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Naturally derived bioactive peptides with antihypertensive activities serve as promising
alternatives to pharmaceutical drugs. There are few relevant reports on the mapping
relationship between the EC50 value of antihypertensive peptide activity (AHTPA-EC50) and
its corresponding amino acid sequence (AAS) at present. In this paper, we have
constructed two group series based on sorting natural logarithm of AHTPA-EC50 or
sorting its corresponding AAS encoding number. One group possesses two series, and
we find that there must be a random number series in any group series. The random
number series manifests fractal characteristics, and the constructed series of sorting
natural logarithm of AHTPA-EC50 shows good autocorrelation characteristics. Therefore,
two non-linear autoregressive models with exogenous input (NARXs) were established to
describe the two series. A prediction method is further designed for AHTPA-EC50

prediction based on the proposed model. Two dynamic neural networks for NARXs
(NARXNNs) are designed to verify the two series characteristics. Dipeptides and
tripeptides are used to verify the proposed prediction method. The results show that
the mean square error (MSE) of prediction is about 0.5589 for AHTPA-EC50 prediction
when the classification of AAS is correct. The proposed method provides a solution for
AHTPA-EC50 prediction.
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1 INTRODUCTION

Hypertension is a clinical syndrome characterized by increased systemic arterial blood pressure,
which can be accompanied by functional or organic damage of the heart, brain, kidney, and
other organs. The renin–angiotensin system (RAS) controls blood pressure by regulating the
volume of blood in blood vessels. The angiotensin-converting enzyme (ACE) is the core
component of the RAS. The ACE can convert inactive angiotensin I into angiotensin II with
vasoconstriction, which indirectly increases blood pressure (Zhang et al., 2000). Therefore, ACE
inhibitors are widely used as drugs for the treatment of cardiovascular diseases (Stone, 2018).
Antihypertensive active peptide is an effective ACE inhibitor (Tu et al, 2018a; Tu et al, 2018b; Wu
et al, 2019), which has attracted great attention in the treatment and prevention of
hypertension. The EC50 value (sample concentration when the ACE inhibition rate is 50%)
describes the activity of antihypertensive peptide, which is the most important index to select
antihypertensive active peptide. Some research studies focus on feature representation (Tong,
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et al, 2008; Manavalan et al, 2019), and some research studies
focus on identification (Majumder, and Wu, 2010). Machine
learning (ML) approaches are becoming more and more
popular in bioinformatics (Baldi et al., 2001; Libbrecht and
Noble, 2015; Zou and Qiliu, 2019; Yang et al., 2020; Zhang
et al., 2021). Some research studies are associated with
classification, and some are associated with regression. In
2015, Kumar et al. developed four different model types for
predicting AHTPs with varied lengths using ML approaches
(Kumar et al., 2015a; Kumar et al., 2015b). Another paper on
AHTP prediction used random forest (RF) approaches (Win
et al., 2018). However, there is great uncertainty in the
relationship between the AAS of antihypertensive peptides
and its corresponding AHTPA-EC50. So far, the mapping
relationship between AHTPA-EC50 and its corresponding
AAS has not been reported. The existing published data
show that AHTPA-EC50 has multi-scale characteristics. It is
difficult to establish a deterministic model between the AAS
and AHTPA-EC50 directly.

Fractal phenomena generally exist in nature. Fractal data
have the characteristics of instability, self-similarity, and
multi-scale (Ruderman, 1996; Ghosh and Somvanshi, 2008;
Al-Hamdan, et al, 2010; Al-Hamdan et al, 2012). The spectrum
of fractal data is consistent (Pentland, 1984; Nill and Bouzas,
1992; Wornell and Oppenheim, 1992). These characteristics
can be used to describe physical phenomena with statistical
fractal. Fractional Brownian motion (FBM) (Chow, 2011; Kim
and Kim, 2004; Fouché and Mukeru, 2013) is more universal
than ordinary Brownian motion, and it can better describe the
fractal phenomena in nature. FBM can be modeled and
described by the time series of dynamic system, and time-
series analysis is an important method of system identification
and analysis. Yule first proposed the autoregressive (AR)
model to predict the law of market change in 1927. In the
1960s, time-series analysis made a great progress in spectral
analysis and estimation. The research of linear time-series
model has been greatly developed from the AR model to
autoregressive moving average (ARMA) modeling theory.

