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Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More
than 100 causative genes have been linked to various cardiomyopathies, which explain
about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic
signaling pathways have been identified; however, precision medicine is not being
used to treat the various types of cardiomyopathy because knowledge is lacking for
how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio)
have a higher throughout than rodents and are an emerging vertebrate model for
studying cardiomyopathy. Herein, we review progress in the past decade that has
proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies
of distinct etiology, identifying effective therapeutic strategies for a particular type
of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic
strategies via a forward genetic approach. On the basis of this progress, we discuss
future research that would benefit from integrating this emerging model, including
discovery of remaining causative genes and development of genotype-based therapies.
Studies using this efficient vertebrate model are anticipated to significantly accelerate
the implementation of precision medicine for inherited cardiomyopathies.

Keywords: cardiomyopathy, adult zebrafish, causative gene, animal model, precision medicine

INTRODUCTION

Cardiomyopathy refers to a group of heterogeneous heart muscle disorders that cause cardiac
dysfunction. Cardiomyopathy is the most common cause of heart failure and afflicts millions of
people worldwide (Lipshultz et al., 2019). Non-ischemic cardiomyopathy can be broadly classified,
based on clinical features, into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy
(DCM), restrictive cardiomyopathy (RCM), and arrhythmogenic cardiomyopathy (ACM) (Maron
et al., 2006). HCM, the most common form of genetic heart disease, is characterized by left
ventricular (LV) hypertrophy (thickening) with diastolic dysfunction (estimated incidence, 1 in
500 persons) (Makavos et al., 2019). Major diagnostic criteria for HCM is a wall thickness
≥15 mm in one or more LV myocardial segments. Characteristic changes on electrocardiography
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may include repolarization changes, T-wave inversions, and
abnormal Q waves (Gersh et al., 2011; Authors/Task Force
members, Elliott et al., 2014). DCM, the most common
type of non-ischemic cardiomyopathy, is characterized by an
enlarged ventricular chamber, thinned ventricular walls, and
systolic dysfunction (estimated prevalence, 1 in 250 persons)
(Rosenbaum et al., 2020). Clinical diagnosis of DCM is based
on two major criteria: (1) LV fractional shortening is <25%
and/or LV ejection fraction is <45%; and (2) LV end-diastolic
diameter is >117% of predicated value corrected for age and
body surface area (Bozkurt et al., 2016; Pinto et al., 2016).
RCM, the rarest form of cardiomyopathy, is characterized by
diastolic dysfunction but normal or near normal systolic function
and restrictive ventricular filling pattern on echocardiography
(estimated prevalence, 1 in 5,000 persons) (Muchtar et al., 2017).
ACM, another rare cardiac muscle disorder, is characterized
by structural abnormalities occurring mainly in the right
ventricle and ventricular arrhythmia (estimated prevalence,
between 1 in 1,000 and 1 in 5,000 persons) (Mattesi et al.,
2020). Major diagnostic characteristics of ACM include global
or regional dysfunction and structural alterations, fibrous
replacement of the right ventricle (RV)-free wall myocardium
with or without fatty replacement of tissue on endomyocardial
biopsy, repolarization abnormalities, depolarization/conduction
abnormalities, arrhythmias, and family history (Marcus et al.,
2010; Towbin et al., 2019).

Distinct phenotypes of cardiomyopathies could be partially
explained by genetic heterogeneity. Since the discovery of MYH7,
the first causative gene for HCM, more than 100 genes have
been linked to cardiomyopathies (Geisterfer-Lowrance et al.,
1990; Tanigawa et al., 1990; Marian and Braunwald, 2017;
Muchtar et al., 2017; Yotti et al., 2019; James et al., 2020).
Beyond a monogenic disease, findings from next-generation
sequencing (NGS) suggest multiple genetic hits could contribute
to phenotypic severity of cardiomyopathies (Xu et al., 2010;
Harakalova et al., 2015; Kolokotronis et al., 2019). Both
phenotypic and genetic heterogeneity strongly suggest that
precision medicine should be practiced to treat cardiomyopathies
of various causes (Fatkin et al., 2019). However, standard
treatments are still the norm because insufficient knowledge
exists to individualize treatment with precision medicine.

Animal models of cardiomyopathy are needed for comparing
phenotypes of cardiomyopathies of various causes, deciphering
the mechanisms of disease, and developing effective therapeutic
strategies. Rodents are classic vertebrate models that have
contributed substantially to our knowledge of cardiomyopathies.
More than a dozen potential therapeutic pathways and related
compounds have been identified, some of which have already
been translated clinically (Ashrafian et al., 2011; Van Berlo
et al., 2013; Kieserman et al., 2019; Pinilla-Vera et al.,
2019; Repetti et al., 2019). However, the high cost and low
throughput associated with rodent models has impeded their
use in developing precision medicine. For example, it would
be a daunting task to assess all known candidate therapies
systematically in each rodent cardiomyopathy model of a
particular genetic cause. Therefore, a reliable vertebrate model
with higher throughput was needed.

