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Introduction
Evolution of Earth’s biosphere has largely limited the primitive 
role of anoxygenic phototrophs, which once performed the 
fixation of entire global carbon, and brought about their spatial 
distribution.1,2 The curiosities were revealed by the efforts of 
Erwin von Esmarch in 1887 and Hans Molisch in 1907. They 
first demonstrated the presence of anoxyphototrophs including 
Rhodobacter capsulatus, previously known as Rhodopseudomonas 
capsulata.3 It is a gram-negative, photosynthetic, purple non-
sulfur bacterium (PNSB). The individual cells are spherical, 
ovoid, filamentous, or rod-shaped. However, the organism 
exhibits comprehensive morphological properties and distin-
guishing features such as “zigzag” or straight chain arrange-
ment and both flagellum-dependent and flagellum-independent 
motility. At present, different ecosystems around the world 
harbor this prokaryote, most commonly in freshwater.4-6

The completely sequenced genome of R capsulatus contains 
a 3.74-Mb chromosome and a 133-kb plasmid with a median 
GC% of 66.6. According to the reported data, 84.1% of the 
open reading frames (ORFs) within the genome encode pro-
teins which have defined functional roles, whereas 16.6% ORFs 
putatively code for hypothetical proteins (HPs).7 By definition 
an HP is a predicted product expressed from an ORF whose 
translation has not been shown and functional relevance yet 
remains uncharacterized.8 Even though X-ray crystallography 
and nuclear magnetic resonance (NMR) spectroscopy are the 
most authenticated methods to resolve the structures of biologi-
cal macromolecules, attempts have been made for direct charac-
terization from sequence information due to rapidly growing 
laboratory datasets and accessible computational methods. 
Nowadays, plenty of bioinformatic tools are available in the 
public domain, which have made it possible to elucidate the 
structural details and functional roles of HPs.9,10 In this study, 
an effort has been made to characterize a hypothetical protein 
(CAA71016.1) from R capsulatus, propose a 3-dimensional 
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(3D) structure, and annotate its functional role as 
S-adenosylmethionine (AdoMet or SAM)-dependent methyl-
transferase (MTase) through in silico proteomics approaches.

Class I MTase is a major structural family of methyl transfer-
ring enzymes which use SAM as a cofactor and act on diverse 
substrates, particularly free amino acids, proteins, nucleic acids, 
and small bioorganic compounds.11 In common with many 
other organisms, R capsulatus has harnessed this enzymatic prin-
ciple in different biochemical pathways. Notable examples 
include the bchM gene product S-Adenosyl-l-methionine: 
Mg-protoporphyrin IX O-methyltransferase (MPMT), crtF 
gene product hydroxyneurosporene-O-methyltransferase, and 
numerous cobalamin methyltransferases which respectively cat-
alyze different steps in bacteriochlorophyll, carotenoid, Vitamin 
B12 (cobalamin), and siroheme biosynthesis.12-14 These mole-
cules execute different physiochemical roles that help the organ-
ism to sustain on different environmental conditions and show 
versatile metabolic behavior. Regarding this notion, R capsulatus 
is competent of phototrophic anaerobic respiration, chemotro-
phic aerobic photosynthesis, fermentative growth, and nitrogen 
fixation.6,15 Knowledge of these intrinsic microbial properties 
has led to innovation in biomonitoring and bioremediation for 
wastewater treatment,16 developing photo bioelectrochemical 
cells (PBCs)17 and biological hydrogen production system18 as 
an alternative source of clean energy. In addition, R capsulatus 
serves as a host for the production of biopolyester polyhydroxy-
alkanoate (PHA), extracellular nucleic acids (DNA and RNA),19 
cycloartenol, lupeol,20 and commercially important single-cell 
proteins.21 Despite these overwhelming significance, a large 
amount of HPs of R capsulatus remain uncharacterized.

As previously demonstrated, bioinformatic analysis can 
be a feasible approach to build de novo protein models, pre-
dict new functions as well as biochemical properties, and 
enrich the proteome. It reduces time and labor for an indis-
pensable wet laboratory analysis.22 Considering the envi-
ronmental and socioeconomic landscapes of R capsulatus, in 
silico characterization of HPs can guide us to profoundly 
understand its behavior and develop new strategies for its 

application, which may unlock a gateway for a sustainable 
future.

