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Nonlinear dynamics of topological 
Dirac fermions in 2D spin‑orbit 
coupled materials
Rajesh K. Malla1,2 & Wilton J. M. Kort‑Kamp1*

The graphene family materials are two‑dimensional staggered monolayers with a gapped energy band 
structure due to intrinsic spin‑orbit coupling. The mass gaps in these materials can be manipulated 
on‑demand via biasing with a static electric field, an off‑resonance circularly polarized laser, or an 
exchange interaction field, allowing the monolayer to be driven through a multitude of topological 
phase transitions. We investigate the dynamics of spin‑orbit coupled graphene family materials to 
unveil topological phase transition fingerprints embedded in the nonlinear regime and show how 
these signatures manifest in the nonlinear Kerr effect and in third‑harmonic generation processes. We 
show that the resonant nonlinear spectral response of topological fermions can be traced to specific 
Dirac cones in these materials, enabling characterization of topological invariants in any phase by 
detecting the cross‑polarized component of the electromagnetic field. By shedding light on the 
unique processes involved in harmonic generation via topological phenomena our findings open an 
encouraging path towards the development of novel nonlinear systems based on two‑dimensional 
semiconductors of the graphene family.

Graphene is the typical go-to material to investigate the optoelectronic response of two-dimensional (2D) 
 systems1,2 because of its extraordinary electron  mobility3, tunable linear electronic  conductivity4, and potential 
for strong-light matter interactions at sub-wavelength  scales5. Although it supports quantum Hall states in the 
presence of strong magnetic  fields6–8, the intrinsically weak spin-orbit  coupling9 severely limits graphene’s suit-
ability to study topological phase  transitions10,11 in low-dimensional materials. The search for alternative topo-
logically non-trivial 2D structures with characteristics similar to graphene recently ended with the synthesis of 
 silicene12,  germanene13,  stanene14, and  plumbene15. The newer members of the graphene family materials (GFM) 
have a buckled honeycomb lattice with silicon, germanium, tin, or lead atoms occupying the lattice  sites16–18. 
Unlike graphene, the strong spin-orbit coupling in these systems results in a gapped bulk energy band-structure 
and protected one-way edge states characteristic of topological insulators. Strikingly, they can be driven through 
a variety of phase transitions (Fig. 1a,b) by actively controlling the mass gap via external  interactions19, which 
could enable unprecedented all-in-one material multi-optoelectronic functionalities with potential applications 
to spintronics and valleytronics.

Various recent works have investigated ultrafast and nonlinear effects in topologically trivial 2D  materials20–35 
and in topological  systems36–40. Unravelling the interplay between topology and nonlinear effects in spin-orbit 
coupled monolayer semiconductors of the graphene family is a natural step at the materials science forefront, 
which could aid in developing next-generation technologies that meet the urgent demands for, among others, 
higher performance radio-frequency modulators, optically gated transistors, and practical spintronic-based 
devices. Nevertheless, studies on the optoelectronic properties of these materials have largely focused in their 
linear  response41–51, which include investigations of signatures of the tunable band  gap41,42, spatial  dispersion43,44, 
the interplay between the quantum Hall  effect45 and photo-induced  topology46, as well as of topological phase 
transitions in quantum  forces47,48, spin-orbit photonic  interactions49, and light beam  shifts50,51. The crossroads 
between nonlinear dynamics and topology in the extended graphene family, potentially allowing access to topo-
logical phase transition signatures, material symmetries, selection rules, and relaxation mechanisms otherwise 
screened by spurious effects in the linear response, remains uncharted.

We explore the interplay between topological Dirac fermions in the GFM and optical fields beyond the linear 
regime. We develop a comprehensive and unified description of their nonlinear dynamical conductivity tensor, 
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including non-trivial topological phases due to an externally applied electrostatic field, a circularly polarized 
laser, and exchange interaction. Our results show a rich structure of nonlinear optoelectronic responses across 
the phase diagram, and we demonstrate that the third-order optoelectronic conductivity contribution to the 
fundamental and third-harmonics encodes fingerprints of topological phase transitions. We show that charac-
terization of the Chern number is possible near bandgap resonances via polarization sensitive detection of the 
cross-polarized component of the field harmonics. Our work sets the cornerstones for investigating topological 
phase transitions beyond the linear response in the family of graphene-like elemental 2D materials.