Zebrafish are small tropical fish that are highly similar
genetically to humans (Howe et al., 2013). Many unique
advantages of zebrafish embryos, including transparency, make
the zebrafish a useful and important model for genetic
studies. Early studies using this model focused mainly on
cardiac development and congenital heart disease (Bournele and
Beis, 2016). The first reports describing embryonic zebrafish
as cardiomyopathy models were published in 2002, when
positional cloning of two mutations, pickwick and silent
heart, identified titin and tnnt2, both known causative genes
for cardiomyopathy (Sehnert et al., 2002; Xu et al., 2002).
Additional studies using zebrafish embryos helped in the
discovery of other cardiomyopathy genes and new therapeutic
strategies (Bakkers, 2011; Gut et al., 2017). However, the
studies were limited because embryo studies cannot mimic
the age dependent penetrance of cardiomyopathies that often
end in overt heart failure in adulthood. In 2009, cardiac
remodeling phenotypes were first reported in an anemia mutant
zebrafish, owing to a band3 mutation, which underscored
the feasibility of adult zebrafish as a simple vertebrate model
for cardiomyopathy (Sun et al., 2009). Additional models
have been generated for acquired cardiomyopathies, including
those caused by doxorubicin, a common chemotherapy drug
that can induce dose-dependent cardiotoxicity (Ding et al.,
2011), and by phenylhydrazine hydrochloride, which can cause
acute hemolysis and chronic anemic stress on the heart (Sun
et al., 2009; Jopling et al., 2012). The advent of transgenic
technology and genome editing technology further led to
the generation of a panel of adult zebrafish models for
inherited cardiomyopathies, which are the focus of the present
review (Table 1).

Different from lower model organisms such as Drosophila,
a zebrafish heart has conserved cardiomyocytes with those
in humans, as well as intact endocardium and epicardium.
Electrophysiology of a zebrafish heart has higher conservation
than mouse with humans (Bakkers, 2011; Macrae and Peterson,
2015; Gut et al., 2017). Heart rate is around 100 beats per minute
(bpm), which resembles to human better than the mouse. Because
a zebrafish heart is only sized about 1–2 mm in diameter, novel
phenotyping toolkits, such as high-frequency echocardiography,
the Langendorff ex vivo system, ECG, and single-myofibril
contractility analysis, have been developed to define progression
of cardiac remodeling in zebrafish (Dvornikov et al., 2014; Lin
et al., 2015; Koth et al., 2017; Merrifield et al., 2017; Wang et al.,
2017; Stoyek et al., 2018; Zhang et al., 2018; Wakamatsu et al.,
2019; Yan et al., 2020). Because these toolkits have already been
comprehensively reviewed recently (Dvornikov et al., 2018; Lin
et al., 2020), we only list some new techniques in Table 2. Partially
because these new technologies are not readily accessible, many
published adult zebrafish inherited cardiomyopathy models have
not been sufficiently phenotyped to be categorized into a certain
type of cardiomyopathy. Therefore, we decided to group these
models based on the type of cardiomyopathy that is associated
with its human ortholog, such as HCM, DCM, ACM, and
cardiomyopathy genes associated with complex syndromes. We
did not include the RCM group because no adult zebrafish model
for a human RCM gene has been reported yet.
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TABLE 1 | Adult zebrafish models of inherited cardiomyopathies.

Gene Human phenotype Mutation Model type Zebrafish phenotypes References

MYL3 HCM Premature stop at Y186 ENU/KO Increased heart rate and systolic dysfunction Scheid et al., 2016

MYH6 HCM Frameshift at D1341, H1524 ENU/KO Chamber dilation and weak atrial beat Sarantis et al., 2019

LAMP2 HCM Frameshift at A32 TALEN/KO Chamber dilation, increased trabecular muscle
density, diastolic dysfunction, hypercontractility, and
increased mortality

Dvornikov et al., 2019

DNAJB6 DCM Tol2 insertion GBT/KO Chamber dilation and cardiomyocyte hypertrophy Ding et al., 2013, 2016

GATAD1 DCM Frameshift at R67, T75 TALEN/KO Reduced survival and reduced swimming capacity Yang et al., 2016

S102P OE/Tg Enlarged ventricle and outflow tract

BAG3 DCM Frameshift at P108 TALEN/KO Chamber dilation, decreased trabecular muscle
density, systolic dysfunction, hypocontractility, and
increased mortality

Ding et al., 2019

TTN DCM, HCM Frameshift at K26331 TALEN/KO Chamber dilation, QRS prolongation, impaired
contractile response, reduced diastolic filling with
hemodynamic stress, and increased mortality

Huttner et al., 2018

SCN5A DCM, SSS D1275N OE/Tg Bradycardia, conduction-system abnormalities,
episodes of sinus arrest, and premature death

Huttner et al., 2013; Yan et al.,
2020

JUP ACM 2057del2 OE/Tg Cardiomegaly, thinning of atrial and ventricular
walls, peripheral edema, and increased mortality

Asimaki et al., 2014a

ILK ACM H77Y, P70L OE/Tg Reduced survival, fraction shortening and action
potential, and accumulation of epicardial fat tissue

Brodehl et al., 2019

KCNJ8 Cantú syndrome V65M CRISPR-Cas9/KI Enlarged ventricular chamber volume Tessadori et al., 2018

PITX2 Atrial fibrillation Frameshift at H49 TALEN/KO Reduced cardiac function, arrhythmia, atrial
conduction defects, sarcomere disassembly, and
altered cardiac metabolism

Collins et al., 2019

ACM, arrhythmogenic cardiomyopathy; CRISPR/Cas9, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9; DCM,
dilated cardiomyopathy; ENU, N-ethyl-N-nitrosourea; GBT, gene-break transposon; HCM, hypertrophic cardiomyopathy; KI, knock-in; KO, knock-out; OE, overexpression;
SSS, sick sinus syndrome; TALEN, transcription activator-like effector nucleases; Tg, transgenic.