Materials and Methods
The workflow of this study is presented in Figure 1.

Sequence retrieval

Hypothetical proteins (HPs) of R capsulatus were searched in 
the NCBI Protein database (https://www.ncbi.nlm.nih.gov/
protein/) using the keyword “Hypothetical proteins 
(Rhodobacter capsulatus).” From the resultant hits, a HP 
(Accession no. CAA71016.1, GI|2182083|) was randomly 
selected for the study and its sequence was retrieved in FASTA 
format for further analysis. In addition, a sequence-based pep-
tide search was also performed in the UniProt database (https://
www.uniprot.org/peptidesearch/) to inspect whether the pro-
tein is redundant.23

Analysis of physicochemical properties

The physicochemical properties of the selected HP were studied 
using the ProtParam tool (https://web.expasy.org/protparam/) 
on the ExPASy server. This online tool executes theoretical 
measurements such as molecular weight, amino acid composi-
tion, total number of positive and negative residues, theoretical 
pI, instability index (II), aliphatic index (AI), extinction coeffi-
cient, and grand average of hydropathicity (GRAVY) value.24

Sequence analysis and homology identif ication

Looking for the structural homologs and sequence similarity in 
different genomics and proteomics-based databases is the most 
basic step for the function prediction of a hypothetical or an 
uncharacterized protein.25 The most frequently used tool for 
studying sequence similarity is the Basic Local Alignment 
Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.
cgi). In relation to the previous statement, a similarity search for 
proteins was performed using NCBI’s BLASTp algorithm26 

Figure 1. Flowchart of methodology. NCBI indicates National Center for Biotechnology Information.

https://www.ncbi.nlm.nih.gov/protein/
https://www.ncbi.nlm.nih.gov/protein/
https://www.uniprot.org/peptidesearch/
https://www.uniprot.org/peptidesearch/
https://web.expasy.org/protparam/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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against a non-redundant database to make the preliminary pre-
diction about the function of the query protein.

Functional domain and family/superfamily 
prediction

HPs can be classified into families and superfamilies based on 
their sequence feature, domain, or motif architecture and func-
tional similarities through automated and manual curation. For 
this reason, different databases use different algorithms to make a 
prediction from an unknown protein sequence.27 Thereby, for 
classification and precise functional annotation, we have used 
multiple sequence alignment (MSA)-based servers such as 
Pfam,28 SUPERFAMILY,29 and Conserved Domain Database 
(CDD)30; domain profile-based Conserved Domain Architecture 
Retrieval Tool (CDART)31; and an integrative database 
InterProScan.32 In each case, default parameters were considered.

Multiple sequence alignment and phylogenetic 
analysis

At first, several protein sequences having annotated similar 
functionality were retrieved from the NCBI protein database. 
Molecular Evolutionary Genetics Analysis X (MEGA X) 
software33 was used to carry out the MSA and phylogenetic 
analysis between the targeted HP and fetched dataset. The 
progressive ClustalW algorithm34 was applied for the MSA 
analysis. Furthermore, a phylogenetic tree was also constructed 
using the similar sequence alignment to show the evolutionary 
distance among the related proteins. For this purpose, we have 
considered the default parameters (WAG model) with 500 
bootstrap replications. Statistically, the WAG model is based 
on maximum-likelihood (ML) methods. It incorporated the 
best attributes of previously proposed matrices and provided 
an optimal result, hence was our preferable choice.35

Structure prediction

PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/) of 
UCL Department of Computer Science was used to predict 
the secondary (2D) structure of the targeted HP. It uses 2 
feed-forward neural networks and PSI-BLAST algorithm 
for analysis.36 The tertiary (3D) structure was designed using 
MODELLER37 through the HHpred38 tool of the Max 
Planck Institute for Developmental Biology.

Structure ref inement and energy minimization

YASARA Energy Minimization Server39 was used to attain a 
minimum energy arrangement of the constructed 3D structure 
of the HP. Subsequently, the minimized 3D structure was fur-
ther optimized using GalaxyRefine.40 After analyzing all the 
potential structures generated by GalaxyRefine, arguably the 
one having the best quality and performance was selected.