Engle and Granger developed estimation procedures, tests,
and empirical examples for the relationship between
co-integration and error correction models (Engle and
Granger 1987), and Hannan and Deistler proposed the
multivariable VARMA model and VARMAX model
(Hannan and Deistler, 1988). However, Moran proposed the
limitations of linear model in the 1950s (Moran, 1953). The
non-linear time-series model follows to become an attracting
research topic until the late 1970s and early 1980s. These
research studies include the threshold autoregressive model,
exponential autoregressive model, bilinear model, non-linear
autoregressive model, and state-dependent model. Tong et al.
gave the threshold autoregressive model (Tong, 1983), and
Ozaki proposed an exponential autoregressive model (Ozaki,
1980). The system identification is generally based on the
complete clarity of input–output causality. In practical
application, the system output can be measured, but the
input of some specific systems is difficult to observe and
measure. In that situation, it is not easy to determine the
causal relationship between input and output. In that case,
the traditional system identification method is difficult to
apply. Although the system’s input cannot always be
determined, it is certain that there is a relationship between
some known parameters or data and the system output. These
known parameters or data can directly or indirectly affect the
system output. If the relevant data are also regarded as the
system input, then the time-series model with exogenous input
is determined. Tong analyzed the non-linear time series with
exogenous input, established the relationship between non-
linear time series and non-linear dynamic system (chaos), and
studied the prediction based on non-linear time series (Tong,
1990).

In this paper, a kind of time series construction method on
AHTPA-EC50 and its corresponding AAS is proposed firstly.
We can find a lot of fractal characteristics from the two group
time series. Then, the two groups of constructed series are
modeled as two different NARX time-series models.
Furthermore, two NARXNNs are used to perform the

FIGURE 1 | Constructed time series of natural logarithm of AHTPA-EC50 and its corresponding amino acid combination.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8017282

Xie et al. Modeling and Prediction of AHTPA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


proposed model. And then we further proposed a prediction
method for AHTPA-EC50 based on two NARXNNs and ML
classification algorithms. The model and prediction method are
useful and meaningful on antihypertensive active peptide
research, drug design, and industrial production.

2 MATERIALS AND METHODS

2.1 Analysis of AHTPA-EC50 and Its
Corresponding AAS
2.1.1 Statistical Analysis of AHTPA-EC50

559 group AHTPA-EC50 data and their corresponding AAS
are shown in Figure 1. Due to the difficulty of display,

Supplementary Material marks the corresponding AAS
every four EC50 values (interval � 3). The statistical
histogram is analyzed, and histogram analysis of AHTPA-
EC50 is shown in Figure 2A. We can see that AHTPA-EC50 is
concentrated on the right side of the longitudinal axis of the
coordinate and there is some very large AHTPA-EC50 value
in these data. The characteristics of large distribution span and
asymmetry appear in AHTPA-EC50 data. Comparing with the
normal distribution data with the same mean and variance, it can
be seen that AHTPA-EC50 data deviate very far from the normal
distribution. In order to reduce the scale of AHTPA-EC50, the
natural logarithm of AHTPA-EC50 data is calculated. The
distribution of natural logarithm of AHTPA-EC50 is further
analyzed, and the histogram distribution is shown in Figure 2B.
Compared with the normal distribution of the same mean and
variance, the natural logarithm histogram of AHTPA-EC50 cut off
more slowly in the tail, and it shows the characteristics of a long tail.
This is an important feature of fractal data.

