Deep learning-based digitization of prostate brachytherapy needles in
ultrasound images
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Purpose: To develop, and evaluate the performance of, a deep learning-based three-dimensional
(3D) convolutional neural network (CNN) artificial intelligence (AI) algorithm aimed at finding nee-
dles in ultrasound images used in prostate brachytherapy.

Methods: Transrectal ultrasound (TRUS) image volumes from 1102 treatments were used to create a
clinical ground truth (CGT) including 24422 individual needles that had been manually digitized by
medical physicists during brachytherapy procedures. A 3D CNN U-net with 128 X 128 x 128 TRUS
image volumes as input was trained using 17215 needle examples. Predictions of voxels constituting
a needle were combined to yield a 3D linear function describing the localization of each needle in a
TRUS volume. Manual and Al digitizations were compared in terms of the root-mean-square dis-
tance (RMSD) along each needle, expressed as median and interquartile range (IQR). The method
was evaluated on a data set including 7207 needle examples. A subgroup of the evaluation data set
(n = 188) was created, where the needles were digitized once more by a medical physicist (G1)
trained in brachytherapy. The digitization procedure was timed.

Results: The RMSD between the Al and CGT was 0.55 (IQR: 0.35-0.86) mm. In the smaller subset,
the RMSD between Al and CGT was similar (0.52 [IQR: 0.33-0.79] mm) but significantly smaller
(P < 0.001) than the difference of 0.75 (IQR: 0.49-1.20) mm between Al and G1. The difference
between CGT and G1 was 0.80 (IQR: 0.48-1.18) mm, implying that the Al performed as well as the
CGT in relation to G1. The mean time needed for human digitization was 10 min 11 sec, while the
time needed for the Al was negligible.

Conclusions: A 3D CNN can be trained to identify needles in TRUS images. The performance of
the network was similar to that of a medical physicist trained in brachytherapy. Incorporating a CNN
for needle identification can shorten brachytherapy treatment procedures substantially. © 2020 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.14508]
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1. INTRODUCTION AND PURPOSE

Radiation treatment options for stage T1b—T3b prostate cancer
include external beam therapy, brachytherapy, or a combination
of these. Brachytherapy is a procedure where the radiation
source is placed directly into or near the volume to be treated.
For prostate cancer, the radiation source is placed inside the
prostate. Hollow needles are surgically inserted transperineally
into the prostate under direct guidance of transrectal ultrasound
(TRUS);' a minimum of 13 needles is recommended.” In these
needles, an afterloaded radiation source is positioned at certain
locations for different periods of time to create a dose distribu-
tion. An illustration of the setup is shown in Fig. 1.
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In high-dose-rate brachytherapy (HDRBT), the dose is
delivered continuously over a short period of time lasting just
a few minutes. The patient is under anesthesia during the
whole treatment, which can last almost 4 h.>

The afterloaded radiation source is Iridium-192, which has
been used in brachytherapy since the 1980s* and is still in
common use for this purpose. One of its advantages is a steep
dose gradient.” Before treatment planning, it is essential to
accurately digitize the implanted needles® in order to avoid
over-dosage of the organs-at-risk and under-dosage of the
prostate volume. Needle digitization is a critical step in
HDRBT for prostate cancer with respect to the outcome of

the dose plan.

© 2020 The Authors. Medical Physics published by Wiley
Periodicals LLC on behalf of American Association of Physicists
in Medicine This is an open access article under the terms of the
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The digitization is performed by a medical physicist or a
dosimetrist who acquires this expertise over time by practis-
ing the task. This means not only that the digitizing process
is subjective and may vary between operators, but also that
depending on their experience the operator may spend a lot
of time on this important task. There is a strong need to auto-
mate the digitization process, potentially improving both
speed and reproducibility.

Deep learning, which is a branch of artificial intelligence
(AI), has progressed rapidly in various healthcare areas. For
example, convolutional neural networks (CNNs), which are a
type of deep learning algorithm, have had a major impact on
image processing.”® Long et al.” made the first breakthrough
in this area, with an application of fully convolutional net-
works that achieved state-of-the-art segmentation results via
end-to-end training. A neural network uses a set of algo-
rithms designed to recognize numerical patterns in a very
similar way to how the human brain works. The network
practises on numerous examples and gets progressively bet-
ter.'?

Deep learning for segmentation in ultrasound images has
previously been studied by others." ™7 Two recent studies
using, in the field of prostate brachytherapy, deep learning
has been utilized for needle digitization in prostate
brachytherapy'®'? trained the algorithm using patches instead
of the whole image volume, and employed a weighted loss
function between cross entropy and total variation for opti-
mization. However, other metrics exist describing intersection
over union, such as the Dice similarity coefficient. The appli-
cation of the Dice coefficient as a metric in the optimization
process and the use of the whole TRUS image volume as
input constitute a new alternative in Al digitization of needles
in prostate brachytherapy.

