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Abstract: Frost heaving and boiling are the most common road disorders due to the special climatic
conditions in a seasonal frozen area. From the perspective of controlling road disorders in seasonally
frozen areas and making effective use of industrial waste residue, two kinds of subgrade modified
soil—crumb rubber modified fly ash soil (CRFS) and oil shale waste residue modified fly ash soil
(OSFS)—were proposed by the research group. The research results proved that the two new
subgrade fillers both have excellent engineering characteristics in cold areas, such as high strength
and low thermal conductivity, and both have the function of waste utilization, giving them broad
application prospects. In road engineering, the instability of slopes and retaining walls and the
uneven settlement of the subgrade are closely related to soil creep, which are problems that cannot
be ignored in road design and use. As a new material to treat road disorders in seasonally frozen
areas, more attention should be paid to the continuous deformation property of modified soil under
long-term load. The study on the creep characteristics of the modified soil can provide reliable
parameters for the design of the modified soil subgrade and predict the settlement of the subgrade
after construction, which is of great significance to the stability of the subgrade. In this paper, an
experimental study on the consolidation–creep characteristics of two kinds of subgrade modified
soil in a seasonal frozen region was carried out, the relationship between modified soil deformation
and time is discussed, and the effects of different moisture contents and compaction degrees on the
creep characteristics of modified soil were analyzed. The test results provide parameters for the
engineering design of modified soil subgrade and provide data support for the popularization and
application of modified soil in seasonally frozen subgrade.

Keywords: seasonally frozen area; subgrade modified soil; consolidation-creep behavior; experimen-
tal study; road engineering

1. Introduction

Within the territory of China, the permafrost area accounts for 21.5% and the seasonal
permafrost area accounts for 53.5% of the territory. Due to the special climatic conditions in
the seasonal frozen region, frost heaving and boiling occur frequently, which are the most
common road disorders in Northeast, North, and Northwest China [1–3].

Silty clay widely distributed in Northeast China is subject to frost heaving, which
needs to be improved to meet the requirements of a subgrade filling. There are many
studies about crumb rubber and fly ash modified road materials [4–7]. The results show
that modified soil has good mechanical properties. In particular, silty clay was improved
and the application of rubber particles and oil shale residues in road engineering was
studied by our research group [8–11]. The results of these studies proved the feasibility
of using the two modified soils in road engineering. Both of the two modified soils have
excellent engineering characteristics in cold areas, such as high strength and low thermal
conductivity, as well as having an environmental protection function. They have good
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application prospects in subgrade filling in seasonal frozen areas. However, there has been
little research on the consolidation-creep behavior of modified soils.

The creep of soil refers to the process whereby soil deformation develops slowly with
time under constant stress. In road engineering, the instability of slopes and retaining
walls and the uneven settlement of roadbeds are all closely related to soil creep. If the
creep property of soil is ignored in the design and construction, great safety risks will often
become apparent after the actual project is implemented.

The theory of soil rheology and consolidation explain the objective law of soil defor-
mation from different perspectives, but in fact both reflect the timeliness of soil deforma-
tion [12]. Consolidation characteristics and creep characteristics of soil complement each
other, and the stability and deformation of building foundations are closely related to the
coupling effect of the two, while the study of the coupling effect of the two has important
guiding significance for engineering practice.

