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Abstract: The phytohormone auxin is involved in almost every process of a plant’s life, from germi-
nation to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology
and computational chemistry in order to develop innovative and safe compounds to be used in
sustainable agricultural practice. In this framework, we developed new fluorescent compounds,
ethanolammonium p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investi-
gated their auxin-like behavior on two main commercial vegetables cultivated in Europe, cucumber
(Cucumis sativus) and tomato (Solanum lycopersicum), in comparison to the model plant Arabidopsis
(Arabidopsis thaliana). Moreover, the binding modes and affinities of two organic salts in relation to the
natural auxin indole-3-acetic acid (IAA) into TIR1 auxin receptor were investigated by computational
approaches (homology modeling and molecular docking). Both experimental and theoretical results
highlight HEA-pABA as a fluorescent compound with auxin-like activity both in Arabidopsis and the
commercial cucumber and tomato. Therefore, alkanolammonium benzoates have a great potential as
promising sustainable plant growth stimulators to be efficiently used in vegetable crops.

Keywords: auxin; ethanolammonium p-aminobenzoate; fluorescence; Arabidopsis; cucumber;
tomato; Hirshfeld surfaces; homology model; molecular docking; auxin receptor TIR1

1. Introduction

Since its discovery nearly a century ago, deciphering the complexity of auxin action
has been an open question in plant hormone research [1]. In the last decades, the inter-
connection between modern biology and chemistry has led to progress in plant growth
regulators and herbicides, auxins being perceived as small molecules with a big impact [2].
Auxins act as signaling molecules to regulate almost every aspect of plant growth and devel-
opmental processes [3,4], being involved in interactions with other hormone signals [5] and
even with microorganisms and viruses [6]. Specifically, indole-3-acetic acid (IAA), the most
abundant naturally occurring auxin, is involved in promotion of hypocotyl and inhibition
of main root elongation, the induction of lateral root formation and gravitropism [7,8].

The synthesis of small bioactive compounds with auxin-like activity has gained
increasing attention in plant chemical biology research as a valuable tool to study and
control molecular features of auxin action, as well as in agricultural and horticultural
practices by controlling plant growth. The extensive bioassay investigations used for
generating auxin structure–activity relationships highlighted two essential features of the
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molecule responsible for its biological activity: a planar aromatic ring structure and a
carboxyl group [8]. Moreover, the side groups binding to the ring structure can dictate the
activity, adding a level of specificity [9].

To mitigate the negative effects of chemicals on the environment, recent European
strategies require serious restrictions on various compounds used in crop production that
contain synthetic auxins and plant protection chemicals. Therefore, the discovery of new
sustainable auxin-related compounds for agronomically interesting species is essential.
Small biologically active molecules, such as benzoic acid and its derivatives, which are
important structural elements for many drugs and natural products, drew attention in the
last years due to their involvement in various plant physiological processes [10]. Beside
the presence of carboxylate and a planar aromatic ring, the substituent on the benzene
ring exhibits an essential role in biological activity establishment. Our previous studies
revealed the important role of different substituted benzoic acids in the synthesis of sta-
ble acid–base systems with supramolecular architectures guided by hydrogen bonding
interactions [11–15], low toxicity [16] and promising plant growth regulatory activity on
the model plant Arabidopsis (Arabidopsis thaliana) [17,18] and the vegetable crops cucumber
(Cucumis sativus) [19] and tomato (Solanum lycopersicum) [20,21].

The crystallographic determination of transport inhibitor response 1 (TIR1) [22], as
an auxin receptor, brings fundamental information to reveal the mechanism of auxin
action. The protein receptor recognizes both the naturally occurring IAA and synthetic
auxins such as 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D).
Moreover, the interactions responsible for molecular recognition indicate a higher affinity
for IAA [23]. The Arabidopsis model is frequently used in auxin research because it is
the best-characterized dicotyledonous plant species in terms of regulation of molecular
mechanisms for growth and development.

