
MALARIA

What happens when forests
fall?
Combining spatial and temporal data is helping researchers to

understand how deforestation influences the risk of malaria.

MERCEDES PASCUAL AND ANDRES BAEZA

D
eforestation is one of the most rapid

and impactful human activities on the

planet. How it influences the fate of old

and new pathogens is now becoming a central

question for global health, especially for the

populations who quickly colonize the newly

cleared ‘frontier’ regions. Forests can act as res-

ervoirs for insect species that spread deadly dis-

eases – among them malaria, a mosquito-borne

infection and one of the ‘big three’ killer ill-

nesses in the developing world. As humans dis-

turb forests and bring down the trees, does

malaria risk increase or decrease? Deceptively

simple, this question has led to contradictory

answers when researchers have explored the

relationship between forest cover and malaria

cases (Tucker Lima et al., 2017).

Mechanistically, disturbing forests can

increase exposure of vulnerable human popula-

tions to malaria (Vittor et al., 2006). It can also

modify the diversity and relative success of mos-

quito species, favoring those that transmit

malaria and increasing the incidence of the dis-

ease in frontier regions (Patz et al., 2000). How-

ever, deforestation may also lead to economic

development and better living conditions, which

could reduce the number of cases. And once the

forest is gone, the local environment might no

longer sustain the transmission cycle. As many

countries aim to eliminate malaria by 2030 and

tropical forests are rapidly lost, public health

efforts require an understanding of how these

opposite effects play out (Shretta et al., 2017;

Dobson et al., 2020).

Now, in eLife, François Rerolle (University of

California San Francisco; UCSF) and colleagues

report new conclusions based on unprecedented

data from the Lao People’s Democratic Republic

(Lao PDR) in the Greater Mekong Subregion,

where countries are increasingly trying to control

forest malaria (Rerolle et al., 2021). The team

applied a spatio-temporal statistical model to a

dataset formed of longitudinal records of

malaria cases in individual villages, combined

with high-resolution images of forest cover

obtained through remote sensing. This showed

that, after deforestation, the incidence of

malaria increases for a period of about two

years, and then decreases. This ‘up-and-down’

trajectory can only be detected in villages

located at least 30 km away from the deforesta-

tion front, and it is also more apparent for Plas-

modium falciparum than for Plasmodium vivax,

the two parasites responsible for malaria in the

region. In other words, disease transmission gets

worse before it gets better, at least for the most

virulent parasite.

The work by Rerolle et al. – who are based at

UCSF, UMass-Amherst, UC Berkeley and the Lao

PDR Ministry of Health – helps to explain why

some previous analyses had failed to identify a
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clear and consistent effect of deforestation:

those reports focused on spatial but not tempo-

ral data, and the locations considered may have

been at different stages of the transition pro-

cess. Also, the data may not have examined

populations at the distances from the forest

front where the effects can be detected.

The study also corroborates the ‘up-and-

down’ trajectory previously demonstrated for

malaria in frontier regions of the Amazon

(de Castro et al., 2006; Figure 1). However, the

period of elevated risk was much shorter in Lao

PDR. In addition, the transition for malaria

caused by P. vivax may also be evident in some

parts of the world but not others, a puzzling dif-

ference between the Amazon and forests in Lao

PDR.

Beyond deforestation, other types of land-

use changes can impact malaria risk in frontier

regions, with, interestingly, the same temporal

trajectory emerging. For instance, the arrival of

irrigation in an arid region of Northwest India

similarly enhanced the incidence of desert

malaria due to P. vivax. This transition lasted at

least a decade, and the disease slowed down

and was nearly eliminated in parts of the region

irrigated for longer (Baeza et al., 2013).