KNOWN INHERITED CARDIOMYOPATHY
GENES

HCM Genes
Because most causative genes for HCM encode sarcomeric
proteins, HCM is also considered a disease of the sarcomere
(Seidman and Seidman, 2011). Pathogenic sequence variants
in MYH7 and myosin-binding protein C (MYBPC3) account
for approximately 75% of all inherited cases of HCM (Burke
et al., 2016). Patients harboring sequence variants in genes that
lead to lysosomal storage disease, such as lysosomal-associated
membrane protein 2 (LAMP2), also manifest HCM phenotypes
(Fu et al., 2016). To date, adult zebrafish models for the following
three HCM genes have been reported.

MYL3
Essential myosin light chain 3 (MYL3), encoding a
ventricular/cardiac isoform myosin essential light chain, has
been identified as a causative gene of familial HCM, accounting
for up to 5% of HCM cases (Olson et al., 2002; Keren et al.,
2008). Scheid et al. (2016) reported phenotypic characterization
of a heterozygous lazy susan (lazm647) mutant, which harbors
a nonsense mutation in myl3. Like pickwick and silent heart,
lazm647 was originally identified as an embryonic lethal
mutant from a large-scale mutagenesis screen (Stainier et al.,
1996). Reduced cardiac contraction was noted in homozygous
laz−/−mutants (Meder et al., 2009). By using non-invasive

echocardiography and swimming exercise assays, Scheid et al.
(2016) reported systolic dysfunction in adult heterozygous laz
(laz±) zebrafish at a basal level, which became more severe
upon physical stress, as reflected by increased sudden death.
S195 phosphorylation of essential light chain is required for
adaptation of cardiac function to augmented physical stress.
Thus, heterozygous laz was the first inherited cardiomyopathy
model reported in adult zebrafish. However, more detailed
phenotyping of this model is needed to determine whether
laz is a HCM model.

MYH6
In contrast to the MYH7 gene that encodes the ventricular/slow
myosin heavy chain β isoform, MYH6 encodes the myosin heavy
chain α isoform that is predominantly expressed in human
cardiac atrium. Mutations in MYH6, although relatively rare,
have been associated with both HCM and DCM (Schiaffino
and Reggiani, 1996; Parker and Peckham, 2020). In a zebrafish
heart, there are three major MYH homologs: atrial myosin
heavy chain (amhc, also termed myh6), ventricular myosin
heavy chain (vmhc), and ventricular myosin heavy chain-like
(vmhcl) (Auman et al., 2007). While amhc specifically expresses
in the atrium, the latter two genes express mostly in the
ventricle (Shih et al., 2015). Sarantis et al. (2019) reported
the characterization of the adult cardiac phenotype of weak
atrium mutants that harbor frameshift mutations in amhc. They
reported that atria remained hypoplastic and showed elastin
deposition, whereas ventricles exhibited increased chamber size
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TABLE 2 | Emerging phenotyping techniques for adult zebrafish hearts.

Techniques Major measurement parameters Advantage Disadvantage References

HFE Cardiac structure, cardiac function,
stroke volume/output, blood flow,
and hemodynamic

Non-invasive, close to
physiological condition, and
in vivo

Require anesthesia, heart
rate interference, reliability
issue, and quantification
error variation

Wang et al., 2017

MRI Heart anatomy and cardiac function Non-invasive, close to
physiological condition,
in vivo, and high resolution

Require anesthesia, heart
rate interference, reliability
issue, and quantification
error variation

Koth et al., 2017; Merrifield
et al., 2017

Ex vivo Cardiac pump function and stoke
volume/cardiac output

Can reveal intrinsic pump
potential, allow the control
of flow, and suitable for
acute study

Need to Isolate the heart
and non-physiological
condition

Zhang et al., 2018

ECG Heart rate, QT-interval, p-wave,
QRS complex, and T-wave

Simple, non-invasive, and
quick assay

Require anesthesia Lin et al., 2018; Yan et al.,
2020

Swimming tunnel Exercise capacity Simple and non-invasive Indirect implication of
cardiac output/function

Wakamatsu et al., 2019

Voltage and calcium mapping Action potential durations,
atrial-ventricle delay, and calcium
transients

Voltage and calcium
dynamics

In vitro condition Lin et al., 2015; Stoyek
et al., 2018

ECG, electrocardiogram; HFE, high-frequency echocardiography; MRI, magnetic resonance imaging.

due to hyperplasia. Similar to laz, more detailed phenotyping
of this model is needed to determine whether weak atrium
exhibits HCM phenotypes.