Model quality assessment

Evaluation of the energy minimized and refined 3D structure 
was done by PROCHECK,41 ERRAT,42 and Verify3D43 mod-
ules of the SAVES server (https://saves.mbi.ucla.edu/). The 
ExPASy server (https://www.expasy.org/) of the Swiss Institute 
of Bioinformatics (SIB) incorporates different bioinformatic 
tools. Between these resources, the SWISS-MODEL Structure 
Assessment tool and QMEAN tool were collaboratively used 
to estimate the QMEAN Z-score and global quality of the 
model. In the QMEAN server, both QMEAN44 and 
QMEANDisCo45 scoring functions were considered. To fur-
ther consolidate the global quality score, the result generated by 
the ModFOLD server46 was taken into account.

Active site prediction

The active site of the protein was identified by Computed 
Atlas of Surface Topography of proteins (CASTp) (http://sts.
bioe.uic.edu/castp/index.html). The web server interlinks pro-
tein’s structural and sequence information using the Protein 
Data Bank (PDB), UniProt, and SIFTS database for timely 
residue-level annotations.47 This tool also predicted the active 
residues which were further validated by analyzing the protein-
ligand interactions of the docked complex.

Subcellular localization and function prediction

A protein’s optimum performance depends on the regional 
environment which dictates its interaction patterns and bio-
logical networks. Therefore, predicting the subcellular localiza-
tion is one of the important steps in specifying the cellular 
function of a hypothetical or uncharacterized protein.48 
Prediction of the gene ontology (GO)49 and protein topology50 
display more extensive framework of its molecular function, 
biological process, and location. Tools used for these objectives 
were CELLO2GO,49 CELLO v.2.5,51 PSORTb,52 PSLpred,53 
SOSUIGramN,54 Gneg-PLoc,55 BUSCA,56 PRED-TMBB,57 
TMHMM,50 and HMMTOP58 tools. The ProFunc59 and 
PredictProtein60 servers were used to validate the function of 
the hypothetical protein predicted by the CELLO2GO tool.

Docking analysis

Molecular docking is performed to study and predict intermolec-
ular interactions between ligands and macromolecules, using 
open-source software and web servers.61 To further validate the 
probable function of our HP of interest, separate docking analyses 
were performed between the HP and 2 different ligand molecules, 
S-adenosylmethionine (SAM) and S-adenosylhomocysteine 
(SAH). Ligand structures were fetched from PDB (https://www.
rcsb.org/).62 Afterward, the hypothetical protein-ligand docking 
was performed using AutoDock Vina through PyRx63 and 
PatchDock server.64

http://bioinf.cs.ucl.ac.uk/psipred/
https://saves.mbi.ucla.edu/
https://www.expasy.org/
http://sts.bioe.uic.edu/castp/index.html
http://sts.bioe.uic.edu/castp/index.html
https://www.rcsb.org/
https://www.rcsb.org/


4 Bioinformatics and Biology Insights 

Protein-protein interaction analysis

Protein network databases aim to integrate possible protein-
protein interactions (PPIs) and present them under a network 
topology, from which a conclusion about shared functional fea-
tures of a HP can be drawn. The STRING database evaluates 
both functional and physical associations. It currently features 
24.6 million proteins65 and aims to cover 14 000 organisms by 
the year 2021.65 It was used in our analysis because of its larger 
coverage. The results obtained from STRING database were 
further validated by protein-protein docking analysis through 
HADDOCK v2.4,66 HDOCK,67 ClusPro 2.0,68 and 
AutoDock Vina.63 The tertiary structures of NuoF, NuoG, 
NuoI, NuoJ, and NuoH were obtained using SWISS-MODEL 
server69 before docking analysis. Multiple docking tools were 
used to obtain high confidence about the findings.

Results and Discussion
Sequence retrieval

The HP (Accession no. CAA71016.1, GI|2182083|) of R 
capsulatus fetched from the NCBI database contains 257 
amino acids. The retrieved sequence was further searched in 
UniProt which is a comprehensive, high-quality, and freely 
accessible resource of protein sequence along with functional 
information. The database entries showcased the protein to 
be non-redundant which might have a significant role. 
Further information collected from the NCBI database is 
listed in Table 1.