Depending on when irrigation had arrived, dif-

ferent locations represented various stages in

the temporal trajectory of the disease, creating

a ’patchwork’ of malaria states. In this context,

understanding the impact of irrigation is impos-

sible if the only data available are ’snapshots’

Figure 1. Deforestation and the incidence of malaria. Schematic diagram showing how the risk or incidence of

malaria first increases and then decreases as deforestation proceeds. Before deforestation (bottom left) the forest

is largely pristine, with a low population density and activities that do not cause deforestation. Malaria can be

epidemic (1) and mostly driven by environmental/climatic conditions. As deforestation proceeds (bottom middle),

humans start to colonize the area, roads (shown in grey) are built, and agricultural (yellow) and urban areas (white)

follow. Malaria risk is enhanced (2) at this modified boundary between human settlements and the forest. Once

deforestation is widespread, and after some time that depends on the region and alteration of the landscape

(bottom right), the area can sustain only low but endemic malaria transmission (3); however, the risk of infection

increases for other diseases transmitted by mosquitoes that thrive in this domesticated environment, such as

dengue and Zika.
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with no information on when water first came to

each area.

A mathematical model which combines land-

use change, malaria transmission and macroeco-

nomics helps to understand why the ‘up-and-

down’ trajectories identified by Rerolle et al. and

others can take place (Baeza et al., 2017).

Indeed, the negative ecological effects brought

by deforestation typically emerge faster than the

positive economic developments that lead to

better health and disease protection. Underscor-

ing its generality, this model is consistent with

the data analyses conducted for desert and for-

est malaria, in the Amazon and now Lao PDR.

However, it does not address the consequences

of losing the ecosystem services provided by a

healthy forest, and the sustainable economic

activities this environment sustains. In addition,

while the up-and-down trajectory described by

Rerolle et al. and others is the most likely to take

place, the model demonstrates that it is not the

only possible outcome: depending on how much

is invested in the health and living conditions of

the local populations after deforestation, malaria

may be more prevalent than when the forest

was intact (Baeza et al., 2017).

A recent bi-directional analysis of extensive

malaria and forest cover data in the Amazon

helps to dive further into the complexities of

these interactions (MacDonald and Mordecai,

2019). The results highlighted a two-way system

where deforestation and malaria influenced each

other: taking down trees led to an increase in

malaria cases, which in turn caused a fall in the

rate of land clearing. This opens the door for the

existence of a dynamical trap which involves

cycles of deforestation and colonization,

depending on the relative strength of each fac-

tor (Bonds et al., 2010; Ngonghala et al.,

2017).

Most importantly, is one class of insect-borne

disease traded for another as forests become

‘urbanized’? While malaria transitions towards

low endemism after deforestation, emerging

global diseases such as dengue, Zika and chikun-

gunya are expanding their reach in the Amazon

(Lowe et al., 2020). Caused by arboviruses,

these new illnesses are transmitted by species of

mosquitoes (notably Aedes aegypti) that thrive

in urban environments, spreading to human set-

tlements that have sufficiently modified the land

taken from the forest. Even altered, tropical for-

ests are not spared by arboviruses.

It is therefore clearly simplistic and dangerous

to expect that, if given enough time, the eco-

nomic ‘development’ enabled by land-use

change will rid disturbed tropical forests of vec-

tor-borne diseases. In the case of malaria, the

enhanced transmission period (whose duration

depends on specific conditions) would have to

be crossed, and a better outcome is not neces-

sarily guaranteed. However, understanding how

malaria unfolds in altered landscapes provides

the basis for control efforts – establishing, for

instance, when and where to intervene. It could

also inform conservation initiatives and alterna-

tive pathways for more sustainable local

economies.

At the time of COVID-19, we cannot write

about tropical deforestation without

underscoring that this major environmental per-

turbation contributes to diseases spilling from

animals to humans, and promotes the emer-

gence of new pathogens (Faust et al., 2018).

Compared to the costs of preserving forests, the

human and economic price of the ongoing pan-

demic highlights the need to urgently alter the

devastating path of global deforestation

(Dobson et al., 2020). From the mitigation of

climate change to the prevention of emergent

diseases, protecting forests is essential to safe-

guard human health (Gillespie et al., 2021).
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