Results
Topological properties of the graphene family. Let us consider the following Dirac-like Hamiltonian 
describing staggered GFM in the low-energy  regime19,

where dηs = {η�vFkx , �vFky ,�
η
s } describes a meron structure in momentum space (Fig. 1c,d), p̂ = �(kx , ky) is 

the particle momentum, τi are the Pauli matrices, η, s = ±1 are valley and spin indexes, vF is the Fermi velocity, 
and the mass term �η

s = ηs�SO − �E − η�L + s�M corresponds to half energy band gap. Here, �SO represents the 
intrinsic spin-orbit coupling energy and the last three terms in �η

s  account for interactions with external fields, 
which allow for tailoring the Dirac mass gap. Indeed, the second term �E corresponds to the potential difference 
between sub-lattices in the buckled structure in the presence of a static electric field Ez applied perpendicularly 
to the plane of the  monolayer41. The third component �L describes the anomalous quantum Hall effect and arises 
due to the coupling between an off-resonant circularly polarized laser and the  GFM45,52. The final term �M depicts 
the staggered antiferromagnetic exchange  interaction53. For simplicity, we have neglected Rashba couplings due 
to their small magnitude compared to the other contributions. It is worth mentioning that the Hamiltonian in Eq. 

(1)Ĥη
s = τ · dηs = �vF(ηkxτx + kyτy)+�η

s τz ,

Figure 1.  Topological phases in the graphene family. (a) Schematic representation of a graphene family 
monolayer under the influence of a static electric field ( Ez ), an off-resonance circularly polarized laser with 
intensity IC , and the staggered exchange field �M . The in-plane lattice constant is a and the buckling distance 
between sites A and B is l. (b) 3D topological phase diagram and corresponding Chern numbers ( C , Cs , Cη , Csη ) 
in spin-orbit coupled graphene family materials. The momentum dependent meron structures for a given spin 
are shown in (c) and (d) for valleys K and (d) K ′ , respectively.
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(1) applies more generally to other 2D systems, including antiferromagnetic manganese chalcogenophosphates 
(MnPX3 , X = S, Se)54 and  perovskites55. The formalism developed here is also valid for these systems.

Within the Dirac picture the electronic properties of the GFM can be fully characterized through a set 
of four topological  invariants19, namely the Chern C =

∑

η,s C
η
s  , spin Chern Cs =

∑

η,s s C
η
s /2 , valley Chern 

Cη =
∑

η,s η C
η
s  , and spin-valley Chern Csη =

∑

η,s ηs C
η
s /2 numbers. Here Cηs = η sign[�

η
s ]/2 is the Pontryagin 

 number10,11, a topological quantity that counts how many times the vector dηs /|dηs | wraps a sphere in momentum 
space (Fig. 1c,d). By varying the external parameters �E , �L , and �M the monolayer can be driven through various 
phase transitions as depicted in Fig. 1b, where we show the topological phases in the planes �E = 0 , �L = 0 , and 
�M = 0 . The electronic states quantum spin Hall insulator (QSHI), anomalous quantum Hall insulator (AQHI), 
band insulator (BI), antiferromagnetic insulator (AFI), and polarized- spin quantum Hall insulator (PS-QHI) 
have non-zero mass gaps for all four Dirac cones. The system undergoes a topological phase transition when the 
band gap of at least one Dirac cone changes sign. Hence, the boundaries between insulating states are determined 
by the condition �η

s = 0 , which defines the so called single Dirac cone phases (diagonal solid lines in Fig. 1b). 
At the intersection between boundary lines there are two Dirac gaps closed, and the system is either in a spin, 
valley, or spin-valley polarized semimetal state. Finally, note that there are four points in the 3D phase diagram, 
{�E/�SO , �L/�SO , �M/�SO} = {−1,−1, 1}, {1, 1, 1}, {1,−1,−1}, {−1, 1,−1} , where three Dirac cones simultane-
ously close, corresponding to unique electronic states that remain unexplored to date.