Taylor and Merchant took the lead in considering the effect of creep in the consolida-
tion analysis of soil and proposed the Merchant Model to simulate the deformation of the
soil skeleton. Ho et al. [13] derived an exact analytical solution of the one-dimensional con-
solidated flow equation in unsaturated soil by using eigenfunction expansion and Laplace
transform techniques. Chen et al. [14] studied the consolidation and seepage of laterally
confined clay and pointed out that the secondary time effect was mainly generated by the
action of shear stress. They proposed a new consolidation model assuming that clay was a
Maxwell material and solved the differential equation of a one-way case. Zhou et al. [15]
proved that the fractional EVP (elastic–viscoplastic) creep model is obviously better than
the traditional integer EVP model. Tan et al. [16] used the Bayesian probabilistic method to
identify all unknown parameters based on the consolidation data during the entire consoli-
dation process and quantified their uncertainty through the obtained posterior probability
density functions. Additionally, they also determined the optimal model from among nine
models. Yu et al. [17] combined the elliptic-parabolic double yield surface model with the
modified Komamura–Huang model, and proposed a new viscoelasto–viscoplastic model,
and a finite element consolidation analysis method that can fully consider the influence of
the construction process. The method of combining the creep model with the geotechnical
model has been a pioneer in the application of creep-consolidation theory in engineering.
Since then, a large number of studies have been carried out on the consolidation creep
characteristics of soil.

Wang et al. [18] presented a semi-analytical method to analyze the creep and thermal
consolidation behaviors of layered saturated clays due to surface loads. Wong et al. [19]
proposed a methodology to decouple the creep-deformation component from the total
deformation measured in oedometer tests, which can determine the intrinsic properties
of a 1D normally consolidated curve and creep behavior. Wang et al. [20] proved that the
constitutive model of backfill consolidation and creep can be used to describe the creep
behavior of the backfill under the high stress conditions of confinement. Yin et al. [21]
presented a new simplified hypothesis B method for calculation of consolidation settlement
of a clayey soil with creep. Bezvolev et al. [22] presented a method for the correct deter-
mination of creep and nonlinear viscosity parameters during compression–consolidation
testing. Rezania et al. [23] reproduced soft soil behavior, both after pile installation and
subsequent consolidation, by using an advanced critical-state-based constitutive model,
and used a time-dependent extension of the model to study soil creep and the significance
of its consideration in the overall pile-installation effects. Ran et al. [24] established a cou-
pling model of seepage, deformation, and settlement on the basis of fluid-solid coupling
mechanics theory, so as to calculate the land subsidence. This model includes both primary
consolidation and secondary consolidation. Chen et al. [25] systematically studying the
coupling mechanism of a geotechnical stress–strain model and consolidation and rheology,
established the nonlinear viscoelastic consolidation model, and verified the rationality of
the model through calculation and analysis of actual engineering. Yu et al. [26] adopted
an improved Merchant model to compile the finite element calculation program of the
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nonlinear viscoelastic consolidation model and carried out consolidation-creep finite el-
ement analysis on the settlement of a soft soil foundation. Tang et al. [27] established a
nonlinear viscoelastic consolidation creep model, in which the Duncan–Chang model was
used to describe the instantaneous elasticity of soil and the Burgers model was used to
describe the viscoelasticity. Sun et al. [28] established a new one-dimensional consolidation
differential equation based on the Terzaghi one-dimensional consolidation theory with
the modified Singh–Mitchell empirical creep model. Liu et al. [29] analyzed the influence
of the consolidation and creep characteristics of the composite soil on the stability of a
dam foundation, established an improved nonlinear Nishikan model, and obtained the
analytical formula of viscoplastic strain rate. The vertical displacement distribution and
reinforcement range of the dam structure under various working conditions were obtained
through an example.