From a clinical perspective, it is of interest to elucidate the
performance of a CNN in relation to the manual digitization

Prostate gland

Ultrasound probe

Base plane Apex plane

FiG 1. Illustration of the prostate in the sagittal plane with needles in a
brachytherapy treatment setting for prostate cancer. The transrectal ultra-
sound probe is used to visualize the prostate gland and the needles in place.
[Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 47 (12), December 2020

6415

of needles performed by different operators. This is com-
monly studied in terms of interobserver variability, and is also
applicable when evaluating the results provided by the AL. A
likely advantage of employing Al in brachytherapy in clinical
practice is the reduced treatment time due to the almost
instant digitization of the needles provided by the Al com-
pared to the manual digitization carried out by the human
operator.

The aims of this study were to develop a three-dimen-
sional (3D) CNN algorithm for finding needles in TRUS
image volumes and to evaluate its performance in relation to
manual digitization.

2. MATERIALS AND METHODS

The Regional Research Ethics Board approved this retro-
spective study and waived informed consent.

2.A. Data collection

The data were drawn from 1102 brachytherapy treatments
of prostate cancer performed at Orebro University Hospital
between 2010 and 2019. Each treatment included a set of 2D
axial TRUS images encompassing the complete prostate
gland, with margins, and the inserted needles. The set of 2D
TRUS images created a 3D volume in which the needles were
located (Fig. 2).

The interslice distance of the TRUS images was 1 mm,
and there was no gap between adjacent slices. Each image
volume consisted of 512 X 512 images with a pixel size of
0.129 x 0.129mm?.

Digitization of needles seen in the 3D image volume was
performed by a medical physicist during treatment using the
software provided by the vendor (Oncentra Prostate versions
4.2.2-4.2.21, Flekta AB, Stockholm, Sweden). Two types of

Fic 2. Ultrasound images encompassing the complete prostate gland with
margins, acquired after a sweep of the transrectal ultrasound, yielding a
three-dimensional volume including 20 needles (highlighted with red lines).
[Color figure can be viewed at wileyonlinelibrary.com]
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ultrasound equipment were used: Pro Focus (B-K Medical)
with type 8658 probes and Prosius (Elekta) with BiopSee7 5/
70/128 probes. Steel needles provided by the vendor (Elekta
AB) were used as applicators. When inserted into the pros-
tate, the needles were overshot by 10 mm to avoid dwell posi-
tions near the needle tip. Two semi-orthogonal radiograph
images were used to measure the depth of the needle length.

All needles that had been manually digitized by a medical
physicist composed a data set considered to be the clinical
ground truth (CGT). When digitizing, the medical physicist
assumed that the needles were straight at all times except in the
very rare cases where they were considered to be slightly bent.

When performing a brachytherapy treatment for prostate
cancer, the prostate and organs at risk are segmented (in this
case using Oncentra Prostate), and the decision is made on
which images to include in the treatment planning. In this
study we decided to include images ranging from 20 mm
superior of the base of the prostate to 10 mm inferior of the
apex of the prostate for all treatments. The base and apex
planes of the prostate are indicated in Fig. 1.

The prostate gland has the shape of a walnut and dimensions
that range from approximately 20-60 mm,*” and so the expected
depth of the 3D TRUS image volume should range from approxi-
mately 50-90 mm, including the additional margins relative to
the base and apex planes. For this study, it was decided to create
a standard cubic 3D image volume size of 90 mm that encom-
passed all treatment volumes. Acquired 3D TRUS image vol-
umes smaller than 90 mm were zero padded to form a
90 x 90 x 90mm> cubical volume. Thus, all TRUS volumes
had the same sizes and were resampled to yield
128 x 128 x 128 voxels. The data were randomly distributed
between training (65%), validation (17.5%), and testing (17.5%).

2.B. Network structure
A U-net structure®' of the CNN was used for segmenting

the needles in the TRUS images. This structure is widely
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used for segmentation in medical imaging.”'** The 3D U-
net structured CNN used in the present study is illustrated in
Fig. 3.