Physicochemical properties of the protein

Both physical and chemical properties of the HP can  
be estimated by analyzing the analogous properties 

of individual amino acids or the N-terminal residue of the 
protein. From the results obtained from the ProtParam tool, 
the HP was found to have a molecular weight of 28 971.14 Da. 
The theoretical pI value of a molecule is the pH at which 
that particular molecule carries no net electrical charge and 
it is also feasible to comprehend the protein charge stability. 
The calculated theoretical pI value of 6.84 indicated the 
protein to be negatively charged and considered as an acidic 
protein. The II is a measurement of primary structure–
dependent protein stability under in vitro conditions. It is 
expected that an II value less than 40 (<40) would predict 
the protein to be stable and a value greater than 40 (>40) 
would predict the protein to be unstable. The II value of the 
HP is computed to be 36.35, which classified the protein to 
be stable.24 A protein’s AI is known as the relative volume 
occupied by aliphatic side chains (alanine [Ala], valine [Val], 
isoleucine [Ile], and leucine [Leu]). It signifies the mainte-
nance of a thermostable structure. The computed AI value 
of the HP was 75.91, which indicated that the protein is 
stable over a wide temperature range.70 For a peptide or pro-
tein, the GRAVY score is defined as the total of the hydrop-
athy values divided by the number of residues in the query 
sequence, where all the amino acids are taken into consid-
eration. It was computed to be −0.335. The extinction coef-
ficient is an expression of a proportionality constant in the 
Beer-Lambert law. It estimates the amount of light that is 
absorbed by proteins at a particular wavelength.71 It was cal-
culated to be 47 900 for our query protein. The high extinc-
tion coefficient indicated the presence of a high amount of 
tyrosine, tryptophan, and cysteine.24 Besides, all the physic-
ochemical properties of our HP are listed in Table 2. These 
properties will be useful for experimental handling of the 
protein.

Table 1. Retrieval of the hypothetical protein from the NCBI database.

PROTEIN INDIvIDUalITIES HyPOTHETICal PROTEIN INFORMaTION

locus Caa71016

Definition Hypothetical protein [Rhodobacter capsulatus]

accession Caa71016

version Caa71016.1

GI 2182083

amino acid 257

Gene urf7

Organism Rhodobacter capsulatus

Fasta sequence >Caa71016.1 hypothetical protein [Rhodobacter capsulatus]
MTTEaKKSaWKFRFEGEDvaaDIRTKyGaG 
GDlvDIyaaaNGREvHKWHHylPIyERyFEKFRGKPvRMlEIGTW 
RGGSlaMWRDyFGPEavIFGIDINPRCKDyDGEaaQvRIGSQa 
DPKFlaEvIaEMGGvDIIlDDGSHvMKHvRaSlRMlFPQlaEGGvyMIEDMHTay 
WKKFGGGMDTSDNIFNFvRKlIDDMHRWyHGGKRRvPlFGPMISGI 
HvHDSIIvlEKGPvHPPvaSIRGGRTaETPaETDaSvR

abbreviation: NCBI, National Center for Biotechnology Information.
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Sequence similarity, alignment, and phylogenetic 
tree

The BLASTp results of the HP against non-redundant data-
bases showed significant homology with other methyltrans-
ferase proteins, precisely with class I SAM-dependent 
methyltransferase from different species. The fetched methyl-
transferase proteins from BLASTp results for MSA are listed 
in Table 3. The MSA depicted the sequence similarity in 
between the targeted hypothetical protein and other methyl-
transferase proteins (Figure 2). Phylogenetic analysis was car-
ried out for further confirmation of homology identification 
and to find out the evolutionary distance among our target pro-
tein and aligned methyltransferase proteins. The phylogenetic 
tree was constructed based on the alignment and BLASTp 
result, which showed similar concept about the HP (Figure 3).

Domain, family, and superfamily prediction

The results obtained from NCBI Conserved Domain (CD) 
Search, CDART, Pfam, SUPERFAMILY, and InterProScan 
revealed that the HP sequence was found to have methyltrans-
ferase domain. The protein belongs to the Methyltransf_24 
family and the S-adenosyl-l-methionine-dependent methyl-
transferases superfamily. The Pfam server identified a con-
served methyltransferase domain from 70 to 168 amino acid 
residues with an e-value of 9.9e-09. Furthermore, the presence 
of a methyltransferase domain in the targeted protein was evi-
dently predicted from NCBI CD-search tool. It ranged from 
70 to 168 amino acid residues with an e-value of 2.79e-12. The 
results obtained from the previously mentioned tools are sum-
marized in Table 4. It indicated the inference of the HP having 
a methyltransferase activity.

Table 2. Physicochemical parameters of the hypothetical protein (Caa71016.1).