Nonlinear light‑matter interactions in the GFM. The nonlinear dynamics of charge carriers in a given 
Dirac cone interacting with a linearly polarized electromagnetic plane wave impinging normally on the mon-
olayer can be described via the density matrix ρ̂(t) , which satisfies the equation of motion 
i� ∂ρ̂(t)/∂t =

[

Ĥ
η
s + Ĥi(t), ρ̂(t)

]

− Ŵ(ρ̂(t)− ρ̂(0)). Here, Ĥi(t) = ep̂ · A(t)/mc is the field-monolayer inter-
action Hamiltonian in the velocity  gauge56, where A(t) = A(t)x̂ is the electromagnetic vector potential. We 
assume that at large times the system relaxes to the equilibrium density matrix ρ̂(0) =

∑

l,k flk|lk��lk| with a 
phenomenological decay rate Ŵ , where flk is the Fermi-Dirac distribution for fermions in the valence or conduc-
tion bands ( l = ±1 ) with momentum �k , and |lk� are the corresponding eigenstates of the unperturbed Hamil-
tonian Hη

s  (see Methods). In general, the equation of motion cannot be solved analytically due to the time 
dependence of the interaction Hamiltonian, and numerical methods are often employed. Here, instead, we use 
perturbation theory by expanding the density matrix ρ̂(t) =

∑

n ρ̂
(n)(t) in powers of the vector potential ampli-

tude and iteratively solve for ρ(n)(t) ∝ A(t)n . We use the standard expression for total current 
j(t) = −e T r[ρ̂(t)(v̂ + e

mc Â(t))] , which contains contributions arising from all orders in the perturbative 
 expansion57,58. Here, v̂ = �

−1∇kĤ
η
s  is the velocity operator. The n-th order ac electric current is given by

Although the last term in the previous equation does not vanish in general, one can demonstrate that it is exactly 
canceled by another contribution arising from the first term and, therefore, its contributions do not appear in the 
final expressions for the conductivities. The cross-canceling of contributions involving the first and second terms 
in Eq. (2) is actually critical to reobtain the well know expression for the conductivity in the linear regime, given 
by Kubo’s formalism (Methods). The n-th order optical conductivity is a tensor of rank n+ 1 , accounts for both 
intra and interband transition contributions as well as topological effects emerging from the Berry  connection19, 
and can be directly computed after Fourier transforming the above equation and expressing the current as a 
product between the electric field and conductivity.

The longitudinal σ (1)η,s
xx (ω) and transverse σ (1)η,s

yx (ω) linear optical conductivities per Dirac cone obtained 
from Eq. (2) are in full accordance with previous studies, and have been investigated in details in the �M = 0 
plane in Refs.33,41,47,49. For completeness, we explore in Fig. 2 the charge, spin, valley, and spin-valley transverse 
linear conductivities (summed over valley and spin indexes as shown in the Methods) in the four phases with only 
one Dirac cone open, since these have been previously overlooked in the literature. By measuring the dynamic 
linear conductivities at these unique points in phase space one can investigate topological properties emerging 
from each Dirac cone individually. Indeed, the nonzero Dirac gap in each of the cases considered leads to Chern 
numbers C , Cη = ±1/2 , and Cs , Csη = ±1/4 , which clearly manifest in the zero frequency limit of the transverse 
conductivities for neutral monolayers, as shown in Fig. 2. Note that in panels 2a,b the charge (spin) and the val-
ley (spin-valley) currents are identical, which implies that the nonzero Dirac gap belongs to the K valley, while 
in panels 2c,d the charge (spin) and valley (spin-valley) conductivities are the negative of each other, hence the 
nonzero Dirac gap belongs to K ′ valley. Finally, the sign of the spin or spin-valley linear conductivities in the 
quasi-static regime allows to identify the spin of the charge carriers.

The second order response of the system described by the Hamiltonian in Eq. (1) is zero. The first nonlinear 
contribution comes from the third-order response and can be described by a rank four conductivity tensor 
σ̃
(3)η,s
αβγ δ (ω1,ω2,ω3) , which is invariant under simultaneous permutations of the indexes β , γ , δ and frequencies 

ω1,ω2,ω3 , where α,β , γ , δ = x, y (see Methods). For simplicity we will concentrate in cases where β = γ = δ = x 
and we will assume that the incident electromagnetic radiation is monochromatic, i.e., A(t) = A0 cos(ωt) x̂ , 
allowing us to separated the third-order conductivity into terms oscillating with frequencies ω and 3ω . The 
first term adds to the linear conductivity response and gives a correction to the fundamental harmonic that is 
quadratic in the vector potential amplitude (Kerr effect), while the second one describes the nonlinear process of 
third harmonic generation. Therefore, up to third-order in perturbation theory, the optoelectronic conductivity 
of the system at the fundamental and third-harmonics due to each Dirac mass gap can be cast as