The input used in the 3D U-net was the 128 X 128 x 128 3D
ultrasound image volumes. The 3D volumes were convolved
with a 3 X 3 x 3 filter kernel using wide convolution, after
which a rectified linear unit was applied. This process was
repeated once again, and then the 3D images were downsampled
via maxpooling, using a2 X 2 X 2 filter. The process, including
two filters, two rectified linear units and maxpooling, was carried
out four times, resulting in matrix dimensions of 8 X 8 X 8. In
this way, the essential information in the image was extracted
before the 3D U-net started the upsampling back to
128 x 128 x 128. The upscaling process used a transposed con-
volutional layer. A drop out ratio of 0.2 was used to avoid overfit-
ting. During upsampling, the output was concatenated with the
corresponding level matrix during the decoding phase.

2.C. Training

During the training process, 713 treatments were used with
15-25 needles per treatment. The hyperparameters remained
constant during the training. Initial weights for the 3D U-net
network were chosen with the Glorot uniform initializer.>
The network was optimized by maximizing the Dice similar-
ity coefficient, DSC (Eq. 1), between the predicted needles
and the CGT localization performed by a medical physicist
during treatment.

|XnY|

DSC=2——
[X|+ Y]

ey
In Eq. (1), X and Y are given sets with cardinalities IX] and |
Y1, for the manually and algorithmically segmented needles.
DSC was calculated for all pixels. The deep 3D U-net archi-
tecture was implemented in CNTK 2.6 using an NVIDIA
GTX 2080Ti GPU. The model was trained for 50 epochs with
a batch size of 1. Each epoch took 15 min with this setup.
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Fi1G 3. Graphical illustration of the applied three-dimensional U-net with a 128 X 128 x 128 TRUS image volume as input and the needle localizations in the
volume as output. Convolutions (blue arrows), maxpooling (red arrows), and transposed convolutions (green arrows) were performed using 3 X 3 X 3 kernels.
The gray horizontal arrows illustrate the concatenation of data of feature maps (feat) from the contraction path to the expansion path. [Color figure can be viewed

at wileyonlinelibrary.com]
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The Adam optimizer was used with a learning rate decreasing
linearly from 1.2e-5 to 8e-6. No data augmentation was
deemed necessary due to the large data set.

2.D. Merging Al predictions into a needle
representation

The output from the Al consisted of predictions, ranging
from zero to one, of whether or not each voxel corresponded
to a needle. These predictions were used as weights to calcu-
late one coordinate of a needle position in each slice. The
probability map was thresholded at 0.1. The center coordi-
nates (x and y) were calculated for each needle and for each
slice, and a standard least-square fit (LS) of all included coor-
dinates then yielded a 3D linear equation for each needle
through the TRUS volume. This needle equation constituted
the Al description of the needle, and could be compared to
the manually digitized needle, which was also described as a
3D linear function in the dose planning system. The equa-
tions of the manually digitized needles were extracted from
the DICOM headers in the ultrasound images.

2.E. Evaluation of the algorithm

A set of 389 different treatments was used to evaluate
the neural network. The total number of needles digitized
was 7207. These data were never used for training. The
cases (treatments) were digitized by the algorithm and
compared to the CGT digitized by medical physicists via
examination of the root-mean-square deviation (RMSD)
and statistical analysis.

2.F. Geometric evaluation

To estimate how much the Al digitization deviated from the
CGT, each needle’s RMSD was calculated using Eq. (2), where
¢ is the distance from the Al digitization in the slice i to the
CGT digitization in the same slice. The first slice (i = 1) started
8 mm inside the prostate from the apex plane, and N was 27,
meaning that the last slice was 35 mm from the apex and

5

1

M=

RMSD =+

2

the RMSD was calculated for a total distance of 27 mm
along the needles. This distance was mainly located inside
the prostate where the treatment took place, and was conse-
quently considered to be the region where the digitization
was of most importance.

The angular deviation (AD) between two vector representa-
tions of a needle (LS and LS,¢) was calculated according to

Eq. (3)

3

LS LS,
AD:arccos( S LSret )

[[LSI[[[TSet |
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2.G. Interobserver variability

To test the interobserver variability between human opera-
tors and the performance of the Al against a new operator, an
additional set of CGT data consisting of nine treatments (188
needles) was redigitized by another medical physicist. This
new data set, which was denoted G1, was a subset of the
CGT data set.

2.H. Duration of manual digitization of needles

The duration of the redigitization of the small data set
(G1) was measured, and the mean value was calculated to
estimate the time consumption per treatment for manual digi-
tization. This was compared to the time spent to digitize the
data with AL

2.1. Statistical analysis

Visual inspection showed the RMSD distributions to be
log-normal. The logarithms of the distributions were calcu-
lated and Student’s t test was applied to RMSDarcor,n= 188
and RMSD;cor,n=7207 to determine whether a sample size
of 188 was large enough to represent the whole data set. Fur-
thermore, a t test was applied to RMSDajcgr,n=7207 and
each of RMSDALGLH:lgg and RMSDCGT,Gl,n:ISS» respec-
tively, to estimate whether or not the interobserver variability
between AI and CGT was significantly different from that
between G1 and CGT. A P < 0.05 was considered to be sig-
nificant. Data, when not log-normal, are presented using the
median and interquartile range (IQR) in the form of median

(IQR).