As for tests about consolidation and creep behavior, Jia et al. [30] conducted a series of
triaxial unloading tests with frozen clay subjected to long-term high-pressure K0 consolida-
tion before freezing, which indicated that the creep behavior of frozen clay is affected by
the consolidation time and consolidation stress. Ghezal et al. [31] used chemical admixtures
and commercially ternary blended cements to produce self-consolidating concrete, which
showed that the magnitude of flexural creep varies widely depending on the properties of
the polycarboxylic chemical admixture in use. Kamoun et al. [32] carried out disturbed
clay samples to analyze their creep behavior, which showed that the variation of axial creep
strain is correlated with time in a semi-logarithmic function. Jarad et al. [33] investigated
the impact of temperature on the consolidation behavior of saturated compacted clays,
which showed that the pre-consolidation pressure of both clays decreases as the tempera-
ture increases, while it decreases as the strain rate decreases, and the creep index increases
as the temperature increases for both clays. Ghio et al. [34] studied the compressibility
and creep of a diatomaceous soil from Mejillones Bay in northern Chile, which indicated
that undisturbed samples are over-consolidated, although highly compressible after yield-
ing and have significant creep strains. Rezania et al. [35] studied the one-dimensional
(1D) time-dependent behavior of natural and reconstituted London Clay samples under
saturated and unsaturated conditions. The tests results revealed stress dependency and
suction dependency of primary and secondary consolidation responses of the soil sam-
ples. Ter-Martirosyan et al. [36] proposed that identification of concrete moisture content
depending on relative air humidity, the groundwater filtration flow, and the influence of
the filter cake at the contact between ground and concrete, make it possible to take account
of the effect of soil conditions on concrete creep. Wang et al. [37] studied the influence
of water content and normal stress on the coupling characteristics of consolidation and
creep of loess, deduced the stress–strain time relationship equation of loess, and verified
the model by using BP neural network. Zhang et al. [38] observed the samples of soft soil
in the Huangshi area before and after creep by scanning electron microscopy, analyzed its
consolidation and creep characteristics and microscopic mechanism, and concluded that
improving the drainage property of soil in the process of soft soil foundation reinforcement
can increase its consolidation degree and reduce the influence caused by creep.

Based on the research status of consolidation and creep of soil mentioned above, it
has been found that most of the research on soil creep characteristics has been focused on
soft soil and clay, and the applicable empirical model and theoretical model have been
established respectively. As a new material to treat road diseases in seasonally frozen
areas, more attention should be paid to the continuous deformation property of modified
soil under long-term load. For this paper, an experimental study on the consolidation
and creep characteristics of two new types of subgrade modified soil was carried out,
the relationship between the deformation of the modified soil and time is discussed, and
the influence of water content and compaction degree on the creep characteristics of the
modified soil was analyzed. Some meaningful conclusions were obtained, which can
provide reliable parameters for the design of modified soil subgrade and guide practical
engineering applications.
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2. Materials and Methods
2.1. Raw Materials

The crumb rubber particles used in this paper were taken from Changchun Rubber
Products Factory and are recycled products of waste rubber products. Although the
crumb rubber particles could produce certain harmful substances and cause pollution, such
pollution is within the prescribed range [9,11,39]. The particles are reliable with uniform
size and no impurities, of diameter 1–1.5 mm, and apparent density 1.29 g/cm3.

The oil shale waste residue used in this paper was semi-coke residue, produced in
Wangqing County, Jilin Province, with an apparent density of 2.4 g/cm3 and a specific
surface area of 16.2 m2/g.

The fly ash used in this paper was taken from a thermal power plant in Changchun
City, which is Grade F, Class I, Si-Al type fly ash. When dry, it is a fine powder and has the
nature of volcanic ash.

The silty clay used in this paper was taken from the homogeneous soil layer below
10 m of a construction site in Changchun City, and is used for typical subgrade filling in
Northeast China.

Based on the research results in references [10,39], the optimal mix ratio of the two
modified soils is given. The mass percentage of the crumb rubber modified fly ash soil
(CRFS) is as follows: fly ash: silty clay: rubber particles = 32.7:65.3:2; the mass percentage
of the oil shale waste residue modified fly ash soil (OSFS) is as follows: oil shale waste
residue: fly ash: silty clay = 2:1:2.

According to the Specifications for Design of Highway Subgrades (JTG D30-2015) [40],
the specific indexes of CRFS and OSFS are shown in Table 1.

Table 1. Physical properties of the two modified soils.

Index Liquid Limit (%) Plastic Limit (%) Plasticity
Index

Optimum Moisture
Content (%)

Maximum Dry
Density
(g/cm3)

CRFS 38.3 24.9 13.4 15.38 1.73
OSFS 39.4 26.9 12.5 12.8 1.67

2.2. Composition Analysis

The mineral and chemical constituents of oil shale waste residue, fly ash, and silty
clay were analyzed by X-ray diffraction (XRD) and Fourier transform infrared absorption
spectroscopy (FTIR), which are shown in Figure 1 and Table 2.