2.1.2 Encoding for AAS
The expression of amino acid is different from the digital
number, and it is a symbolic quantity that cannot be directly
quantified. In order to analyze the relationship between the
AAS and its corresponding AHTPA-EC50, it is necessary to
encode for the AAS. The numerical definitions of different
amino acids are shown in Table 1. The AAS is digitally
encoded in a 21 base system. Because the number 0 cannot
appear in the first place of the combined code, the number 0 is
not defined here.

2.1.3 Constructed Time Series and Its Time–Frequency
Characteristics
(1) Constructed time series based on sorting code of AAS

As mentioned above, the AAS can be converted to decimal
digit by numerical definitions of amino acids. After sorting
the natural logarithm of coding numbers from small to large,
the natural logarithm of AHTPA-EC50 can be constructed.
The constructed time series is shown in Figure 3A. Multi-scale
wavelet transform is performed to the constructed AHTPA-
EC50 time series, and the time–frequency distribution is
shown in Figure 3B. There is also no obvious law between
high-energy data and series number and frequency in
Figure 3B, and different time–frequency relationships show
similar patterns.

(2) Constructed time series based on sorting AHTPA-EC50

TABLE 1 | Numerical definitions of amino acids.

Amino
acids

A C D E F G H I K L

Numerical definitions 1 2 3 4 5 6 7 8 9 10
Amino acids M N P Q R S T V W Y
Numerical definitions 11 12 13 14 15 16 17 18 19 20

FIGURE 2 | Statistical histogram: frequency histogram of (A) AHTPA-
EC50 and (B) natural logarithm of AHTPA-EC50.
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We also constructed natural logarithm of AHTPA-EC50 time
series by sorting the data from small to large. The AAS is
converted to decimal digit by numerical definitions of amino
acids. After sorting the natural logarithm of AHTPA-EC50 from
small to large, the time series of natural logarithm of coding
value of AAS is also constructed. The constructed time series is
shown in Figure 4A. Multi-scale wavelet transform is performed
to the natural logarithm of coding value of AAS. The
constructed time series of AAS and its time–frequency
distribution are shown in Figure 4B. And there is no obvious
law between high-energy data and series number and frequency.
However, different time–frequency relationships show similar
patterns.

In summary, the relationship between the natural logarithm of
AHTPA-EC50 and its corresponding natural logarithm of coding

AAS is special. If one of the series is sorted, the other will be a
random number series. We deduce that there is not a direct
regression modeling for their relationship.

The Haar wavelet is further used to decompose the
reconstructed time series to analyze fractal characteristics
(data in Figure 3A) in multiple scales. The low-frequency
data of different scales are shown in Figures 5A,B,C,D. The
Hurst index of the time series is estimated by multi-scale
wavelet transform data, as shown in Figure 6A, in which the
wavelet transform scales are 1–9. The estimated Hurst index
is used to generate FBM, and the empirical probability
distribution of the generated FBM data is shown in
Figure 6B. 10,000 FBM data are generated by the Monte
Carlo method here. The probability distribution data
corresponding to the constructed natural logarithm of

FIGURE 3 | Constructed first time series and its multi-scale wavelet
transform: (A) time series of natural logarithm of AHTPA-EC50 and (B)
time–frequency distribution of multi-scale wavelet transform.

FIGURE 4 | Constructed second time series and its multi-scale wavelet
transform: (A) time series of natural logarithm of coding AAS and (B)
time–frequency distribution of multi-scale wavelet transform.
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AHTPA-EC50 are represented in red, and the curve closest to
the constructed natural logarithm of AHTPA-EC50 is shown
in blue. It can be seen that the constructed AHTPA-EC50 is
very close to the FBM time series.

2.2 Non-Linear Autoregressive Time-Series Modeling
and Its Implementation
2.1.4 Correlation Analysis
Although the constructed series shows fractal characteristics,
the relationship between the natural logarithm of coding
value of AAS and its corresponding natural logarithm of
AHTPA-EC50 still needs to be analyzed. Figure 7A shows
the cross-correlation analysis for the first group of
constructed time series, and it shows weak correlation
between the two time series. Figure 7B shows the
autocorrelation analysis for sorting natural logarithm of

AHTPA-EC50. We can see that the sorting natural
logarithm of AHTPA-EC50 showed weak autocorrelation.
Figure 8A shows the cross-correlation analysis for the
second group of time series, and it shows weak correlation
between the two time series. Figure 8B shows the
autocorrelation analysis for constructed natural
logarithm of AHTPA-EC50, and the natural logarithm of
AHTPA-EC50 based on the coding value AAS showed
obvious autocorrelation.

