine or bouton was measured as the cumulative lifetime that each spine

or bouton remained visible at each time point divided by the value of the timepoint, expressed in %.

Finally, an average per replicate was computed, and then an average per mouse (Figure 2A1,B1,

C1).

Microglia-contacted spines and boutons
In order to calculate microglia-contacted spines or boutons percentage, a qualitative classification

was performed. Microglia-contacted spines or boutons were identified when more than 20% of the

spine or bouton area was in contact with microglia in at least one slice of the z-stack and in at least

one time point (Weinhard et al., 2018). The contacted spine or bouton percentage (Figure 2A4,B4,

C4) was calculated as the total number of spines or boutons contacted by microglia divided by the

total number of spines or boutons and multiplied by 100.

In addition, microglia-contact duration (Figure 2A5,B5,C5) was evaluated as the total time in

minutes that each individual spine and bouton was in contact with microglia. All parameters were

averaged per mouse for further statistical comparisons (See Filopodia quantification).

Immunofluorescence
Mice were intraperitoneally injected with ketamine (90 mg/kg body weight) and xylazine (18 mg/kg

of body weight) in 0.9% NaCl solution and then perfused transcardially with PBS, followed by 4%

paraformaldehyde (PFA). After perfusion, the brains were fixed in 4% PFA in PBS for 24 hr at 4˚C

and then cryopreserved in 30% sucrose in PBS at 4˚C. Fixed brains were cut into coronal sections at

40 mm using a freezing microtome. Floating brain sections were stored in a cryoprotectant solution

(30% ethylene glycol, 30% glycerol, 10% 0.2 M sodium phosphate buffer pH 7.4, in dH2O) at 4˚C.

The sections were washed three times with washing solution (0.1% Triton X-100 in 0.1 M Tris-buff-

ered saline). Sections were incubated 30 min with a blocking 10% FCS solution. For immunofluores-

cence, sections were incubated overnight with the primary antibody (goat anti-rabbit Iba1, Wako,

Cat. Number: 019–19741, dilution 1:500), washed and incubated 3 hr with Alexa Fluor 647-conju-

gated secondary goat anti-rabbit antibody (Life Technologies-Invitrogen, Cat.Number: A-21245,

dilution 1:250). The sections were then washed and incubated with DAPI for 15 min. Slides were ana-

lyzed using confocal microscopy (Carl Zeiss LSM 700) using x20 objective (N.A. = 0.4).

Statistical analysis
R 3.6.3 version and RStudio 1.2.5033 software were used for data management and statistical analy-

sis. The Prism version 7.0 software (Graphpad, San Diego, CA) and package ggplot2 of R were used

to create graphs. Here, all graphs and statistics are shown per animal as a unit of observation (the

data from replicates from the same animal were averaged separately for Spine-PD, Near-Spine-PD

and Near-Bouton-PD). Paired-samples two-sided Wilcoxon test was used for comparison of cumula-

tive turnover (%), lost (%), gained (%) spines/boutons and filopodia occurrence (%) between baseline

and after Spine-PD, Near-Spine-PD and Near-Bouton-PD. For comparison of temporal profiles of

turnover (%) and neuron-microglia contact area (%) between different groups or experiments, mixed

ANOVA with repeated measures and GEE (R packages: lmer4, geepack and emmeans) were used.

Besides, GEE and linear mixed model analysis were performed using an independent within-group

correlation structure to calculate the interaction between pre- and post-treatment values (time) and

treatment groups (PLX and control) followed by a Tukey’s post-hoc tests for pairwise comparisons

(Model: time as repeated measures, treatment as a fixed factor, time as a covariate, and their inter-

action treatment*time). For all reported differences between groups, the p-values are <0.05.
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