Table 2. Chemical composition of the three raw materials.

Composition SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 Loss on Ignition

Oil Shale
Residue 56.28 13.44 7.22 6.42 2.49 2.31 1.84 0.59 8.56

Fly Ash 63.55 22.00 3.09 0.92 1.08 0.75 3.08 1.10 3.19
Silty Clay 68.76 14.53 4.13 1.25 1.32 1.99 3.07 0.73 3.56

As shown in Figure 1 and Table 2, oil shale residue and silty clay are composed
of quartz, illite, and montmorillonite, while fly ash is composed of quartz, mullite, and
amorphous substance. The chemical composition of the three raw materials is similar, and
they all contain a lot of SiO2 and Al2O3.
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2.3. Preparation of the Modified Soil

One-dimensional consolidation-creep test was carried out in this study. The test
apparatus is a single lever consolidation apparatus. The sample is a cylindrical soil column
with a diameter of 61.8 mm and a height of 20 mm, as shown in Figure 2.

Materials 2021, 14, x FOR PEER REVIEW 6 of 22 
 

 

  
(a) Single lever consolidation apparatus (b) Specimen 

Figure 2. Diagrams of test apparatus and specimen. 

The sample was prepared by the static pressure method. All kinds of raw materials 
are pretreated by crushing and drying to prepare uniform modified soil with different 
moisture content, and the processed material is sealed for 24 h to ensure sufficient mois-
ture diffusion. According to the compaction degree, the quality of the modified soil re-
quired by the ring cutter specimen is calculated, and the soil is pressed into the ring cutter 
by the static pressure method. Finally, the surface of the ring cutter is scraped flat with 
the soil scraper. The prepared sample is wrapped with plastic wrap to prevent moisture 
loss for subsequent tests. 

2.4. Test Scheme 
One-dimensional consolidation-creep tests were carried out for CRFS and OSFS re-

spectively. The test process is as follows: 
1. Sample preparation. Soil samples were prepared according to the Test Methods of 

Soils for Highway Engineering (JTG E40-2007) [41], with 5 samples for each of the 
two modified soils, as shown in Table 3. 

2. Sample installation. The sample is loaded into the protective ring and placed on the 
pervious stone. The top surface of the sample is placed on the pervious stone and the 
pressure transmission plate and placed in the middle of the pressure frame. Direc-
tions are as follows. Turn the hand wheel clockwise until the lever reaches the top, 
then turn it counterclockwise 1 or 2 times. Make the pressure head face to face with 
the pressure plate and adjust the screws on the beam so that the container can be 
freely taken and put. Before starting the test, apply a 1 kPa preload (25.5 g) and adjust 
the dial gauge to zero. After preloading, the load can be applied step by step. 

3. Loading scheme. The loading method adopted in this paper is hierarchical loading, 
and the instrument leverage ratio is 1:12. The loading sequence is 25-50-100-200-400-
800 kPa, that is, the loading ratio is 1. During the experiment, wet cotton was used to 
surround the upper and lower permeable water surfaces to avoid moisture evapora-
tion. The reading time points are 0 s, 15 s, 1 min, 2 min, 4 min, 6 min, 9 min, 12 min, 
16 min, 20 min, 25 min, 35 min, 45 min, 60 min, 90 min, 2 h, 4 h, 10 h, 23 h, 24 h at the 
beginning of the test. The data were then recorded every 24 h. When the deformation 
of the specimen is less than 0.005 mm/d, that is, the deformation in two days is less 
than 0.01 mm, it can be considered that the deformation is stable, and the next level 
of load can be applied. 

4. Test data processing and analysis. 

  

Figure 2. Diagrams of test apparatus and specimen.