PROTPaRaM PaRaMETERS valUES

Number of amino acids 257

Molecular weight 28 971.14

Theoretical pI 6.84

Total number of negatively charged residues (asp + Glu) 35

Total number of positively charged residues (arg + lys) 34

atomic composition Carbon C: 1303

Hydrogen H: 1998

Nitrogen N: 364

Oxygen O: 364

Sulfur S: 12

Formula C1303H1998N364O364S12

Total number of atoms 4041

Estimated half-life 30 hours (mammalian reticulocytes, in vitro)

>20 hours (yeast, in vivo)

>10 hours (Escherichia coli, in vivo).

Instability index (II) 36.35 (Stable)

aliphatic index 75.91

Grand average of hydropathicity (GRavy) −0.335

Extinction coefficients(M−1 cm−1) 47 900
abs 0.1% (= 1 g/l) 1.653, assuming all pairs of Cys residues form 
cystines

47 900
abs 0.1% (= 1 g/l) 1.653, assuming all Cys residues are reduced
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Secondary and tertiary structure analysis

The secondary structure (2D) of the HP was predicted by 
PSIPRED server (Figure 4) with a good confidence of predic-
tion. The tertiary structure (3D) was predicted by MODELLER 
using multiple templates having a probability greater than 99% 
(Figure 5). It was further energy minimized by YASARA 
energy minimization server. The energy calculated before 
energy minimization was −299 229.5 kJ/mol. After 2 rounds of 
energy minimization, it was changed to −128 802.2 kJ/mol. 
The score also improved from −3.37 to −0.65 after energy min-
imization. This indicated that the predicted 3D model became 
more stable after energy minimization compared to the initial 
one. This structure was further refined using the GalaxyRefine 
server and then the quality assessment of the model was carried 
out.

Ramachandran plot analysis (Figure 6A) results revealed 
that the most favored region, additional allowed region, gener-
ously allowed region, and disallowed region covered 93.8%, 
5.3%, 0.0%, and 1.0% of residues, respectively. These results 
showed that majority of the amino acids follow a phi-psi distri-
bution that is consistent with a right-handed α-helix. Hence, 
the protein adopts a flexible and stable structure.72 The struc-
ture passed in the validation analysis by Verify3D and the 
graph (Figure 6D) showed that 89.20% of the residues have 
3D-1D score ⩾0.2 on average. The overall quality factor pre-
dicted by the ERRAT server was 97.826, which indicated the 
model to be a good-quality structure as high-resolution struc-
tures produce values around 95% or higher on ERRAT. The 
graph (Figure 6C) generated on ERRAT showed that no resi-
due crossed the 99% rejection limit which is also an indication 
of good-quality and high-resolution structure. The results 
obtained from the ModFOLD server showed that 

the structure have a P-value of 8.322E-4 and a global model 
quality score of 0.6722. The P-value indicates the confidence 
of the prediction of the model to be in CERT category. It des-
ignates the structure to be valid and indicates a very high con-
fidence of prediction. The P-value less than .001 denotes that 
the model has less than a 1/1000 chance of being incorrect. 
The QMEAN4 value predicted by the QMEAN server was 
−0.57 and the value was transformed into a Z-score. It is 
depicted in the estimated absolute model quality graph 
(Figure 6B) where our protein model was in the dark region. It 
has a|Z-score| < 1 which infers the model scores to be expected 
from an experimentally determined structure of similar size. 
The global score of the protein structure was calculated to be 
0.63 ± 0.05 which validated the global score predicted by the 
ModFOLD server.

Active site detection and docking analysis

The active site of the protein predicted by the CASTp server 
found that 25 amino acids are involved in the potent active 
site. The predicted active site of the protein with their amino 
acid residues is depicted in Figure 7. Further docking analysis 
between the HP and the ligands (SAM and SAH) was car-
ried out considering the amino acids involved in the active 
site predicted by CASTp server. S-adenosylmethionine is an 
exigent molecule and the principle biological methyl donor, 
found in almost all living organisms. S-adenosylmethionine-
dependent methyltransferase enzymes use SAM as methyl 
donor.11 After donating the methyl group, SAM converts into 
SAH which acts as a potent competitive inhibitor of methyl-
transferase depending on the available concentration of SAM 
and SAH molecules in physiological condition.73 The dock-
ing analyses were carried out through Autodock vina on the 