(2)j(n)(t) = −eTr[ρ̂(n)(t)v̂] −
e2

mc
Tr[ρ̂(n−1)(t)A(t)].
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where I0 = ω2A2
0/8πc

2 is the incident field intensity and σ̃ (3)η,s
αx (ω)=σ̃

(3)η,s
αxxx (ω,ω,−ω) , σ̃ (3)η,s

αx (3ω)=σ̃
(3)η,s
αxxx (ω,ω,ω) 

is a shorthand notation. In the next section we discuss topological fingerprints embedded in these nonlinear 
conductivities.

Topological signatures in the GFM nonlinear response. Let us first look into topological signatures 
buried in the phase of the optical field by investigating the polarization state (helicity) of light resulting from 
third-harmonic generation processes. We consider the low temperature regime for a neutral monolayer, i.e., the 
Fermi level lies in the middle of the band gap, and assume �ω = 0.2�SO and �Ŵ = 0.05�SO . In Fig. 3a we plot the 
phase diagram associated with the difference h3ω = (I

(3)
L − I

(3)
R )/I0 ∝ Im

[

σ
(3)
xx (3ω)∗σ

(3)
yx (3ω)

]

 between intensi-
ties I(3)L  and I(3)R  of light emitted with left and right circular polarization at frequency 3ω , respectively, where here 
the conductivities σ (3)

xx (3ω) , σ (3)
yx (3ω) account for all Dirac cones (Methods). A direct comparison with the phase 

diagram in Fig. 1 clearly reveals the role of topology in the nonlinear optical response of the GFM. Far from the 
phase boundaries the contribution from each Dirac gap to h3ω decreases as 1/|�η

s |
4 , resulting in weak variations 

of helicity in the middle of the QSHI, BI, AQHI, PS-QHI, and AFI phases.

(3)
σ̃ η,s
αx (ω, I0) =σ (1)η,s

αx (ω)+
6π

c
I0σ

(3)η,s
αx (ω),

σ̃ η,s
αx (3ω, I0) =

2π

c
I0σ

(3)η,s
αx (3ω) ,

Figure 2.  Identifying topological properties of individual Dirac cones in the linear regime. Real (solid) and 
imaginary (dashed) components of the charge σ (1)

yx  (blue), spin σ (1),s
yx  (red), valley σ (1),η

yx  (black), and spin-valley 
σ
(1),sη
yx  (green) transverse linear conductivities are shown for the four points in phase space where only one 

Dirac cone is open, namely {�E/�SO , �L/�SO , �M/�SO} equal to (a) {−1,−1, 1} (b) {1, 1, 1} (c) {1,−1,−1} (d) 
{−1, 1,−1} . The insets at the top of each panel show the corresponding structure of Dirac cones. In panel (a) 
the charge and spin conductivities are identical and in panel (b) the same occurs for the valley and spin-valley 
conductivities. All conductivities are expressed in units of 2σ0/π , where σ0 = αc/4 and α is the fine-structure 
constant, we used �Ŵ = 0.05�SO , and assumed the monolayer to be neutral.
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The effects of nonlinearity are most relevant as one approaches the semi-metallic states (white dashed lines) 
marking the boundary between different Chern numbers, where h3ω is dominated by the contribution from 
the Dirac cone with the smallest gap and the phase transition can be easily identified. These conclusions are 
not restricted to the planes �E = 0 , �L = 0 , and �M = 0 as can be seen in Fig. 3b, where we present slices of 
the phase diagram corresponding to fixed values of �M . Note in these panels that as �M increases the phase 
boundaries come closer to each other and at �M/�SO = 1 the three phase boundaries cross at a single point, 
{�E/�SO , �L/�SO , �M/�SO} = {1, 1, 1} , corresponding to the closing of three Dirac gaps. Finally, we mention that 
the variations of h3ω across a phase transition depend on whether the initial and final phases have trivial charge 
transport properties (Chern number C equal to zero). For instance, in the �M = 0 we observe that h3ω is a sym-
metric function around �E/�SO = 1 when we consider the topological phase transition between the QSHI and BI 
phases, both with C = 0 . On the other hand, a remarkably asymmetric behavior takes place around �L/�SO = 1 
(which is energetically equivalent to the previous case) when one considers a topological phase transition involv-
ing the QSHI and the AQHI ( C = −2 ) phases.