2.1.5 Non-Linear Autoregressive Model With Exogenous
Input
According to the above analysis, the two groups’ constructed
AHTPA-EC50 data are modeled as an autoregressive time series,
and the natural logarithm of coding AAS is used as the exogenous
input parameter. The non-linear autoregressive model with

FIGURE 5 | Multi-scale wavelet decomposition of constructed time series: low frequency data of (A) level 1 wavelet transform, (B) level 2 wavelet transform, (C)
level 3 wavelet transform, and (D) level 4 wavelet transform.
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exogenous input is established to describe the relationship
between the AAS and its corresponding AHTPA-EC50, and
this relationship is described as

y(t) � f[y(t − 1), y(t − 2), ..., y(t − ny)
u(t − 1), u(t − 2), ..., u(t − nu) ], (1)

where y(t), y(t − 1), y(t − 2), ..., y(t − ny) represent time series
at different time and u(t − 1), u(t − 2), ..., u(t − nu) represent
exogenous inputs at different time, y denotes the natural
logarithm of AHTPA-EC50, and u denotes the natural
logarithm of coding AAS value. According to the
characteristics of AAS and its corresponding AHTPA-EC50,
the AAS is defined as the input parameter affecting AHTPA-
EC50 here.

2.1.6 Neural Network Implementation of Model
The NARX model of AHTPA-EC50 and AAS was realized by
the NARXNN. This neural network was performed in Matlab.
The two neural network structures are shown in Figure 9. The
mean square error (MSE) is selected as the performance
function of NARXNN. The Levenberg–Marquardt algorithm
is used for net training. The division ratio of training set,
verification set, and test set in neural network learning samples
is 0.7:0.15:0.15. The delay corresponding to the two
constructed series is 1:3 and 1:2, respectively, and the
hidden layer has 10 neurons.

FIGURE 6 | Estimation of Hurst index of the time series (A) and empirical
probability distribution of FBM with the same Hurst index (B). FIGURE 7 | Correlation analysis of the second group time series. (A)

Cross-correlation with the sorting natural logarithm of coding AAS. (B)
Autocorrelation of natural logarithm of AHTPA-EC50.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8017286

Xie et al. Modeling and Prediction of AHTPA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2.1.7 Prediction Method for AHTPA-EC50

We further proposed a method for AHTPA-EC50 prediction. This
method includes two parts: classification and AHTPA-EC50

prediction. The ML algorithm is used to classify the AAS. The
classification corresponds to different digital segments of
AHTPA-EC50. The feature representation is necessary in this
process. This prediction method is described in Figure 10.
Support vector machine (SVM) is used for classification in this
research.

3 Results
3.1 Prediction Results of the Proposed Model
As mentioned above, there are 559 groups of samples in total.
However, these data include different antihypertensive

peptides, whose length is from 2 to 20. We select the
samples of AAS, whose length is fixed. There are 231
samples of dipeptides and tripeptides in our dataset. They
are larger than other peptides. These data are used to
verify the proposed model and prediction model. We also
constructed two series according to the above method. The
first 200 groups in the first series of samples are used for
training, and the last 31 data are used for validation and
testing. The training results of the constructed series are
shown in Figure 11.