3. RESULTS

The DSC plateaued at 0.5 after 10 epochs for the valida-
tion set. The detection of the needles was 100%. Figure 4
shows differences expressed as RMSD for various compar-
isons between Al and manual digitizations of the needles in
TRUS image volumes. The median and IQR of the RMSD
data shown as lognormal histograms in Fig. 4 were 0.55
(035—086) mm for RMSDAI,CGT,n:72O7, 0.80 (048—118)
mm for RMSDCGT,G],H:ISS, 0.52 (033—080) mm for
RMSDarcern=18¢8 and 0.75 (0.49-1.20) mm for
RMSD1G1,n = 188-

There was no statistically significant difference between
RMSDarcer,n=7207 [Fig. 4(a)] and RMSDajcGr,n=1s8
[Fig. 4(c)]. This implies that the Al performs equally well in
repeated digitization tasks, a kind of intra-Al variability test.
Conversely, there was a significant difference between
RMSDAI,CGT,H: 188 and RMSDAI’Gl,n:lgg [Flg 4(d)], indicat-
ing that the Al had learned to digitize like the CGT and hence
perform differently from GI1. This was confirmed by similar
difference between RMSDarcor,n=188 and
RMSDcgrG1.n=188 [Fig. 4(b)].
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(b) CGT vs G1 (n=188)
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FiG 4. Logarithm histograms for (a) RMSDAI,CGT,n:7207, (b) RMSDCGT,Gl,n: 188, (€) RMSDAI,CGT,n: 188, and (d) RMSDAI,Gl,n: 188- A normal distribution
adapted to the data is shown as a red curve for each histogram. [Color figure can be viewed at wileyonlinelibrary.com]

TaBLE I. The performance of the artificial intelligence (AI) was evaluated in
terms of root-mean-square deviation (RMSD) by comparing the Al to the
clinical ground truth (CGT) for both the test data set (n = 7207) and a smal-
ler subgroup (n = 188) of the test data for which manual digitization was
repeated by another medical physicist (G1)

RMSD [mm] Significance
median (IQR)
Al vs CGT (n = 7207) 0.55 (0.35-0.86)
Al vs CGT (n = 188) 0.52 (0.33-0.79) P = 0.15
Al vs G1 (n = 188) 0.75 (0.49-1.20) P < 0.0001
CGTvs G1 (n = 188) 0.80 (0.48-1.18) P < 0.0001

The test data set was used as reference for statistical comparisons except for
clinical ground truth (CGT) vs G1.

The results of this analysis are summarized in Table I. The
median and IQR of the AD were 0.88° (0.52° —1.41°) for
ADarcT,n—188, 0.93° (0.55° —1.48°) for ADA1G1,n—188,
and 1.00° (0.62° —1.57°) for ADcGrGin=1ss- A visual
comparison between the Al digitization and clinical ground
truth is shown in Fig. 5. The Al digitizations seen in the fig-
ure are expectation values with an isosurface of 0.1.

3.A. Duration of manual digitization of needles

The average time spent on manual digitization was 10 min
11 s & 2 min 38 s per treatment. The normal use of needles
at the clinic is 20-25 needles per treatment. The time spent

FiG 5. Visual comparison between artificial intelligence (Al) digitization (left panel) and the clinical ground truth (right panel). The Al digitization is represented
by expectation values with an isosurface of 0.1 [Color figure can be viewed at wileyonlinelibrary.com]
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on the Al digitization was negligible; <2 s for our implemen-
tation and equipment.

4. DISCUSSION

Deep learning in brachytherapy is a rapidly growing area
of research. Previous studies include work on digitizing
gynaecological applicators,®?®?” prostate seeds,”**° and seg-
mentation of the prostate boundaries.**? Recent publica-
tions by Zhang et al.'®, Wang et al.>* and Dise et al.”® have
used deep learning for identifying needles in 3D TRUS
images.