LAMP2
Lysosome-associated membrane protein 2 (LAMP2) encodes a
type I integral membrane protein that is localized to lysosomes
and late endosomes. LAMP2 was initially identified as a
causative gene for Danon disease, manifesting with peripheral
skeletal myopathy, intellectual disability, hepatic involvement,
and retinopathy. Later, mutations in LAMP2 were found in about
1% of patients with HCM (Danon et al., 1981; Maron et al.,
2009). Using adult zebrafish as a vertebrate model, Dvornikov
et al. (2019) introduced a truncational mutation into exon 2 of the
lamp2 gene by using transcription activator-like effector nuclease
(TALEN)–based genome editing technology. In a lamp2e2/e2

homozygous mutant at 10 months of age, there was increased
density of the trabecular muscle, a thickened compact layer,
fibrosis, and reduced ejection fraction at low flow that was
ascribed to decreased end diastolic volume/body weight ratio.
Also described were increased maximal isometric tension and
accelerated actomyosin activation kinetics at the single-myofibril
level, suggesting myofibrillar “hypercontractility.” Because many
of these phenotypes are characteristic features of HCM in human
patients and mammalian models, this study provided a starting
point to define HCM-like phenotypic traits in adult zebrafish.

DCM Genes
To date, more than 50 genes have been linked to human DCM.
They can be broadly categorized into genes encoding sarcomere,
cytoskeletal, mitochondrial, desmosomal, nuclear membrane,
and RNA-binding proteins (Yotti et al., 2019). The three DCM
genes described below have been modeled in adult zebrafish.

TTN
Truncation mutations in the TTN truncating variants (TTNtv)
are the most common causative genetic lesion for inherited
DCM, presenting in 15 to 20% of cases (Herman et al., 2012;
Schafer et al., 2017). Allelic heterogeneity has been noted in
TTNtv DCM. Whereas TTNtv in the C-terminal A-band region
are pathogenic, TTNtv in the N-terminal Z-disk region are
likely benign. In zebrafish, 2 TTN homologs are located in
tandem on chromosome 14, termed ttn.1 and ttn.2 (Seeley
et al., 2007). Huttner et al. (2018) generated zebrafish mutants
harboring A-band ttn.2 truncations that mimicked mutations
found in two unrelated human probands with familial DCM.
Whereas the homozygous ttn.2 mutants exhibited severe cardiac
dysmorphogenesis and premature death, heterozygous mutants
(ttn.2tv/+) survived into adulthood and spontaneously developed
DCM-like phenotypes, including reduced baseline ventricular
systolic function, prolonged isovolumic relaxation, and increased
diastolic passive stiffness in the absence of myocardial fibrosis.
Thus, both systolic and diastolic dysfunction were noted in this
zebrafish model of TTNtv cardiomyopathy.

BAG3
The BCL2-associated athanogene 3 (BAG3) gene encodes a co-
chaperone protein that regulates unfolded protein aggregation
and autophagy (Meriin et al., 2018). Mutations in the BAG3
gene account for 2 to 7% of DCM cases, representing a
common DCM causative gene (Norton et al., 2011; Franaszczyk
et al., 2014; Dominguez et al., 2018). We recently generated
zebrafish bag3 gene knockout mutants by introducing frameshift
mutations through TALEN-based genome editing technology
(Ding et al., 2019). We characterized phenotypic traits of
this model thoroughly by combining emerging technologies of
high-frequency echocardiography, ex vivo heart pump function
assays, and biophysical assays at the single-myofibril level. In
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bag3e2/e2 homozygous mutants at 6 months of age, we detected
ventricular chamber enlargement, reduced trabecular muscle
density, and reduced ejection fraction ascribed to increased
end-systolic volume/body weight that resembled the eccentric
hypertrophy characteristic of DCM in mammals (Merlo et al.,
2018). We also detected decreased maximal isometric tension and
reduced activation of myofibril kinetics at the single-myofibril
level, suggesting “hypocontractility.” Because many phenotypic
traits are characteristic features of DCM in human patients and
mammalian models, this study provides a starting point to define
DCM-like phenotypic traits in adult zebrafish models.

GATAD1
The GATA zinc finger domain containing 1 (GATAD1)
gene encodes a transcription factor that is more highly
expressed in women than men with DCM (Heidecker et al.,
2010). A homozygous recessive missense mutation, S102P, was
discovered by locus mapping and whole exome sequencing in
a family with adult-onset DCM (Theis et al., 2011). Yang et al.
(2016) generated a gatad1 knockout zebrafish mutant by TALEN
technology as well as a transgenic fish line overexpressing the
human GATAD1-S102P variant in cardiomyocytes. While gatad1
knockout fish exhibited a mild heart failure–like phenotype
after stress, the cardiomyocyte-specific overexpressing GATAD1-
S102P transgenic fish have increased mortality, concurrent with
a substantially enlarged ventricular chamber and decreased
papillary muscle density, suggesting cardiac remodeling.

Cardiac phenotypes for many existing cardiomyopathy
models have not been characterized in detail, partially because
phenotyping tools are not readily available. Two of the most
comprehensively characterized cardiomyopathy models in adult
zebrafish are lamp2e2/e2 and bag3e2/e2 mutants. Common
cardiomyopathy traits have been identified with this model,
such as reduced ejection fraction, reduced exercise capacity,
and aberrant expression of molecular markers, as have unique
phenotypic traits that can discern DCM from HCM-like
phenotypes. First, trabecular muscle density is reduced in the
bag3 knockout zebrafish, whereas it is increased in the lamp2
knockout model. Similarly, Abdul-Wajid et al. (2018) recently
used the percentage of ventricle covered in trabeculation as
an index to determine HCM phenotype in the jag2b mutant
adult zebrafish. Whether trabecular muscle density can indeed
serve as a surrogate index of ventricular wall thickness in
mammals, a key phenotypic trait that discerns DCM from HCM,
remains to be established. Second, the lamp2 knockout model,
but not the bag3 knockout model, had a rounded heart shape.
Third, at the single-myofibril level, myofibrils from the bag3
knockout model manifested hypocontractility, but myofibrils
from the lamp2 knockout model manifested hypercontractility.
This phenomenon is consistent with that seen via biophysical
analysis in mammalian DCM and HCM models (Davis et al.,
2016; Spudich et al., 2016). In the Table 3, we summarized major
phenotypic traits of human cardiomyopathies and compared
with features and surrogate indices in corresponding adult
zebrafish models. More inherited cardiomyopathy models need
to be developed and comprehensively phenotyped, which will

better define phenotypic traits among cardiomyopathies of
different genetic causes.