The phase diagram of h3ω includes contributions from both third-harmonic longitudinal and transverse con-
ductivities. However, only the latter encodes topological features of the GFM and deserves to be independently 
studied. To this end one could, for instance, use a linear polarizer filter to block the co-polarized scattered field 
and detect only its cross-polarized component, which is proportional to σ (3)

yx  . In Fig. 4 we investigate the charge 
conductivity σ (3)

yx (3ω) along various paths in the phase diagram (parametrized in terms of �E/�SO ). For complete-
ness we also show the associated spin σ (3),s

yx (3ω) and valley σ (3),η
yx (3ω) third harmonic transverse conductivities.

In panel 4a we plot the conductivities along the �E axes as we move from the QSHI to the BI phase by closing 
two Dirac gaps when �E/�SO = 1 . In this case the Chern numbers ( C, Cs, Cη ) change from (0, 1, 0) to ( 0, 0,−2 ) 
and we observe that the charge conductivity is always zero. The resonant peaks and dips near �E/�SO = 1 in the 
spin and valley conductivities divulge information about the change in Cs and Cη across the phase transition. For 
instance, as the system is driven from the QSHI to the BI phase the resonance at 3�ω = 2�

η
s  (dashed vertical 

lines) in σ (3),s
yx (3ω) and σ (3),η

yx (3ω) flips from negative to positive values, which is a signature indicating a decrease 
in the corresponding Chern numbers across the phase transition. Also, the magnitude of the resonance peaks 
and dips in the valley conductivity is twice as those of the spin conductivity, which coincides with the fact that 
the change in Cη is two times that in Cs . These features are general and can be applied to any paths in the phase 
diagram regardless of the nature of the transition involved.

In panel 4b we plot the conductivities as the system moves from the AQHI to the BI phase via the PS-QHI 
phase. Along this path the monolayer crosses two phase boundaries, with Chern numbers ( C, Cs, Cη ) changing 
as (−2, 0, 0) → ( −1, 1/2,−1)→ ( 0, 0,−2 ). Note that the signs of the resonances at 3�ω = 2�

η
s  for the valley 

conductivity are opposite to those for the charge conductivity, while their strengths are the same, meaning that 
the variations in C and Cη across the phase transition are equal in magnitude. The sign of the third harmonic 
resonance for the charge (valley) conductivity changes from negative (positive) in the AQHI phase to positive 
(negative) in the PS-QHI phase, which agrees with an increase (decrease) in C ( Cη ). The same feature repeats 
near the phase transition between the PS-QHI and BI phases, signaling another increase (decrease) in C ( Cη ). 

Figure 3.  Topological phase transitions in the third-harmonic polarization state. (a) Phase diagram of the 
difference between intensities of third-harmonic emission with left and right circular polarization h3ω (a.u.). 
(b) 2D phase diagrams of h3ω at various horizontal planes with fixed value of �M . Here, �ω = 0.2�SO and 
�Ŵ = 0.05�SO.
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Moreover, the behavior of the spin conductivity in Fig. 4b reflects the fact that Cs increases along the first phase 
boundary and then decreases along the second transition, further confirming that the nonlinear resonant behav-
ior of the conductivities encode topology fingerprints.

In the third panel of Fig. 4 the system is driven along the phase boundaries highlighted in path (c), where at 
least one of the Dirac gaps is closed all the time and the Chern numbers change according to (−3/2, 1/4,−1/2) 
→ ( −1/2, 3/4,−1/2 ) → ( −1/2, 1/4,−3/2 ). It is important to notice that C does not change near �E/�SO = 1 
and Cη remains the same across the transition at �L/�SO = 1 ( �E = 0 in the parametrized curve). This fact is 
clearly reflected in Fig. 4c, where the third harmonic resonances associated with charge (valley) conductiv-
ity have the same signs as the system is driven through �E/�SO = 1 ( �L/�SO = 1 ). Finally, in Fig. 4d we plot 
the conductivities for a path (not shown in Fig. 4e) going from the origin of the phase diagram to the point 
{�E/�SO , �L/�SO , �M/�SO} = {2, 2, 2} across the diagonal �E = �L = �M . Once again, the behavior of the con-
ductivities and the change in Chern numbers agrees well with signatures we explained above.