Table 3. Data from BlaSTp result against nonredundant protein sequences.

aCCESSION ORGaNISM PROTEIN NaME PERCENT IDENTITy e-valUE

WP_110803842.1 Rhodobacter viridis Class I SaM-dependent methyltransferase 76.68 9e-142

WP_146344766.1 Phaeobacter marinintestinus Class I SaM-dependent methyltransferase 63.04 2e-102

WP_113287895.1 Rhodosalinus sp. E84 Class I SaM-dependent methyltransferase 62.45 7e-101

WP_025045079.1 Sulfitobacter geojensis Class I SaM-dependent methyltransferase 61.47 1e-99

WP_025053297.1 Sulfitobacter noctilucae Class I SaM-dependent methyltransferase 61.04 5e-97

WP_057816543.1 Roseovarius indicus Class I SaM-dependent methyltransferase 59.83 7e-97

WP_185797543.1 Gemmobacter straminiformis Class I SaM-dependent methyltransferase 58.15 2e-95

WP_102108179.1 Kandeliimicrobium roseum Class I SaM-dependent methyltransferase 61.04 4e-95

WP_162205095.1 Microcystis aeruginosa Class I SaM-dependent methyltransferase 55.60 3e-92

abbreviations: BlaST, Basic local alignment Search Tool; SaM, S-adenosylmethionine.
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PyRx server. The binding affinity (kcal/mol) of SAM and 
SAH with the target protein was −7.1 and −6.7 kcal/mol, 
respectively (Table 5). It indicated a strong interaction of the 
ligands with the target protein. The interacting residues and 
the interactions of the ligands with the target protein are 
depicted in Figure 8. The molecular docking analysis was also 

carried out using the PatchDock server through interaction 
refinement with FireDock server. It also showed promising 
results (Table 5) indicating that the ligands bind efficiently 
with the target protein.

Another set of docking analyses was performed without 
marking the active site amino acids, targeting the whole 

Figure 3. Evolutionary analysis of different methyltransferase proteins with the target protein (Caa71016.1 Rhodobacter capsulatus). The phylogenetic 

tree follows WaG replacement matrices which is based on maximum-likelihood (Ml) methods. The branch lengths reflect the degree of divergence of 

each sequence.

Table 4. Protein domain, family, and superfamily analysis.

TOOlS RESUlTS

NCBI Conserved Domain Search Domain: Methyltransferase

Family: Methyltransf_24

Superfamily: Class I S-adenosyl-l-methionine-dependent methyltransferases (SaM or adoMet-MTase)

Pfam Domain: Methyltransferase

Family: Methyltransf_24

Superfamily Superfamily: S-adenosyl-l-methionine-dependent
methyltransferases (SaM or adoMet-MTase)

InterProScan Superfamily: S-adenosyl-l-methionine-dependent
methyltransferases (SaM or adoMet-MTase)

CDaRT (Conserved Domain 
architecture Retrieval Tool)

Superfamily: S-adenosyl-l-methionine-dependent
methyltransferases (SaM or adoMet-MTase)

abbreviations: NCBI, National Center for Biotechnology Information; SaM, S-adenosylmethionine.
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Figure 4. Secondary structure analysis by using PSIPRED server.

Figure 5. Illustration of predicted 3-dimensional structure of the hypothetical protein: (a) ribbon diagram and (B) surface diagram.
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Figure 6. Quality assessment of the predicted tertiary structure. (a) Ramachandran plot of modeled structure validated by PROCHECK program. (B) 

Graphical presentation of estimation of absolute quality of model with QMEaN. (C) Graphical representation of ERRaT value estimated overall quality 

factor of 97.826. (D) Graphical representation of the averaged 3D-1D scores of the amino acid residues of the tertiary structure determined by vERIFy3D 

server. PDB indicates Protein Data Bank.

Figure 7. active site of the hypothetical protein. (a) The sphere indicates the active site/pocket of the protein. (B) The marked amino acid residues 

construct the active site of the protein.
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Table 5. Docking study of the ligands to the target protein.