Recently, fluorescence labeling of auxin molecules has drawn attention as a success-
ful strategy to investigate the transport, perception and mode of action by visualizing
their plant location and distribution as well in the identification of the complex ligand-
receptor [24]. The literature mentions few fluorescent auxin compounds: fluorescein isoth-
iocynate and rhodamine isothiocynate conjugates of IAA (IAA-FITC, IAA-RITC) [25,26] as
well as nitrobenzoxadiazole (NBD)-labeled IAA, NAA and 2,4-D analogues [27,28].

Here we report the development of new fluorescent compounds, ethanolammonium
p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investigate their
auxin-like plant growth regulatory activity on two main commercial vegetables cultivated
in Europe, cucumber and tomato. The biological activities were analyzed and discussed
as related to Arabidopsis model plant responses, the results being compared with our
earlier research [18]. The new compounds with dual biological activity were obtained
based on biologically active components (anion and cation) with well-known toxicological
properties [16] or natural metabolites, accepted as safe compounds. p-Amino- and p-
nitrobenzoic acids (pABAH, pNBAH) are commercially available reagents which received
increasing attention as building blocks in drug development [29,30] as well as in plant
science [18,21], pABAH being a precursor of folic acid [31]. Ethanolamine (EA) is an
important metabolite in plants and is a precursor of choline and membrane lipids [32].
Computational approaches such as homology modeling and molecular docking were
used to explain the auxin-like behavior of these compounds against TIR1 in cucumber
and tomato.

2. Results and Discussions
2.1. Bioactivity Assays

The response of seed germination and root growth development (primary root length
and lateral root number) to HEA-pABA, HEA-pNBA and natural auxin IAA used as refer-
ence was investigated in Arabidopsis, cucumber and tomato. The compounds were tested
in different concentrations, using 0.1 mM as the starting point for experiments, as a result
of our previous screening [18]. The data showed that exogenous treatments inhibited the
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seed germination in all studied species, when compared to control (Table 1), IAA showing
the significant inhibitory effect and HEA-pABA the lowest one. At 0.5 mM and 1 mM
concentrations, HEA-pNBA treatment reduced the germination by about 10%, whereas
IAA caused an almost complete inhibition of Arabidopsis and tomato seed germination
(Table 1).

Table 1. The influence of different concentration treatments on seed germination.

Germination (%)

Arabidopsis Cucumber Tomato

Treatment 0.1 mM 0.5 mM 1 mM 0.1 mM 0.5 mM 1 mM 0.1 mM 0.5 mM 1 mM

Control 100 a 100 a 100 a 98.66 ±
1.53 a

98.66 ±
1.53 a

98.66 ±
1.53 a 100 a 100 a 100 a

HEA-
pABA

98.00 ±
0.86 a

95.11 ±
1.66 b

93.33 ±
1.25 b

94.21 ±
2.29 b

91.96 ±
2.63 b

90.22 ±
2.96 b

88.89 ±
1.36 b

91.11 ±
1.66 b

93.33 ± 1.2
b

HEA-
pNBA

96.56 ±
2.63 b

89.33 ±
2.96 c

87.66 ±
2.03 c

88.56 ±
2.88 c

87.23 ±
2.49 b

82.00 ±
3.02 c

86.67 ±
2.73 b

71.11 ±
2.49 c

75.56 ± 2.3
c

IAA 77.66 ±
2.49c - - 86.65 ±

2.27 c
80.45 ±
2.63 d

73.89 ±
3.22 c

75.56 ±
2.03 c - -

The significant differences among the variants noted with different letters are based on one-way ANOVA, Fisher LSD (p < 0.05).

The tomato seeds treated with 0.5 mM IAA began to germinate only after 14 days
(data not shown). At 0.1 mM concentration, HEA-pABA and HEA-pNBA treatments
highlighted differences in seed germination even after five days, the tenth day revealing
an uniformization tendency of values. Despite this, IAA showed the slowest germination
process which started on the fifth day both in Arabidopsis and tomato.