Materials 2021, 14, 5138 6 of 20

The sample was prepared by the static pressure method. All kinds of raw materials
are pretreated by crushing and drying to prepare uniform modified soil with different
moisture content, and the processed material is sealed for 24 h to ensure sufficient moisture
diffusion. According to the compaction degree, the quality of the modified soil required
by the ring cutter specimen is calculated, and the soil is pressed into the ring cutter by the
static pressure method. Finally, the surface of the ring cutter is scraped flat with the soil
scraper. The prepared sample is wrapped with plastic wrap to prevent moisture loss for
subsequent tests.

2.4. Test Scheme

One-dimensional consolidation-creep tests were carried out for CRFS and OSFS re-
spectively. The test process is as follows:

1. Sample preparation. Soil samples were prepared according to the Test Methods of
Soils for Highway Engineering (JTG E40-2007) [41], with 5 samples for each of the
two modified soils, as shown in Table 3.

2. Sample installation. The sample is loaded into the protective ring and placed on
the pervious stone. The top surface of the sample is placed on the pervious stone
and the pressure transmission plate and placed in the middle of the pressure frame.
Directions are as follows. Turn the hand wheel clockwise until the lever reaches the
top, then turn it counterclockwise 1 or 2 times. Make the pressure head face to face
with the pressure plate and adjust the screws on the beam so that the container can
be freely taken and put. Before starting the test, apply a 1 kPa preload (25.5 g) and
adjust the dial gauge to zero. After preloading, the load can be applied step by step.

3. Loading scheme. The loading method adopted in this paper is hierarchical loading,
and the instrument leverage ratio is 1:12. The loading sequence is 25-50-100-200-
400-800 kPa, that is, the loading ratio is 1. During the experiment, wet cotton was
used to surround the upper and lower permeable water surfaces to avoid moisture
evaporation. The reading time points are 0 s, 15 s, 1 min, 2 min, 4 min, 6 min, 9 min,
12 min, 16 min, 20 min, 25 min, 35 min, 45 min, 60 min, 90 min, 2 h, 4 h, 10 h, 23 h,
24 h at the beginning of the test. The data were then recorded every 24 h. When the
deformation of the specimen is less than 0.005 mm/d, that is, the deformation in two
days is less than 0.01 mm, it can be considered that the deformation is stable, and the
next level of load can be applied.

4. Test data processing and analysis.

Table 3. Preparation scheme of modified soil specimen.

Modified Soil
Control Indicators

Moisture Content Dry Density

CRFS

13.38% 1.6608 g/cm3

15.38% 1.6608 g/cm3

17.38% 1.6608 g/cm3

15.38% 1.5570 g/cm3

15.38% 1.6089 g/cm3

OSFS

10.80% 1.5984 g/cm3

12.80% 1.5984 g/cm3

14.80% 1.5984 g/cm3

12.80% 1.4985 g/cm3

12.80% 1.5484 g/cm3

3. Results and Discussion
3.1. Strain–Time Curve Analysis

The strain–time variation curves of the two modified soils under different water
contents and compactness are shown in Figures 3 and 4.
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Figure 4. Strain–time curves of samples with different compaction degrees.

It can be seen from the figures that the creep deformation of OSFS is smaller than
that of CRFS, which is about 40% of the latter. It is also less affected by water content and
compaction degree. The strain–time curves of the sample in the first few load stages almost
coincide. The possible reason is that the OSFS contains less fly ash and less pores between
the soil particles.

It is to be noted that the strain–time curve of the first load stage is abnormal. The
possible reason is that when the load is applied, the gas discharge rate is much faster than
the pore water discharge rate because the soil sample is not completely saturated. The
reduction of gas volume accounts for a large part of the deformation of the soil samples, so
the initial deformation rate is faster. With the discharge of gas, the soil deformation in the
subsequent stages is mainly caused by the discharge of pore water, so the deformation rate
decreases gradually. Therefore, the first stage of load is omitted in the subsequent analysis.