DOCKING aNalySIS By aUTODOCK vINa THROUGH PyRX SERvER

CaTEGORy lIGaND BINDING aFFINITy  
(kcal/mol)

RMSD INTERaCTING 
RESIDUES

Selecting the active sites S-adenosyl methionine (SaM) −7.1 0.0 lys7, ala9, Trp48,
His49, His170,
asp223, Ser224

S-adenosyl homocysteine (SaH) −6.7 0.0 lys7, ala9, Trp48,
His49, His170,
asp223, Ser224

Without selecting the active 
sites(Blind dock)

S-adenosyl methionine (SaM) −6.6 0.0 lys8, Trp48, His49,
His170, asp223,
Ser224

S-adenosyl homocysteine (SaH) −6.4 0.0 lys7, Ser8, ala9,
arg13, His49, Ser224

DOCKING aNalySIS THROUGH PaTCHDOCK-FIREDOCK SERvER

lIGaND(S) RaNK GlOBal ENERGy aTTRaCTIvE vDW REPUlSIvE vDW

S-adenosyl methionine (SaM) 01 −44.22 −17.94 5.65

02 −42.71 −15.96 1.49

S-adenosyl homocysteine (SaH) 01 −46.03 −20.44 5.07

02 −45.74 −19.96 5.21

Figure 8. Molecular docking (targeted protein-ligand interactions). (a) 3D interaction between the targeted protein and ligand (SaM). (B) 2D interaction 

between the targeted protein and ligand (SaM). (C) 3D interaction between the targeted protein and ligand (SaH). (D) 2D interaction between the targeted 

protein and ligand (SaH). SaH indicates S-adenosylhomocysteine; SaM, S-adenosylmethionine.

protein, using the Autodock vina on the PyRx server. It helped 
to reinspect the active site predicted by CASTp server and find 
out whether the ligands actually interact within the predicted 
active site or some other site of the protein (Table 5). The com-
parative analysis of active sites through docking showed that 
the ligands interact firmly with the protein within the pocket 
inferred by CASTp server and validated the active site detec-
tion to be a preferably precise prediction. The comparative 
active sites of interaction are depicted in Figure 9. Overall, the 
results obtained from these docking analyses strongly justify 

the precision of prediction of the target protein to be a SAM-
dependent methyltransferase.

Subcellular localization nature and functional 
annotation

The subcellular localization prediction of a protein involves 
finding out where the protein actually resides within a cell. 
Subcellular localization predicted by the CELLO2GO and 
CELLO v2.5 server revealed that the protein is predicted to be 
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Figure 9. The comparative analysis of active site of the protein. The ligand(s) docked inside the same pocket (Circled) in all of the 4 cases indicating 

toward the precise active site determination by CaSTp server. (a) Protein-ligand (SaM) docking analysis after marking the active residues. (B) Protein-

ligand (SaM) docking analysis without marking the active residues. (C) Protein-ligand (SaH) docking analysis after marking the active residues. (D) 

Protein-ligand (SaH) docking analysis without marking the active residues. CaSTp indicates Computed atlas of Surface Topography of proteins; SaH, 

S-adenosylhomocysteine; SaM, S-adenosylmethionine.

Figure 10. STRING network analysis of the target hypothetical protein (aDE85271.1) depicting the interactions with other proteins.
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localized in the cytoplasm of the cell. The result was further 
validated by PSORTb, PSLpred, SOSUIGramN, Gneg-PLoc, 
BUSCA, and PRED-TMBB tools which also predicted the 
protein to be a cytoplasmic protein (Table 6). The TMHMM 
and HMMTOP servers predicted the absence of transmem-
brane helices. The absence of transmembrane helices overrules 
the possibility of the HP to be a transmembrane protein. Gene 
ontology results from CELLO2GO tool predicted the molec-
ular function of the protein and its involvement in biological 
processes. The tool revealed that the major molecular function 
of the target protein is to impart methyltransferase activity. It 
also predicted that the protein is mainly involved in the biosyn-
thetic process. Besides, the protein also has a probability to 
have involvement in protein complex assembly, cellular compo-
nent assembly, and macromolecular complex assembly. The 
ProFunc and PredictProtein servers also validated the result by 
predicting our query protein as a methyltransferase protein.