ACM Genes
To date, more than 15 genes have been linked to ACM, of
which five genes encode desmosomal proteins located in the
intercalated disk, including desmoplakin (DSP), desmoglein-
2 (DSG2), desmocollin-2 (DSC2), plakophilin-2 (PKP2), and
plakoglobin (JUP) (McKoy et al., 2000; Rampazzo et al., 2002;
Gerull et al., 2004; Pilichou et al., 2006; Syrris et al., 2006;
Vimalanathan et al., 2018; Roberts et al., 2019). Mutations in
PKP2, DSP, and DSG2 are the most common causes, accounting
for about 45% of all ACM probands, and all other genes are
relatively rare (Padron-Barthe et al., 2017). Thus far, JUP and
integrin-linked kinase (ILK) are the two human ACM genes that
have been modeled in adult zebrafish.

JUP
Plakoglobin encodes plakoglobin, a member of the catenin
protein family. A homozygous 2-base pair deletion (2057del2)
in JUP results in premature truncation of plakoglobin protein
and was the first sequence variant linked to ACM (McKoy et al.,
2000). Asimaki et al. (2014a) generated a cardiomyocyte-specific
transgenic fish that harbored human JUP cDNA containing
the 2057del2 mutation. The transgenic mutant fish survived
to adulthood and exhibited cardiac phenotypes, including an
enlarged chamber size, wall thinning, bradycardia, and increased
mortality rate. There were marked abnormalities in action
potentials and ionic currents in ventricular myocytes, which
likely contributed to arrhythmogenesis in this model. Asimaki
et al., further conducted a high-throughput screening to search
for bioactive compounds that attenuated disease phenotypes.
They successfully identified SB216763, an activator of the
canonical Wnt/β-catenin signaling pathway, which suppresses
the ACM-like phenotypes.

ILK
Integrin-linked kinase encodes a serine/threonine protein kinase
which participates in cell matrix interactions and induction
of biomechanical signals for cytoskeleton remodeling, cell
survival, differentiation, and proliferation (Wu, 2001). Brodehl
et al. (2019) characterized phenotypes of transgenic fish
overexpression of human ILK variants p.H77Y and p.P70L
identified from cohorts with arrhythmogenic cardiomyopathy.
Because fewer than 20% of p.P70L and p.H77Y zebrafish could
survive after 15 days, the authors mainly performed phenotypic
characterization at the embryonic stage such as 3 days post-
fertilization. Significant reduction of fractional shortening (FS)
and mild reduction of action potential were noted. Adult
histology and cardiac morphology studies showed epicardial fat
tissue accumulation in the transgenic fish hearts, replicating the
phenotypic trait of fibrofatty infiltration in human ACM.

Cardiomyopathy Genes With Complex
Syndromes
Because cardiomyopathy is a highly heterogeneous disease,
overlapping phenotypes often coexist. For example, ventricular
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TABLE 3 | Phenotypic characteristics of inherited cardiomyopathies between human and adult zebrafish models.

Cardiomyopathy type Hallmarks in human Similar features in adult zebrafish
models

Surrogate features in adult zebrafish
models

HCM (1) Diastolic dysfunction
(2) Increased ventricular wall thickness
(3) Cardiomyocyte hypercontractility
(4) Fetal gene reactivation

(1) Diastolic dysfunction
(2) Cardiomyocyte hypercontractility
(3) Fetal gene reactivation

(1) Increased ventricular surface area
(2) Increased papillary muscle density and
ventricle trabeculation
(3) Increased cardiomyocyte cell size

DCM (1) Systolic dysfunction
(2) Chamber dilation
(3) Cardiomyocyte hypercontractility
(4) Fetal gene reactivation

(1) Systolic dysfunction
(2) Cardiomyocyte hypercontractility
(3) Fetal gene reactivation

(1) Increased ventricular surface area
(2) Reduced papillary muscle density
(3) Reduced swimming capacity

RCM (1) Increased myocardium stiffness
(2) E/A ratio > 2
(3) Diastolic dysfunction

Not reported yet Not reported yet

ACM (1) Ventricular dysfunction and structural
alterations
(2) Ventricular arrhythmia
(3) Fibrofatty infiltration

(1) Heart enlargement
(2) Bradycardia

(1) Peripheral edema
(2) Marked myocyte action potential
remodeling
(3) Epicardial fat tissue accumulation

ACM, arrhythmogenic cardiomyopathy; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; RCM, restrictive cardiomyopathy.

arrhythmias occur in up to 40% of patients diagnosed with
DCM (Spezzacatene et al., 2015). Several adult zebrafish
models for other inherited cardiac syndromes concurrent with
cardiomyopathy are described below.