Next we show how one can identify signatures of the Chern numbers in each topological phase by investigat-
ing the nonlinear spectral response of the GFM. In Fig. 5 we present the frequency dispersion of the real part 
of the third-order optoelectronic longitudinal and transverse conductivities for both fundamental and third 
harmonics at four different points in phase space. These correspond to cases where all gaps are open (Fig. 5a) or 
one (Fig. 5b), two (Fig. 5c), or three (Fig. 5d) Dirac gaps are closed. The corresponding curves for the imaginary 
part (not shown) of the conductivities can be obtained directly from our formalism or via generalized Kramers-
Kronig relations for nonlinear  systems59. We expect that the nonlinear conductivities should have non-negligible 
contributions when at least one Dirac gap matches one or three times the energy of the incident photons. Indeed, 
Fig. 5 shows that Kerr σ (3)

αx (ω) and third harmonic σ (3)
αx (3ω) conductivities present localized spectral resonances 

at 2�η
s = �ω (dashed vertical gridlines) and 2�η

s = 3�ω (dotted vertical gridlines), respectively, with richer and 
more involved spectral responses in the cases where more Dirac cones are open. We mention that although the 
third-harmonic generation conductivity also includes resonances near ω and 2ω , they are difficult to identify in 
the spectrum because their magnitude are significantly smaller than the resonances near 3ω.

Note that near resonances the longitudinal Kerr and third harmonic conductivities always shows normal and 
anomalous dispersion, respectively, regardless of the resonant Dirac cone. This is due to the fact that both of these 
conductivities depend only on the absolute value of the resonant mass gap, hence not allowing to directly distin-
guish between energetically equivalent but topologically different points in the phase space. On the other hand, 
the transverse Hall conductivity is sensitive to the sign of the resonant �η

s  and, therefore, encodes information of 
the corresponding Pontryagin number Cηs  . Note in Fig. 5, for instance, that σ (3)

yx (ω) and σ (3)
yx (3ω) have positive and 

negative resonances depending on the resonant Dirac gap. Therefore, just as the linear Hall conductivity allows 
to probe topological properties of the GFM at finite  frequencies46, so it does at the nonlinear regime. Indeed, the 
Chern number associated to the open Dirac cones at any point in phase space can be computed by summing the 
sign of σ (3)

yx (ω) or σ (3)
yx (3ω) precisely at the resonant frequencies, accounting appropriately for degeneracy among 

mass gaps, and multiplying the result by +1/2 or −1/2 , respectively. Consider, for example, the case in Fig. 5a. 
Note that in this case the third-order conductivity at the fundamental (third) harmonic evaluates to negative 
(positive) values in three of the four resonances. Thus, the sum of their signs equals −2 ( +2 ) and results in a 
Chern number C = −1 , as expected for the PS-QHI phase in the �M = 0 plane. Note that this argument can be 
extended to the nonlinear spin, valley, and spin-valley Hall currents, allowing for obtaining the full set of Chern 

Figure 4.  Nonlinear charge, spin, and valley dynamics in the graphene family materials. Panels (a–d) show 
the third-harmonic generation for charge (blue), spin (black), and valley (red) transverse conductivities along 
various topological phase transitions paths as highlighted in the (e) 2D phase diagram of σ (3)

yx (3ω) for �M = 0 
plane. While (a–c) paths lie on the plane �M = 0 , (d) is along the diagonal of the 3D phase diagram connecting 
points ( �E/�SO , �L/�SO , �M/�SO) = (0, 0, 0) → (2, 2, 2) . The paths are parametrized in terms of �E/�SO , the 
conductivities are expressed in the units of α2

�
3c2v2F/�

4
SO , and the frequency and relaxation rates are the same 

as in Fig. 3.
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numbers characterizing the topological phases in buckled two-dimensional semiconductors. In addition, unlike 
the linear case where to obtain the Chern number one needs to measure the linear Hall conductivity at various 
points around a resonance to obtain the sign of its  derivative46, here we need to evaluate σ (3)

yx (3ω) at most at the 
four (in the non-degenerate case) resonant frequencies. Finally, we mention that the dependence of the transverse 
(longitudinal) conductivities on sign[�η

s ] ( |�η
s | ) are not exclusive to the third order nonlinear case and similar 

conclusions should hold for higher order contributions as well.