The performance of a CNN relies on the extent of the
training data, and can be evaluated using different measures.
This study used a large set of 1102 treatments and can be
compared to previous studies that used far less data®'82-28:2
(13, 10, 68, 13, and 23 patients, respectively). However, one
recent study’” used 823 patients. The Al localizations of nee-
dles were compared to both the labeled data and localizations
by an additional medical physicist, thus enabling an intervari-
ability comparison between a trained Al and a human. The
performance of the Al was, as expected, similar to the CGT,
but the intervariability differed significantly compared to G1.
Since the difference between CGT and G1 was similar to the
difference between Al and GI1, it seems that an Al can be
trained to act as an experienced medical physicist and accord-
ingly perform similarly to other medical physicists in terms
of intervariability. The results in our study are similar to those
from other studies using CNNs with 3D U-net architecture
for needle segmentation in prostate brachytherapy in ultra-
sound images.'®?%>*3* Wang et al.** used a large training set
and reported an RMSD of 0.74 mm, which is slightly higher
than the 0.55 mm found in the present study. Zhang et al.'®>*
and Dise et al.’® both reported lower RMSD (0.29 and
0.40 mm) than achieved in this study, but neither were able
to reach the 100% sensitivity which is the case for the present
study. One difference between the algorithm in this article
and those found in the literature is that the present algorithm
is optimized with DSC.

The present study also evaluated the angular deviation
between the manual and algorithm segmented needles. The
median angular deviation between the clinical ground truth
and the algorithm was within 1°, as was the angular deviation
for the intervariability.

Because the straight needles are composed of the weighted
sum, shadowing on the needles did not present a problem.
Both the medical physicist in the clinic and the algorithm
assumed that the needles were straight. This could be one rea-
son for the angular deviation of 0.88°, which we consider to
be low. A useful comparison can be made with the results of
Wang et al.*®> who also had a perfect sensitivity and included
a large training set, but had a RMSD somewhat higher as
opposed to the result in the present study. The difference
between the two studies is the optimization and the assump-
tion of straight or nonstraight needles, and so the results in
the present study indicate that assuming straight needles is
sufficient.

Medical Physics, 47 (12), December 2020
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The present study also evaluated the time spent on digitiz-
ing the needles. For a human operator, the mean time spent
was 10 min 11 s per patient. Nicolae et al. presented a mean
time of 7.50 min per patient with 12-16 needles,®> which
would mean 10 min 42 s per patient if the patient had 20 nee-
dles. This is well in line with the time for manual digitization
measured in this study.

To our knowledge, no previous study has evaluated
the performance of an Al in relation to manual interob-
server variability regarding the digitization of needles in
ultrasound images for prostate brachytherapy. The present
study has shown that the implemented Al performed
equivalently to the interobserver difference between two
human operators. This way of evaluating an Al can
preferably be used as a benchmark in future studies
including development and implementation of Al methods
in imaging-based brachytherapy.

The present study uses a network architecture called 3D
U-net, which has been used in previous studies involving
deep learning in brachytherapy.®'®*"3%3¢ The U-net structure
has been used for segmentation of both needles and organs
such as the prostate.’®*° A similar structure called V-net has
also been proposed, and this too has been used for segmenta-
tion of the prostate.*”

This study does have some limitations. The deep neural
network did not find the tips of the needles. The algorithm
was never trained to do this, which could be considered a
limitation. Usually, however, the tip is not digitized using
a TRUS, but instead an x-ray image is used to measure
the distance from the base plane to the tip and this is
manually entered into the system. The CGT was used
when calculating the RMSD, but it must be remembered
that the CGT is not the same as the absolute true positions
of the needles. Since an imaging system like TRUS has
its limitations when depicting an object in terms of resolu-
tion and image quality, it is difficult to say whether the
Al is better than a traditional operator at digitizing nee-
dles. Nevertheless, we can say that AI shows a smaller
RMSD than G1, which implies that Al behaves more like
experienced medical physicists than G1 does. We have not
been able to find any comparable values in the literature
for RMSD of AI vs a human operator for this application.
To investigate the precision of the ultrasound, the TRUS
images could be fused with images acquired using com-
puted tomography. From experience, we know that the
needle in the TRUS tends to bend at the tip of the needle.
The RMSD was not calculated along the whole needle,
but only using the slices that encompassed the prostate.
The ultrasound images used in this study were acquired
using two different ultrasound systems. It is possible that
the Al would perform less well if another ultrasound sys-
tem was used in the TRUS acquisition, as the algorithm
might have only learnt how to digitize needles in the pre-
sent images and would therefore fail if used with another
ultrasound model.

Future work aims to evaluate the difference in dosimetry
between manually digitized and Al digitized needles.
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CONCLUSIONS

We have developed a convolutional neural network via

deep learning to digitize needles in prostate HDR brachyther-
apy contexts. The network demonstrated a precision that was
higher than the interobserver variability.
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