SCN5A
The SCN5A gene encodes the alpha subunit of the cardiac
sodium channel, NaV1.5, which has a central role in controlling
cardiac excitability. Variants in SCN5A have been linked to a
spectrum of different human cardiac arrhythmia syndromes
(Wilde and Amin, 2018). For example, a missense mutation,
D1275N, in the SCN5A gene has been associated with various
cardiac phenotypes, including atrial standstill and enlargement,
sinus node dysfunction, tachyarrhythmias, conduction disease,
and DCM (McNair et al., 2004). Huttner et al. (2013) generated a
transgenic zebrafish line harboring an SCN5A-D1275N mutation
Tg(SCN5A-D1275N) and then characterized the cardiac
phenotypes by using video microscopy and electrocardiography
(ECG). They found that the adult zebrafish had bradycardia,
conduction system abnormalities, and premature death. Later,
Yan et al. (2020) used an iWorx-based ECG system (iWorx)
to study episodes of sinus arrest in Tg(SCN5A-D1275N) as an
inherited model for sick sinus syndrome. Interestingly, they also
noted sinus arrest episodes in a small subpopulation of wildtype
fish. This subpopulation of wildtype fish manifests unique
phenotypic traits of sick sinus syndrome, such as increased
QRS/P ratio and chronotropic incompetence, that are different
from the Tg(SCN5A-D1275N) model.

KCNJ8
The KCNJ8 gene encodes the pore-forming subunit of adenosine
triphosphate (ATP)–sensitive potassium channels (KATP). The
V65M variant in the KCNJ8 gene was associated with Cantú
syndrome, a rare genetic condition characterized by congenital
hypertrichosis and cardiovascular abnormalities including an
enlarged, hypercontractile heart (Brownstein et al., 2013; Cooper
et al., 2014). Tessadori et al. (2018) reported a KCNJ8
V65M knock-in model in adult zebrafish. The heterozygous

knock-in zebrafish had substantially enlarged ventricles and
enhanced cardiac output and contractile function, which
was similar to the characteristic signs in patients with
Cantú syndrome. Through confirming the causality of the
KCNJ8 V65M mutation, this study provided the feasibility of
modeling patient-specific mutations in adult zebrafish via knock-
in technology.

PITX2
PITX2, located in locus 4q25, encodes a transcription factor
that is critical in establishing the left-right axis and in
the asymmetrical development of internal organs and, thus,
confers major susceptibility to atrial fibrillation. Collins et al.
(2018, 2019) generated a loss-of-function allele of pitx2c
using site-specific transcription activator-like effector nucleases
(TALEN) in zebrafish and assessed its adult cardiac phenotypes.
By using bright-field mode imaging, pulsed-wave Doppler
imaging of blood flow, and ECG, the authors detected cardiac
dysfunction, arrhythmias, and atrial conduction defects in
homozygous pitx2c mutant fish and a subset of heterozygous
pitx2c mutant fish. They further showed that changes in
sarcomeric and metabolic gene expression and function preceded
the onset of cardiac arrhythmia in the pitx2c mutant fish,
suggesting that developmental perturbations predispose to
functional defects in the adult heart. This is the first attempt
to utilize adult zebrafish to model atrial fibrillation–like
diseases of humans.

NEW INHERITED CARDIOMYOPATHY
GENES

More than 100 genes have been linked to cardiomyopathies,
but these genes can only explain about 75% of HCM, 50%
of DCM, 40% of RCM, and 60% of ACM (Groeneweg
et al., 2015; Harakalova et al., 2015; Gallego-Delgado et al.,
2016; Makavos et al., 2019; Rosenbaum et al., 2020). More
genetic factors need to be discovered. Historically, most
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causative genes were identified from linkage analysis of
cardiomyopathy patient cohorts. More recently, NGS has
become the main technology for discovery of novel genetic
loci associated with cardiomyopathy (Norton et al., 2012;
Ho et al., 2015; Shah et al., 2020). As a supplement to these
human genetics-based approaches, Ding et al. (2013, 2016)
developed a novel mutagenesis screen-based forward genetic
approach in adult zebrafish for identifying genetic factors
of cardiomyopathy. DNAJB6 and SORBS2 were identified
as new candidate cardiomyopathy susceptibility genes,
which were supported by evidence from sequencing data
from human patients.

DNAJB6
The DNAJB6 gene encodes a member of the J protein family
that functions as a molecular chaperone to facilitate protein
folding and protein quality control (Hageman et al., 2010;
Kampinga and Craig, 2010). In mammals, there are two DNAJB6
isoforms that result from alternative splicing of the same
gene. The short DNAJB6(S) isoform is encoded by cDNA that
includes the first 6 exons and manifests a cytoplasmic expression
pattern. In contrast, the longer DNAJB6(L) isoform is encoded
by cDNA that includes an additional two exons at the 3′-
end of the gene and manifests a nuclei and/or endoplasmic
reticulum-specific expression pattern (Hanai and Mashima,
2003; Ding et al., 2016). Mutations in DNAJB6(S) have been
previously linked to limb-girdle muscular dystrophy type 1D
(LGMD1D) in humans (Sarparanta et al., 2012). Different from
the short DNAJB6(S) isoform, DNAJB6(L) is a cardiac-enriched
isoform that is primarily disrupted in GBT411. Whereas the
heterozygous GBT411 exaggerates DIC phenotypes, homozygous
GBT411 mutant exhibits cardiac chamber enlargement and
cardiac muscle disarray phenotypes at 1 year of age. The latter
observation prompted Ding et al to scan human cardiomyopathy
patients, leading to identification of several rare variants at
the C-terminus of the DNAJB6(L) gene. Pathogenicity of
the p.S316W variant has been confirmed by generation of
a transgenic fish line harboring the p.S316W variant, which
exaggerates DIC. In summary, the DNAJB6(L) was the first
cardiomyopathy gene discovered from a mutagenesis screen in
adult zebrafish.