Conclusions
In summary, we developed a comprehensive investigation of nonlinear light-matter interactions in spin-orbit 
coupled graphene materials, with focus on third harmonic generation and nonlinear corrections to the funda-
mental harmonic (Kerr effect). We have shown that by controlling various external parameters the monolayer can 
be driven through different phase transitions to explore the interplay between nonlinear effects and topological 
properties of two-dimensional materials. Specifically, we demonstrated that the helicity of the nonlinear scat-
tered field encodes information about the location of the phase transitions boundaries, the dependence of the 
cross-polarized component of the field (proportional to the transverse conductivity) on the external parameters 
near resonances divulges details about the topological phases involved in the transition, and the dispersive non-
linear response of the system enables characterization of the Chern number in each phase. The recent progress 
in synthesis of topological semiconductors of the graphene family  materials12–15 and well established nonlinear 
characterization photonic  techniques23–28 suggest that our findings can be accessed experimentally with cur-
rent technologies. We envision that the the effects predicted here will greatly impact research at the crossroads 
between nonlinear optics, topological materials, spintronics, and valleytronics.

Methods
In order to compute the nonlinear conductivity we need the unperturbed eigenvectors and the velocity matrix 
elements associated to the Hamiltonian in Eq. (1). In the following we will omit the valley and spin indexes η and 
s whenever possible, and the reader should keep in mind that, unless otherwise stated, all results presented are 
valid for a single Dirac cone. The total conductivities are given by summing the contributions of all mass gaps in 
the band structure. The eigenvector associated to the Hamiltonian in Eq. (1) has the form

Figure 5.  Nonlinear spectral response of spin-orbit coupled graphene family materials. Real part of the 
third-order optical conductivities corresponding to Kerr effect (black, frequency ω ) and third harmonic 
generation (red, frequency 3ω ) in both longitudinal (solid, α = x ) and and transverse (dashed, α = y ) 
directions for {�E/�SO , �L/�SO , �M/�SO} equal to (a) {1.5, 1.2, 0} , (b) {0.7, 0.3, 0} , (c) {0, 1, 0} , and (d) {1, 1, 1} . 
The dashed (dotted) vertical gridlines indicate the resonance conditions for the third (fundamental) harmonic. 
Conductivities are expressed in units of α2

�
5ω2c2v2F/�

6
SO and we assume �Ŵ/�SO = 0.1.
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where |k| =
√

k2x + k2y  , ǫl = lǫ = l
√

�2v2F |k|
2 +�2 , l is the conduction ( l = +1 ) and valence ( l = −1 ) band 

index, and θ = tan−1(ky/kx) . The matrix elements �lk|v̂α |l′k� of the velocity operator v̂α = �
−1∂Ĥ

η
s /∂kα are 

given by

We give a brief derivation for both the linear and third order optical conductivity terms for a particular Dirac 
cone. To this end, the equation of motion i�∂ρ̂(t)/∂t =

[

Ĥ
η
s + Ĥi(t), ρ̂(t)

]

 for the density matrix operator is 
solved perturbatively by expanding the density matrix in powers of the potential vector amplitude 
ρ̂(t) =

∑

n ρ̂
(n)(t) with ρ̂(n)(t) ∝ An . To leading order in the potential vector, the first order density matrix upon 

Fourier transformation to the frequency domain can be cast as

where Eα(ω) = iωAα(ω)/c . Substituting ρ̂(1)(ω) in equation (2) and making use of the identity 
[�ω(ǫl′ − ǫl + �ω)]−1 = [ǫl′ − ǫl]

−1[(�ω)−1 − (ǫl′ − ǫl + �ω)−1] , we eliminate the first term in the current 
∝ Tr(ρ(0)) and re-obtain the well know Kubo formula after expressing the current as the product of conductiv-
ity and electric field

where σ0 = αc/4 and the phenomenological relaxation rate is accounted for by replacing ω → ω + iŴ . Equa-
tion (7) accounts for both interband and intraband transitions. The interband contribution is straightforward 
and follows directly from (7) by setting l′ �= l . The intraband contribution can be derived by enforcing l′ = l , 
in which case (fl′ − fl)/(ǫl′ − ǫl) → ∂flk/∂ǫl . The total charge, spin, and valley linear conductivities are then 
computed as σ (1)

αx (ω) =
∑

η,s σ
(1)η,s
αx (ω) , σ (1),s

αx (ω) =
∑

η,s sσ
(1)η,s
αx (ω)/2 , σ (1),η

αx (ω) =
∑

η,s ησ
(1)η,s
αx (ω) , and 

σ
(1),sη
αx (ω) =

∑

η,s sησ
(1)η,s
αx (ω)/2 , respectively.