Recent studies have reported that exogenous IAA application higher than 1 µM
determines the inhibition or delay of seed germination in plants [33,34]. However, the
mechanism of auxin action in seed germination has not been completely elucidated, al-
though there are studies which identified the key role of interactions between IAA, abscisic
acid (ABA) and even gibberellic acid (GA) to control the seed dormancy and germina-
tion [35,36].

Besides involvement in seed germination, auxins play an essential role in plant devel-
opment, especially in root growth, by inhibiting the primary root length and increasing
the lateral root number. We evaluated these parameters in order to investigate the role
of HEA-pABA and HEA-pNBA on early root development. The effect of treatments on
root growth was evaluated by using different concentrations ranging between 0.1 mM and
1 mM (Figure S1, Supplementary Materials). Significant differences were detected both
between the various concentrations of each treatment as well as between treatments. In
particular, HEA-pABA, HEA-pNBA and IAA treatments suppressed the cucumber primary
root length in a concentration-dependent manner (Figure 1A), whereas a stimulation of cu-
cumber lateral root number was observed with HEA-pABA treatment, HEA-pNBA having
an opposite effect upon 0.5 mM and 1 mM treatment (Figure 1B). In tomato, IAA showed
the same inhibitory effect as HEA-pABA on primary root length when used at 0.1 mM and
completely inhibited the primary root length when used at 0.5 mM and 1 mM (Figure 1C).
The lateral root number of tomato was significantly (p < 0.05) increased by HEA-pABA at
all concentrations, whereas IAA (at all concentrations) and HEA-pNBA (at 1 mM) had an
opposite effect (Figure 1D). Finally, Arabidopsis primary root length was strongly inhibited
by IAA and HEA-pNBA at all concentrations, whereas HEA-pABA showed a reduced
inhibition (Figure 1E). With regards to lateral root number, Arabidopsis showed almost the
same trend as observed for tomato; however, HEA-pABA strongly promoted lateral roots
only at 0.1 mM (Figure 1F).
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Figure 1. Effect of HEA-pABA (ethanolammonium p-aminobenzoate; blue), HEA-pNBA (ethanolammonium
p-nitrobenzoate; green), IAA (indole-3-acetic acid; pink) different concentrations and control (grey) on primary root
length and lateral root number of C. sativus (A,B), S. lycopersicum (C,D) and A. thaliana (E,F). In all figures, different letters
represent statistically Scheme 0. Metric bars indicate the standard error of the mean (SEM) of 5 repeated measurements.

In tomato and Arabidopsis, IAA treatment induced a strong inhibition both of the
primary root length and lateral root number. These results support the observation that
the promotion of lateral root number gradually decreases with the reduction of root cell
elongation when IAA acts at high concentrations [37]. Thus, a correlation between root cell
elongation, concentration level of IAA and lateral root number was evidenced. Moreover, it
is known that IAA cannot reduce cell length in full elongated root portions [37]. Our previ-
ous results on tomato confirm a longer time root development in the case of IAA seedlings
treatment, revealing an auxin-like activity after 21 days treatment in greenhouse [20]. In-
stead, HEA-pABA activity results suggest an earlier promoting root development compared
with IAA. In conclusion, HEA-pABA shows a potential auxin-like root growth phenotype,
with primary root length being inhibited, while lateral root number was stimulated at all
concentrations in all plants studied.

2.2. Fluorescence Properties

The fluorescence for the organic salts HEA-pNBA and HEA-pABA, as well as for IAA
was studied in the solid state upon excitation at 337 nm (Figure 2).
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Figure 2. Emission spectra of HEA-pABA and HEA-pNBA versus IAA. The deconvolution of
Gaussian distribution functions are shown by thin dotted lines with the presentation of the maximum
peaks in eV.