SORBS2
SORBS2 is an intercalated disk protein that expresses
predominantly in cardiac muscle. Prompted by the modifying
effects of GBT002 on DIC, Ding et al. (2020) studied
cardiac phenotypes in a Sorbs2 knockout mouse. Whereas
heterozygous Sorbs2± exerts deleterious modifying effects on
DIC, homozygous Sorbs2−/− manifests ACM-like phenotypes,
including enlarged right ventricle, arrhythmia, and fibrosis,
yielding a new ACM model. Furthermore, five rare SORBS2
variants were identified in a cohort of 59 patients with ACM,
among which two splice variants were classified as likely to be
pathogenic. Although more human genetic evidence from larger
cohorts is needed, these data suggested SORBS2 was a candidate
gene for ACM susceptibility.

USE OF THE ADULT ZEBRAFISH MODEL
FOR CARDIOMYOPATHY RESEARCH

Since the first report of cardiac remodeling in an adult zebrafish
heart, (Sun et al., 2009) the adult zebrafish has emerged as an
alternate vertebrate model for studying cardiomyopathies. The
development of clustered regularly interspaced short palindromic
repeats (CRISPR) Cas9 technology has revolutionized precise
genome editing, making for ready generation of knockout,
knock-in, and/or transgenic lines harboring a particular sequence
variant (Shah et al., 2015; Cornet et al., 2018; Wu et al., 2018).
The Table 1 shows the various current zebrafish models for
inherited cardiomyopathies. Many phenotyping toolkits have
been developed for the adult zebrafish heart (Table 2), which
enable differentiating causative cardiomyopathy phenotypes.
Below we list three research fields that may benefit from
integrating the adult zebrafish model.

Genotype-Based Therapeutics for
Inherited Cardiomyopathies
To implement genotype-based precision medicine, it is
desirable to systematically generate models for each of those
cardiomyopathy genes and then to assess and prioritize candidate
therapeutic pathways. While the induced pluripotent stem cell
(iPSC) might be a more appropriate in vitro model for drug
screening, this type of research in the in vivo animal systems
such as rodent models can be prohibitively expensive. The
efficient zebrafish model shall accelerate this research direction.
Besides the existing panel of inherited cardiomyopathy models
in adult zebrafish (Table 1), more models will likely be generated
in the upcoming decade. Shih et al. (2015) systematically
searched zebrafish homologs of 51 DCM genes and identified
corresponding homologs for 49 genes, which shall contribute to
this research direction.

Among well-known therapeutic pathways, some broadly
target various forms of cardiomyopathy, whereas others target
cardiomyopathies with a known specific cause. For example,
a series of genetic studies uncovered the therapeutic effects
of inhibiting the mammalian target of rapamycin (mTOR)
in anemia-induced cardiomyopathy, DIC, a bag3 knockout
cardiomyopathy model, and a lamp2 cardiomyopathy knockout
model (Ding et al., 2011, 2016, 2019; Dvornikov et al., 2019).
Possibly, dysregulated mTOR signaling is a common pathologic
event among cardiomyopathies of different etiology, as suggested
by other reports of studies in mammalian cardiomyopathy
models, and mTOR inhibition is a common therapeutic strategy
(McMullen et al., 2004; Marin et al., 2011; Ramos et al., 2012;
Sciarretta et al., 2018). In the desmoplakin-based ACM model,
canonical Wnt/beta-catenin signaling was reduced. Activation of
Wnt signaling through the administration of a GSK3b inhibitor,
SB216763, reversed the ACM disease phenotype in ACM models
including the zebrafish model (Asimaki et al., 2014b; Chelko et al.,
2019). The roles of Wnt/beta-catenin in other adult zebrafish
models of cardiomyopathies remain to be investigated. It is
expected that more research on genotype-based therapeutics in

Frontiers in Physiology | www.frontiersin.org 7 November 2020 | Volume 11 | Article 599244

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-599244 November 13, 2020 Time: 21:39 # 8

Ding et al. Adult Zebrafish for Cardiomyopathy Modeling

zebrafish will inform the development of precision medicine for
each type of inherited cardiomyopathy.

Assessing Sequence Variants to Find
Novel Cardiomyopathy Genes
To advance genotype-based precision medicine, the remaining
unknown causative cardiomyopathy genes need to be identified.
With the rapid advent of NGS techniques, human genetic
studies of cardiomyopathy cohorts are identifying many new
candidate genes. Moreover, results from human genomic studies
are identifying large numbers of sequence variants from known
causative genes; however, most identified sequence variants have
not been characterized, making them of variants of unknown
significance (VUS). The zebrafish will likely be used increasingly
as an in vivo model for testing candidate genes and those VUS
because of its smaller size, lower cost, and higher throughput than
rodent models. Because many sequence variants are missense
mutations, loss-of-function knockout mutants could result in
negative conclusions or provide misleading information. As
shown by recent studies of sequence variants from GATAD1,
KCNJ8, and DNAJB6(L) genes (Ding et al., 2016; Yang et al., 2016;
Tessadori et al., 2018), knock-in or transgenic technology can be
used to precisely model missense mutations.