For the third order conductivities we first solve the equation of motion for third order correction ρ(3)(t) , 
which is expressed in the Fourier space as

Substituting the above expression in Eq. (2) and using the same identity as before with the replacement 
ω → ω1 + ω2 + ω3 , we obtain the third order optical conductivity per Dirac cone as

The phenomenological relaxation rate can be accounted in a similar manner as in the linear case. Note that, Eq. 
(9) includes contributions from Berry connection, as well as intra and interband  transitions56,57. The nonlinear 
contributions to the fundamental harmonic associated to the Kerr effect follow by setting ω1 = ω2 = −ω3 , while 
the third harmonic conductivity is can be derived for ω1 = ω2 = ω3 . Similarly to the linear case the total charge, 
spin, valley, and spin-valley conductivities due to all Dirac cones are given by σ (3)

αx (nω) =
∑

η,s σ
(3)η,s
αx (nω) , 

σ
(3),s
αx (nω) =

∑

η,s sσ
(3)η,s
αx (nω)/2 , σ (3),η

αx (nω) =
∑

η,s ησ
(3)η,s
αx (nω) , and σ (3),sη

αx (nω) =
∑

η,s sησ
(3)η,s
αx (nω)/2 , 

respectively, where n = 1, 3.

(4)|lk� =
�vF |k|

[2ǫ(ǫ + l�)]1/2

(

ǫ+l�
η�vF |k|

e−iηθ
)

,

(5)

�1k|v̂x| − 1k� =�−1k|v̂x|1k�
∗ = −vF

� cos θ + iǫ sin θ

ǫ
,

�1k|v̂x |1k� = − �−1k|v̂x| − 1k� =
�v2Fk cos θ

ǫ
,

�1k|v̂y| − 1k� =�−1k|v̂y|1k�
∗ = −vF

iǫ cos θ −� sin θ

ǫ
,

�1k|v̂y|1k� = − �−1k|v̂y| − 1k� =
�v2Fk sin θ

ǫ
.

(6)�lk|ρ(1)(ω)|l′k� =
−ieEα(ω)

ω

fl′k − flk

ǫl′ − ǫl + �ω
�lk|v̂α |l

′k�,

(7)σ
(1),η,s
αβ (ω) = −4i�2σ0

∑

k,l,l′

fl′k − flk

ǫl′ − ǫl

�lk|v̂β |l
′k��l′k|v̂α |lk�

ǫl′ − ǫl + �ω
,

(8)

�lk|ρ(3)(ω)|l′k� =
e3Eα(ω1)Eβ(ω2)Eγ (ω3)/ω1ω2ω3

i(ǫl′ − ǫl + �ω1 + �ω2 + �ω3)

∑

l′′ ,l′′′

�lk|v̂δ|l
′′′k��l′′′k|v̂γ|l

′′k��l′′k|v̂β|l
′k�

ǫl′ − ǫl′′′ + �ω1 + �ω2

(

fl′k − fl′′k

ǫl′ −ǫl′′ +�ω1
−

fl′′k − fl′′′k

ǫl′′ −ǫl′′′ +�ω2

)

−
�lk|v̂δ|l

′′′k��l′′′k|v̂γ|l
′′k��l′′k|v̂β|l

′k�

ǫl′′ − ǫl + �ω2 + �ω3

(

fl′′k − fl′′′k

ǫl′′ −ǫl′′′ +�ω2
−

fl′′′k − flk

ǫl′′′ −ǫl+�ω3

)

.

(9)

σ
(3)
αβγ δ(ω1,ω2,ω3) =

−e�(ω1 + ω2 + ω3)

Eα(ω1)Eβ(ω2)Eγ (ω3)
×

×
∑

k,l,l′

�lk|v̂α |l
′k�

ǫl′ − ǫl
�l′k|ρ(3)(ω)|lk�.
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