The Gaussian distribution method was used for spectra division into separate bands,
making it possible to distinguish four bands in each spectrum with peaks at 2.03 eV
(610 nm), 2.49 eV (498 nm), 3.04 eV (407 nm) and 3.34 eV (371 nm). These bands reveal
orange, green, violet and ultraviolet luminescence and are developed in all three spectra
with various intensities and with same half width maximum values. The highest lumi-
nescence intensity was shown by the 3.04 eV band in the HEA-pABA sample, emitting
violet light. As can be seen, this band also has the highest intensity in IAA. The same band
(3.04 eV) in the HEA-pNBA sample has an equal intensity with the band at a maximum of
2.03 eV (exhibiting orange light) and lower luminescence intensity than in the other two
samples, which may explain the change in the properties of this compound in comparison
with the others. A lower luminescence intensity may mean that, in this compound, the
indicated vibrational modes are exchanged for phonons (i.e., they are quenched), which
usually results in a lower activity of the sample. The results indicate that modification of
the fluorescence property in the case of studied organic salts was generated by the presence
of different substituent groups on the benzene ring.

Overall, HEA-pABA provided a higher fluorescence than IAA as well as potential
auxin-like activity in Arabidopsis and in the two main commercial vegetables, cucumber
and tomato, properties which should be considered for future design of new fluorescent
plant growth regulators.

2.3. Hirshfeld Surfaces

The opposite behavior exhibited by the two organic salts is intriguing since both
compounds possess the molecular features responsible for the auxin activity, i.e., planar
aromatic ring and carboxylate function. The overlay of the phenyl carbon atoms of HEA-
pNBA and HEA-pABA illustrates their conformational similarity and differences (Figure S2,
Supplementary Materials). Both anions form practically planar systems in discussed
organic salts, as the least-square plane of the phenyl ring and the least-square plane of the
COO- and NO2 groups are 5.81 and 4.81◦ in HEA-pABA, respectively, and the dihedral
angle between the least squares plane of the phenyl ring C6 and the COO- group in
HEA-pABA is equal to 5.79◦.
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Surface characteristics and quantitative investigation of intermolecular interactions in
the crystal packing of HEA-pNBA and HEA-pABA organic salts was done by the analysis
of Hirshfeld surfaces maps and two-dimensional (2D) fingerprint plots. The slightly
lower Hirshfeld volume and surface area in HEA-pABA (VH = 251.19 Å, SH = 249.90 Å)
indicate a more crowded environment of this salt compared to HEA-pNBA organic salt
(VH = 257.10 Å, SH = 266.64 Å). Globularity (G) and asphericity (Ω) values of HEA-pNBA
(G = 0.733, Ω = 0.288) and HEA-pABA (G = 0.770, Ω = 0.344) show that both compounds
deviate from spherical surface and symmetry.

The Hirshfeld surfaces are mapped on the dnorm (ranged −0.707 to 1.207 Å for HEA-
pNBA and −0.632 to 1.290 Å for HEA-pABA) and shape index (−0.989 (concave) to
0.996 (convex) Å for HEA-pNBA and−0.997 (concave) to 0.997 (convex) Å for HEA-pABA).
The 2D fingerprint plots for HEA-pNBA and HEA-pABA correspond to Hirshfeld sur-
faces and are represented as plots of di versus de. Figure 3 shows 2D fingerprint plots of
Hirshfeld surface for both organic salts and clearly indicates the different distribution of
various interactions in the crystal structures. In the HEA-pNBA structure is evidenced the
predominance of the O···H/H···O interactions, with a share of 50.5%, while in HEA-pABA
prevail the H···H contacts (48.9%). In the fingerprint maps the O···H/H···O interactions
are perceived as two extended symmetrical spikes in the middle part of both plots, while
the H···H contacts appear in the middle of the scattered points.
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Figure 3. Cont.
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 Figure 3. 2D fingerprint plots (up) and Hirshfeld surfaces (down) of the different interactions (for all contacts, O···H/H···O,
H···H and C···H/H···C) in both compounds, HEA-pNBA (A) and HEA-pABA (B), in two orientations.