Modifier Screening for Isolating Novel
Cardiomyopathy Genes and Therapeutic
Targets
In addition to validating candidate genes identified in human
genetic studies, genetic studies in adult zebrafish can uncover new
susceptibility genes. A forward mutagenesis screening approach
has been shown to be effective for identifying modifier genes
for DIC (Ding et al., 2016). Interestingly, all three deleterious
mutants identified from that approach, ANO5, DNAJB6(L),
and SORBS2, were either causative or susceptibility genes for
cardiomyopathies (Wahbi et al., 2013; Ding et al., 2020). Indeed,
the border between modifier genes and causative genes could be
blurred-it has been increasingly recognized that multiple genetic
lesions might coexist in cardiomyopathy patients and contribute

synergistically to the severity of pathogenesis (Ingles et al., 2005;
Kelly and Semsarian, 2009; Gifford et al., 2019).

From a modifier screen, two types of modifier mutants could
be identified: those that exerted deleterious modifying effects and
those that exerted salutary modifying effects. Whereas the former
type identifies susceptibility genes, the latter type could suggest
therapeutic target genes. As shown by studies of GBT419/rxraa,
Ma et al. (2020) established retinoid X receptor alpha a (rxraa)
as a new therapeutic target gene for DIC and reported the
underlying mechanism. Through leveraging the integrated loxP
sites in the insertional vector, they uncovered a spatiotemporally
predominant mechanism of rxraa-based therapy, i.e., that
endothelial-specific rxraa activation, but not myocardial- or
epicardial-rxraa activation, conferred therapeutic effects on DIC
(Ma et al., 2020). Besides identifying therapeutic target genes via
harnessing salutary modifiers, mechanistic studies of deleterious
modifiers could also identify a particular way to manipulate
the modifier gene to exert therapeutic effects. Ding et al.
(2016) conducted detailed studies of GBT411/dnajb6b(L) and
found that while dnajb6b(L) loss-of-function exerts deleterious
effects, overexpression of dnajb6b(L) in cardiomyocytes exerts
therapeutic effects on DIC. The therapeutic effects of dnajb6b(L)
overexpression were confirmed in a mouse DIC model by using
an adeno-associated virus (AAV) 9–based gene delivery system.

LIMITATIONS

Although adult zebrafish can be a model for cardiomyopathy
studies, this lower vertebrate model is not without limitations.
Despite a much more economic model than mouse, an adult
zebrafish reaches sexual maturity in 3 months, which is actually
longer than mouse. Different from the 4-chambered heart
structure in humans, a zebrafish heart consists of two chambers.
Its large atrium has a more active role during the cardiac cycle
than atria of mammals. On Doppler echocardiography, the ratio
between the E-wave and the A-wave in an adult zebrafish is
less than one, suggestive of higher active filling (A-wave) than
passive filling (E-wave) (Lee et al., 2014). A zebrafish heart does

FIGURE 1 | Future perspective. Adult zebrafish can be used to generate genotype-specific cardiomyopathy models, to identify genotype-specific therapeutic
pathways, to discover new causative genes, and to discover new therapeutic genes. Discoveries from this efficient vertebrate model might inform the development
of precision medicine for inherited cardiomyopathies.
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not have a clearly defined ventricular wall. Instead, it consists
of highly trabeculated ventricular myocardium surrounded by
a small compact layer of cardiomyocytes (Hu et al., 2000).
Therefore, differences in hemodynamic properties of zebrafish
vs. human myocardium must be considered in using this model.
Throughout their lifecycle, zebrafish maintain considerable
capacity for generating cardiomyocytes, whereas mammals lose
this capability within a few days of birth (Poss et al., 2002;
Doppler et al., 2017). This contribution of cardiomyocyte
proliferation to cardiac remodeling needs to be considered
(Sun et al., 2009).

Although about 70% of human genes have at least one obvious
zebrafish ortholog, the remaining 30% of human genes do not
have an obvious zebrafish ortholog, making it impossible to
study these genes in zebrafish (Howe et al., 2013). Zebrafish
have also undergone an additional whole-genome duplication
(i.e., teleost-specific genome duplication); therefore, about 15%
of human genes are associated with more than one zebrafish
gene (average, 2.3) (Meyer and Schartl, 1999; Howe et al.,
2013). However, cardiomyopathy genes might have a higher
degree of conservation, as indicated by human DCM genes,
96% of which have a zebrafish ortholog (Shih et al., 2015). Shih
et al. (2015) were able to prioritize one of many homologs for
most DCM genes for further genetic manipulation based on
their relative expression in the embryonic heart, adult heart,
and adult somites.

CONCLUSION

Despite these limitations, in the last decade, adult zebrafish
have emerged as an important vertebrate model for studying
inherited cardiomyopathies. The use of zebrafish is not limited
to modeling known genotype-based cardiomyopathies for
therapeutic development and has already been extended to
discovering new susceptibility genes and therapeutic target genes
(Figure 1). In the future, this small tropical fish holds the promise
of contributing substantially to implementing genotype-based
precision medicine for inherited cardiomyopathies.
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