Coordinates of the strain–time curve under 50 kPa were translated, and the “Chen
method” was used to process the curve under subsequent loads according to the Test
Methods of Soils for Highway Engineering (JTG E40-2007) [23]. The processed strain–time
curve is shown in Figures 5 and 6. “Chen’s method” takes the first stage load as the basis,
and superimposes the creep increment of the next stage load with the same duration to
obtain the creep curve with the load of 24σ. If the cascade loading is continued, the same
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treatment can be performed on the basis of the upper stage. In this way, n creep curves at
different stress levels can be obtained.
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strain–time curve, as shown in Figures 7 and 8. 

Figure 6. Strain–time curves of samples with different compaction degrees after processing.

After analyzing the treated curve cluster, it can be concluded that the strain–time
curve presents two stages: decay creep and constant velocity creep. Due to the restriction
of the lateral limit, the soil is constantly compacted and cannot move laterally, so it cannot
show the failure form of soil in the accelerated creep stage. An instantaneous strain will be
generated at the moment when the load is applied, which increases with the increase of
stress. When the stress level is low, the creep curve shows a stable attenuation. The amount
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of deformation gradually increases with the increase of time. After 4 h, the increase of
deformation slows down and finally becomes stable. In the stable stage, the strain rate
tends to zero with time.

The strain rate of the modified soil is obtained by taking the first derivative of the
strain–time curve, as shown in Figures 7 and 8.
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Figure 8. Strain rate–strain curves of modified soil with different compaction degrees.

It can be seen from Figures 7 and 8 that the strain rate slows down gradually with the
increase of strain and finally approaches zero. In addition, the initial strain rate increases
with the increase of consolidation pressure, water content, and compaction degree. The
strain rate of OSFS is less than that of CRFS, which is about 80% of the latter.
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Taking Figure 7b as an example, the curve with consolidation stress of 800 kPa was
enlarged as shown in Figure 9. It was found that the curve could be divided into three
stages: the first stage is the period when the load is just applied and the slope of the
curve is very high, which is the instantaneous deformation stage; the second stage has the
inflection point, the slope decreases and the strain rate slows down gradually, which can
be considered as the main consolidation stage. In the third stage, another inflection point
appears in the curve, the strain rate tends to be stable and the curve gradually approaches
the horizontal line, which can be considered as the secondary consolidation stage.
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Figure 9. Enlarged view of end of strain rate–strain curve.

The curve before and after the second inflection point is approximately an oblique line,
and the two extended lines intersect at a point, which can be regarded as the demarcation
point of primary consolidation and secondary consolidation. According to this method,
the end time of main consolidation of the two kinds of modified soil can be obtained, of
which the CRFS is about 90–120 min, and the OSFS is about 240–600 min.

The secondary consolidation coefficient Cα is calculated as follows:

Cα = − ∆e
log10 t2 − log10 t1

, (1)

where ∆e is the change of porosity ratio; t2 is the end time of the test; t1 main consolidation
end time.

The secondary consolidation coefficients of the two modified soils under different
water content and different consolidation pressures are shown in Tables 4 and 5.

Table 4. Secondary consolidation coefficient of modified soil with different water contents.

Consolidation
Pressure

CRFS OSFS

13.38% 15.38% 17.38% 10.8% 12.8% 14.8%

50 kPa 0.00186 0.00175 0.00174 0.00157 0.00246 0.00366
100 kPa 0.00382 0.00367 0.00421 0.00312 0.00468 0.00649
200 kPa 0.00504 0.00513 0.00573 0.00448 0.00638 0.00855
400 kPa 0.00609 0.0069 0.00744 0.00531 0.00772 0.01069
800 kPa 0.00823 0.00901 0.00999 0.00641 0.00898 0.01231
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Table 5. Secondary consolidation coefficient of modified soil with different compaction degrees.