The next share of entire surface is related to C···H/H···C contacts (6.6% in HEA-pNBA
and 22.5% in HEA-pABA) that are observed as two partially wide wing-like peaks and
usually represent C-H···π interactions. These contacts prevail in HEA-pABA more than
3 times than in the HEA-pNBA structure, while in the last one are observed C···C contacts
(5.1%) attributed to π···π interactions, which do not appear in HEA-pABA. The inspection
of C···C interactions in HEA-pNBA shows a clear signature on the 2D fingerprint plot
(Figure 4), which contains a green/blue triangle region (bow-tie pattern) or can be observed
as red and blue triangles on the shape-index surface.
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Figure 4. The 2D fingerprint plot (left) and shape index (right), ranging from −0.989 (red) to 0.996
(blue) Å, of the C···C interactions in HEA-pNBA.

The relative contributions of the intermolecular contacts exhibited by both organic
salts are depicted in Figure 5 which clearly shows that the other interactions are minimal
in HEA-pABA (only 3.5% representing N···H/H···N contacts) compared to 8.9% in HEA-
pNBA (C···N/N···C, O···O, O···N/N···O and H···N/N···H contacts, in decreasing order).
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2.4. Homology Modeling and Ligand Docking

In order to find an explanation for the contrasting activities of two similar organic salts
we proceeded to analyze the interaction of the active component with the auxinic receptor
TIR1. As the three-dimensional structures of the TIR1 from cucumber (CsTIR1) and tomato
(SlTIR1) have not yet been solved, we used homology modeling to obtain accurate 3D
models of these proteins. Homology modeling is a computational method extensively
used to predict a 3D structure of a protein from its amino acid sequence relying on the
paradigm that similar sequences fold into identical structures. The closest “relative” of
CsTIR1 and SlTIR1 with a known 3D structure is the X-ray structure of TIR1 isolated from
Arabidopsis (AtTIR1). Therefore we used AtTIR1 to generate 3D models of CsTIR1 and
SlTIR1. The sequence alignment reveals that the sequence similarity of CsTIR1 and SlTIR1
with AtTIR1 is very high (over 75%). The similarity increases over 90% if only the binding
site is considered (Table S1, Supplementary Materials). The refined alignment (Figure 6)
was used to build three-dimensional models of CsTIR1 and SlTIR1 based on AtTIR1.

The homology models of CsTIR1 and SlTIR1 (Figure S3) were sterically and geomet-
rically validated and then were tested for their ability to reproduce the binding mode of
IAA in the crystal structure. Considering that AtTIR1, CsTIR and SlTIR1 are highly similar
(Table S1), an accurate model would be able to reproduce the crystallized ligand (IAA).

According to experimental data [22], the IAA establishes a complex network of inter-
actions in the AtTIR1-binding site (Table S2). Carboxylate moiety has a proper location
and orientation to form hydrogen bonds with Arg403 and Ser438 and a salt bridge with
guanidine groups of Arg436 and Arg403. The indole ring position is secured by two
opposite π-alkyl interactions formed with Cys405 (pyrrole ring) and Ala464 (phenyl ring).
The indole ring also forms a π-cation bond with Arg489 (benzene ring) and a hydrogen
bond with the main chain of Leu405 (Figure 7A). Excepting the π-cation bond with Arg489,
all the other interactions of IAA are retrieved in the CsTIR1- and SlTIR1-binding sites
(Figure 7B,C). The missing interaction does not significantly influence the IAA’s active
conformation in the binding site as the indole ring is being maintained in the same position
through the interactions with alanine, cysteine and leucine residues. These observations
certify that the 3D models of CsTIR1 and SlTIR1 are reliable to be used to observe and
explain the behavior of other related ligands.
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Residues from the auxin-binding site are shown in red. The color of background indicates sequence similarity from
white (identity) to dark grey (no similarity). See Table S1 in Supplementary Materials for detailed information about
sequence similarity.
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Figure 7. IAA in the AtTIR1 (A) CsTIR1 (B) and SlTIR1 (C) binding site. The secondary structure of the TIR1 is shown in
green. IAA is shown as balls and sticks representation, while the amino acids from the binding site are shown with sticks.
All interactions are shown as orange dashed lines.