Protein-protein interaction analysis

STRING is a web-based database of known and predicted 
PPIs that includes direct and indirect associations. Protein-
protein interaction network analysis obtained from this data-
base revealed that our HP of interest has interaction with other 
proteins, some having experimentally known functions and 
some whose functions are not yet experimentally annotated 
(Figure 10). Our targeted protein has a strong predicted inter-
action with NuoF (NADH-quinone oxidoreductase subunit F) 
and also has a moderate interaction with NuoH (NADH-
quinone oxidoreductase subunit H), NuoI (NADH-quinone 
oxidoreductase subunit I), NuoG, and NuoJ. Besides, the pro-
tein has also interaction with several proteins having functions 
which are not yet annotated. NuoF, NuoH, NuoI, NuoG, and 
NuoJ are among the 14 subunits of Complex I of R capsula-
tus.74 Two motifs in the NuoF subunit are likely to be involved 
in the binding of NADH and FMN.75 NuoG subunit may 
ligate an extra iron-sulfur (FeS) cluster required for the assem-
bly of Complex I.76,77 NuoH subunit is one of the 

most conserved subunits in Complex I. It is located in the 
membranous part and assists Complex I assembly.78 Whereas, 
subunit NuoI is essential for the connection between the mem-
branous domain and peripheral domain, in Complex I.79

As a part of the nuo gene cluster, urf7 gene product encodes 
a SAM-dependent methyltransferase. Previously, the roles of 
this class of enzymes associated with bacterial mitochondrial 
complex I have been addressed both for prokaryotes and eukar-
yotes.74 The results obtained from STRING database were 
further evaluated by protein-protein docking analysis. It 
revealed that NuoF has the highest binding affinity with the 
targeted HP (Predicted SAM-dependent Methyltransferase). 
The subunit NuoG showed strong binding affinity after NuoF. 
The other 3 subunits (NuoI, NuoJ, NuoH) showed relatively 
lower binding affinity than NuoF and NuoG (Table 7). The 
outcome of the protein-protein docking analysis aligned with 
the confidence score obtained from STRING database pre-
sented in Table 7.

Prior studies have noted that SAM-dependent methyl-
transferases are involved in regulation or subunit assembly of 
Complex I.74,80 In some lower and higher eukaryotes, the roles 
of methylation-dependent regulation in mitochondrial 
Complex I have been suggested to be associated with con-
served amino acid residues, notably with arginine. However, 
the roles of histidine and lysine methyltransferases also have 
been documented.81-83 Further docking analysis by Autodock 
Vina through the PyRx server showed higher binding affinity 
of arginine than histidine and lysine with the HP (Table 7). 
The previously discussed protein-protein docking analysis also 
revealed maximally evident interaction of the HP with the 
arginine residues of NuoF and NuoG subunit (Figure 11). 
Considering all compelling evidences and significant results, it 
can be strongly theorized that the predicted SAM-dependent 
methyltransferase plays a noteworthy role in the regulation of 
Complex I assembly as a protein arginine methyltransferase 
(PRMT).

Conclusions
The study was designed to explore and annotate a hypothetical 
protein of an unknown function of R capsulatus through an in 
silico approach. Different computational tools and extensive 
bioinformatics workflow established its 3D structure and bio-
logical function. Our targeted hypothetical protein was pre-
dicted to be a SAM-dependent methyltransferase protein. The 
respective genes encoding different SAM-dependent methyl-
transferases are mostly responsible for catalyzing key steps in 
photosynthetic pigment biosynthesis. However, with the 
exception of this heavily studied role, the characterized protein 
of this study was predicted and proposed to be associated with 
the assembly of bacterial respiratory complex I. Throughout 
the process of evolution, the central subunits of complex I are 
conserved from prokaryotes to eukaryotes, including in 
humans. Deficiency in complex I is also associated with several 

Table 6. Subcellular localization analysis.

S. NO. SERvER NaME lOCalIzaTION

1 CEllO2GO Cytoplasm

2 CEllO v.2.5 Cytoplasm

3 PSORTb v3.0.2 Cytoplasm

4 PSlpred Cytoplasm

5 Gneg-Ploc Cytoplasm

6 SOSUIGramN Cytoplasm

7 BUSCa Cytoplasm

8 PRED-TMBB Cytoplasm
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human disorders. Most vigorous ones are associated with 
encephalomyopathy, Parkinson’s disease (PD), Down syn-
drome, etc. Previously, R capsulatus has been harnessed as a 
model organism to study for its commercial aspects. Due to 
high level of sequence conservation, establishing the structural 
and functional roles of unannotated protein as SAM-dependent 
methyltransferase can help to facilitate experimental studies 
and unfold new treatment strategies for critical human 
disorders.
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