For the first NARXNN corresponding to the first group
series, the training error is 4.895193, the validation error is
4.636605, and the testing error is 3.546904. For the second
NARXNN corresponding to the second group series, the
training error is 0.001881, the validation error is 0.124045,
and the testing error is 0.010165. The second NARXNN has
high accuracy; however, it needs the sorting number, and it
cannot be used for prediction alone. The classification of
the proposed prediction method can provide a rough
location in the series. The first NARXNN also gives an
original estimation value of AHTPA-EC50. The AHTPA-
EC50 will be predicted in the segment of the second
series, and two known term AASs help in prediction. The
known AASs are selected by the rough location and
original estimation value. The second NARXNN is
trained every time; therefore, the output will be changed
slightly. The first and second NARXNNs are trained in
Figures 11A,B.

The AHTPA-EC50 of dipeptides and tripeptides is used to
verify the prediction method. The first 200 groups in the first
series of samples are used for training, and the last 31 data in the
first series are used for testing. The proposed method demands
classification, and we assume that the classification is correct here;
thus, we input the AAS in segments. And the classification is
designed as three classification. AHTPA-EC50 � 1, and median
values of the series are designed as segment points. The results of
prediction are shown in Figure 12. Therefore, when the
classification is correct, the MSE is 0.5589. We also designed a
backpropagation neural network (BPNN) for comparison.
The network structure is designed as 3–10–1. The mean
square error (MSE) is selected as a performance function. The
Levenberg–Marquardt algorithm is used for net training. The
logsig function is set as the input function, and the pure linear
function is used in the second layer. The number of iterations is
set to 1000, the learning rate is 0.1, and the learning target is
0.00001. The results are shown in Figure 13, where test samples
are randomly selected 100 times. The results reveal that the
proposed method has better accuracy than the BPNN.

3.2 Classification of AAS for AHTPA-EC50

As mentioned above, the proposed prediction method
demands a rough position which is used in NARX2
prediction. Two classification and three classification are
designed for the proposed prediction method here. SVM is
used for the classification of AHTPA-EC50 and its
corresponding AAS here. We classify the AAS whose length
is less than three amino acids. 231 samples of dipeptides and

FIGURE 8 | Correlation analysis of the first group time series. (A) Cross-
correlation with the natural logarithm of coding value of AAS. (B)
Autocorrelation of sorting natural logarithm of AHTPA-EC50.
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tripeptides are classified here. For three classification, AHTPA-
EC50 � 1 and median values of the series are designed as
segment points. For two classification, the median value of
the series is designed as the segment point. The label design is
shown in Figure 14.

For two classification, there are 161 training data pairs and 70
testing data pairs which are used for classification. And eight
feature descriptors are extracted from the peptide sequence. They
are the amino acid composition, the digital description of AAS,
the peptide sequence code, and the length of peptide sequence.

FIGURE 9 | Structures of the neural network for the (A) first series and (B) second series.

FIGURE 10 | Prediction method for AHTPA-EC50–based NARX.
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The classification results are shown in Figure 15. We can see that
the two classification accuracy is 68.57% and the three
classification accuracy is 60.00%. Due to the limitations in
training, the effect of three classification is not very good. If
the quantity of training sample increases and other ML
algorithms are also used, we think the accuracy can be improved.

4 Conclusion
In this paper, the statistical distribution of AHTPA-EC50 is
analyzed. Two group time series are constructed between
AHTPA-EC50 and its corresponding AAS. According to the
characteristics of constructed time series, AHTPA-EC50 is
modeled by the NARX model. Then, a prediction method of
AHTPA-EC50 is proposed. Dipeptides and tripeptides are used

to verify the proposed model and prediction method. The
results show that the MSE is 0.5589 when the classification is
correct. Finally, we tried to classify the dipeptide and tripeptide
data by SVM. Although the accuracy of classification is not
very high, it is still feasible. The proposed model and
prediction method provide a solution for AHTPA-EC50

prediction, and they are useful and meaningful on
antihypertensive active peptide research, drug design, and
industrial production (Chen et al., 2020; Granger and
Joyeux 1980).

FIGURE 11 | Training and testing data: (A) the first NARXNN prediction
for the first group series and (B) the second NARXNN prediction for the
second group series.

FIGURE 12 | Prediction results by the proposed method.

FIGURE 13 | Prediction results by the BPNN.
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