In order to explain the biological behavior of HEA-pABA and HEA-pNBA in previous
tests, their anions were docked in the IAA-binding site using Glide. The output conforma-
tions were analyzed based on their binding energies with the TIR1 and based population
clusters. Additionally, we mapped the auxin-binding site by identifying regions which
easily accommodate part of ligands with hydrogen bond acceptors, hydrogen bond donors
or hydrophobic areas [38,39].
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HEA-pABA has a similar binding mode with IAA in both CsTIR1- and SlTIR1-binding
sites. The negatively charged carboxylate interacts with two arginine residues through a
salt bridge and/or hydrogen bond formation while the amino group is favorably placed to
establish a hydrogen bond with Leu434 in CsTIR1 and Leu435 in SlTIR1 (Figure 8).
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hydrophobic parts of a potential ligand.

HEA-pNBA adopts a different orientation in the situs: although the carboxylate group
forms hydrogen bonds and s salt bridge with the same arginine residues as IAA and
HEA-pABA, the ligand HEA-pNBA is pushed outside the binding site so that the hydrogen
bond with the leucine main chain is not established. This movement is due to the presence
of the negatively charged substituent, the benzene ring, which is pushed away from the
binding site area which demands a hydrogen bond donor (Figure 9B,D). The hydrogen
bond with the Leu439 main chain seems to play an important role in anchoring the ligand
in the binding site.
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The blue surface is favorable for occupancy by functional groups that act as hydrogen bond donors,
the red surface for hydrogen bond acceptor groups and the yellow areas can easily accommodate
hydrophobic parts of a potential ligand.

These findings offer an explanation for the different activity of HEA-pABA and HEA-
pNBA against auxinic receptor TIR1. The active conformation of HEA-pABA shows a
perfect fit, both geometrically and electrostatically, in the TIR1-binding site (Figure S4).
Even if HEA-pNBA has a similar volume and shape, the electrostatic repulsion prevents it
from activating the receptor and thus triggering the biological response. All these together
indicate correlation with biological tests and explain the auxin-like activity of HEA-pABA
in all studied plants by similar binding mode to TIR1 receptor.

3. Materials and Methods
3.1. Plant Materials, Chemicals and Methods

Seeds of A. thaliana, wild-type ecotype Columbia 0 (Col-0), C. sativus L. var. Piccolo
di Parigi and S. lycopersicum L. (Tomin cultivar created by BUASVM Timisoara, Romania)
were used. The reagents pABAH, pNBAH and EA were of analytical grade and were
purchased from Fluka (Basel, Switzerland) and Merck (Darmstadt, Germany), respectively.
Compounds HEA-pABA and HEA-pNBA were prepared in good yields (90%) by proton
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exchange reactions, as described earlier [11,18]. Colorless single crystals were obtained by
slow evaporation in ethanol solutions at room temperature and their purity (>99%) was
established by spectrophotometry [18]. Hirshfeld surface analysis and two-dimensional
fingerprint plots were generated by CrystalExplorer17 (Version 17.5) [40]. The natural
auxin IAA was purchased from Sigma-Aldrich (St. Louis, MO, USA) and was used as a
positive control for plant growth experiments. Fluorescence emission spectra of single
crystals (HEA-pABA, HEA-pNBA and IAA) excited with nitrogen laser λex = 337 nm,
duartion = 15 ns, time repetition 50 Hz were collected at room temperature.