Consolidation
Pressure

CRFS OSFS

90% 93% 96% 90% 93% 96%

50 kPa 0.00239 0.00217 0.00175 0.00218 0.00266 0.00246
100 kPa 0.00465 0.00448 0.00367 0.00486 0.00512 0.00468
200 kPa 0.00659 0.00595 0.00513 0.00755 0.00657 0.00638
400 kPa 0.00806 0.00723 0.0069 0.00964 0.00761 0.00772
800 kPa 0.01064 0.00962 0.00901 0.01064 0.00882 0.00898

It can be seen that when the consolidation pressure is low, the secondary consol-
idation coefficient of CRFS does not change significantly with the water content, but
slightly increases with the increase of water content at the higher consolidation pressure.
The secondary consolidation coefficient of OSFS increases linearly with the increase of
water content.

The secondary consolidation coefficient does not change significantly with the com-
paction degree when the consolidation pressure is low. The secondary consolidation
coefficient decreases significantly with the increase of compaction degree at higher con-
solidation pressure. When the water content and compaction degree are constant, the
secondary consolidation coefficient of the two kinds of modified soil increases in attenua-
tion with the increase of consolidation pressure, which can be fitted by logarithmic function,
and R2 is greater than 0.98. Among them, the secondary consolidation coefficient of OSFS
is slightly larger, which is about 1.2 times that of CRFS.

3.2. Analysis of Pore Ratio–Stress Curve

Pore ratio–stress curves of the two modified soils are plotted as shown in Figures 10 and 11.
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It can be seen from Figures 10 and 11 that the relationship between the porosity ratio
and the consolidation pressure of the two soils is non-linear, and the latter part of the
curve is close to a straight line when the consolidation pressure is high. The curves under
different conditions are parallel. The variation trend of OSFS is gentler than that of CRFS,
indicating that the compressibility of CRFS is stronger.

The compression coefficient av within a certain load range can be calculated by the
pore ratio stress curve:

av =
ei − ei+1

pi+1 − pi
=

(Si+1 − Si)(1 + e0)/1000
pi+1 − pi

, (2)
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Figure 11. Pore ratio–stress curve of modified soil with different compaction degrees.

The compression modulus Es within a certain load range is calculated according to
Equation (3):

Es =
pi+1 − pi

(Si+1 − Si)/1000
=

1 + e0

av
, (3)

where, ei is pore ratio after compression and stabilization under a certain load; pi is a load
value (kPa); Si is the settlement amount under a certain level of load (mm/m); e0 is the
pore ratio of the sample at the beginning of the test.

The compressibility coefficient of the modified soil with different water content and
compactness is shown in Figures 12 and 13.

It can be seen that the compression coefficient of the two modified soils increases with
the increase of water content, decreases with the increase of compaction degree, decreases
exponentially with the increase of consolidation stress, and finally tends to a constant value.
In addition, the compressibility coefficient of CRFS is greater than that of OSFS.
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3.3. Pore Ratio–Stress Logarithmic Curve Analysis

In order to obtain the consolidation yield stress of the two kinds of modified soil, the
logarithmic curve of porosity ratio and stress of the modified soil was drawn, as shown in
Figures 14 and 15.
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Consolidated yield stresses of two kinds of modified soils can be obtained by the
Casagrande plotting method. The horizontal line and tangent line are respectively made at
the point of the maximum curvature of the curve, and then the angle bisector of the two
lines is made to extend the straight line at the end of the porose-stress logarithmic curve
and intersect the angle bisector. The abscess stress value corresponding to the intersection
point is the consolidated yield stress of the soil sample.

Consolidated yield stresses of the two modified soils with different water contents
and compactness are shown in Tables 6 and 7.

Table 6. Consolidation yield stress of modified soil with different water contents (kPa).

Modified Soil CRFS OSFS

Water Content 13.38% 15.38% 17.38% 10.8% 12.8% 14.8%

Consolidated Yield
Stresses 191 173 180 171 168 155

Table 7. Consolidation yield stress of modified soil with different compaction degrees (kPa).

Modified Soil CRFS OSFS

Compaction Degrees 90% 93% 96% 90% 93% 96%

Consolidated Yield
Stresses 179 177 173 123 149 168

It can be seen from the above table that the consolidation yield stress of the two
modified soils decreases with the increase of water content. The consolidated yield stress
of CRFS shows little change with the increase of compaction degree, but increases with the
increase of compaction degree.

The compressibility of soil is usually evaluated by the compression index CC, calcu-
lated according to the following formula:

Cc =
ei − ei+1

log10 Pi+1 − log10 Pi
, (4)

The compression index of the two modified soils under different water contents and
compactness is shown in Figures 16 and 17.
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Figure 17. Compression index of modified soil with different compaction degrees.

It can be seen from the figure that the compression index of the two modified soils
does not change significantly when the stress level is low, but increases linearly when the
stress level is high. The compression index of the two modified soils increases with the
increase of water content but has no obvious change rule with the increase of compaction
degree. Moreover, the compression index of CRFS is higher than that of OSFS, but the
compression index of the two modified soil is far less than 0.2, indicating that the two kinds
of soil are low compressibility soils.

3.4. Data of Dial Indicator–Time Square Root Curve Analysis

The data of dial indicator d (mm) was taken as ordinate and time square root
√

t was
taken as abscissa and proceeded as follows. Extend the line at the beginning of the d−

√
t

curve and intersect the vertical axis at ds (theoretical zero).
Take another straight line through ds, and its abscissor is 1.15 times the abscissor of

the previous straight line, then the square of the time corresponding to the intersection
point of the later straight line and the d−

√
t curve is the time t90 required for the degree

of consolidation to reach 90%.
Consolidation coefficient Cv is calculated according to Formula (5):

Cv =
0.848h

2

t90
, (5)

where, Cv is the consolidation coefficient (cm2/s), calculated to three significant digits; the
calculation accuracy of h is 0.01, which is equal to half of the average value of the initial
and final height of the sample under a certain load.

The consolidation coefficient of the modified soil with different water contents and
compactness is shown in Figures 18 and 19.

As can be seen from Figures 18 and 19, when the consolidation pressure increases,
the consolidation coefficient of CRFS shows an increasing trend. The greater the degree of
compaction, the greater the consolidation coefficient. The influence of water content on the
consolidation coefficient shows no obvious rule. The consolidation coefficient of OSFS with
different water contents varies with the consolidation pressure but tends to a certain value.
The consolidation coefficient of OSFS with different compactness decreases first and then
increases with the increase of the consolidation pressure, and the effect of the consolidation
pressure on the consolidation coefficient shows no obvious rule.
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4. Conclusions

Contrastive analysis was made on the data of the consolidation-creep test of CRFS
and OSFS under different water contents and compaction degrees, and the influence of
water content and compaction degree on the consolidation and creep characteristics of the
modified soil was evaluated. The following conclusions can be drawn:

1. The higher the water content and the lower the compaction degree, the greater the
creep deformation of the modified soil. The creep deformation of OSFS is relatively
small, which is about 40% of that of CRFS, and it is also less affected by water content
and compaction degree;

2. The secondary consolidation coefficient of the two modified soils increases with the
increase of water content, decreases with the increase of compaction degree, and
increases in attenuation with the increase of consolidation pressure. The secondary
consolidation coefficient of OSFS is slightly larger, which is about 1.2 times that
of CRFS;

3. The compressibility coefficient of the two modified soils increases with the increase
of water content, decreases with the increase of compaction degree, decreases expo-
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nentially with the increase of consolidation pressure, and finally tends to a constant
value. The compressibility coefficient of OSFS is about 73% of that of CRFS;

4. The consolidation coefficient of CRFS increases with the increase of compaction
degree, while the consolidation coefficient of OSFS improves with the increase of
compaction degree without an obvious rule.

Water content and compaction degree are crucial to the stability of the subgrade.
This paper studied the consolidation creep behavior of two kinds of modified soils under
different water contents and compaction degrees. The research results provide data support
and reference for practical engineering applications of the two kinds of modified soils.
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