3.2. Arabidopsis Assay

The potential auxin-like activity of the compounds was evaluated by the Arabidopsis
seedling growth test as previously described [17,18]. Seeds of Arabidopsis Col-0 were
surface sterilized with bleach solution (5% (w/v) Ca(OCl)2 + 0.02% (v/v) Triton X-100
in 80% EtOH) for 10 min by continuous shaking, washed 2 times with 80% EtOH, then
with 100% EtOH and finally 3 times with sterile distilled water. Square Petri dishes
(12 × 12 cm) with 15 seeds and 80 mL modified MS agar medium [41] supplemented with
three different concentrations (0.1 mM, 0.5 mM and 1 mM) of tested compounds (HEA-
pABA and HEA-pNBA, respectively) as well as IAA as a reference control were used. All
tested compounds were dissolved in 5 mM MES (2-[N′-morpholino] ethanesulfonic acid)
buffer (pH 6), sterilized by ultrafiltration (Millipore) and added to MS agar control (∼50 ◦C).
Five repetitions for control and for each tested compound were performed. For breaking
dormancy and synchronizing germination, Petri dishes were horizontally stratified for
2 days at 4 ◦C in the dark and then transferred to the growth chamber at 22 ◦C and grown in
vertical position under 16 h light/8 h dark photoperiod (220 µmol m−2s−1 photosynthetic
photon flux density) for 10 days.

3.3. Cucumber Assay

Cucumber seeds were washed with water for 4 h before germination and then surface
sterilized by soaking in 50% (v/v) NaOCl solution for 10 minutes and rinsed repeatedly with
distilled water before transferring them to Petri dishes. For seed germination experiments,
15 healthy and uniformly sized seeds were placed in 9 cm diameter Petri dishes containing
two Whatman filter papers moistened with 5 mL sterilized 5 mM MES buffer (pH 6) for
control and supplemented with HEA-pABA, HEA-pNBA and IAA treatments at three
different concentrations (0.1 mM, 0.5 mM and 1 mM). Petri dishes with 15 sterile cucumber
seeds were incubated for 3 days at 28 ◦C in darkness. Five repetitions for control and for
each tested compound were performed.

3.4. Tomato Assay

The protocols of tomato (surface sterilized) and seed germination were the same as
mentioned for cucumber. Each experiment was repeated five times. All plates were placed
at 25 ± 2 ◦C, 70–75% relative humidity under 16 h light/8 h dark photoperiod for 10 days.

3.5. Data Processing and Statistical Analysis

The images of Arabidopsis seedlings were acquired after 5 and 10 days by scanning
each Petri dish with an EPSON Perfection 4870 Photo scanner at 600 DPI. Germination was
defined as radicle emergence by more than 1 mm. Cucumber seedlings were photographed
after 3 days, while tomato seedlings after 5 and 10 days. The root lengths were measured
using the ImageJ software (Fiji) [42]. The number of emerged lateral roots was counted
using a Nikon YS 100 microscope 10× objective. The experimental data were statistically
analyzed using a one-way ANOVA, followed by Fisher least significant difference (LSD)
test and expressed as the means ± standard error of the mean (SEM). In all plots, different
letters indicate significant differences (p < 0.05).
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3.6. Homology Modeling and Refinement

The three-dimensional structures of CsTIR1 and SlTIR1 were built based on a crystal
structure of TIR1 from Arabidopsis (AtTIR1, PDB Code: 2P1P) [22] using Prime module
from Schrödinger package, release 2020-4 [43,44]. The multiple sequence alignment re-
sulted from Prime was manually refined according to the 3D structure of the AtTIR1, thus
deletions or insertions in the alpha-helices or beta-sheets were avoided. Thirty models of
CsTIR1 and SlTIR1 were generated and submitted to the loop refinement step, using the
Protein Refinement option from the Prime module. The best models were chosen according
to their ability to reproduce the conformation of the crystallized ligand and based on
energetic criterion. The final models have over 90% of residues in the favorable regions
of the Ramachandran map and all the main-chain and side-chain parameters are in the
normal range.

3.7. Molecular Docking

Ligand setup. Considering that the active component of this type of compound is the
anion, only HEA-pABA and HEA-pNBA were considered for molecular docking. Ligands
(anions) were prepared for docking using LigPrep application from Schrödinger release
2020-4 [45]. The polar and non-polar hydrogen atoms were added to ligands and all
possible tautomers at physiological conditions (pH = 7.4) were generated. Furthermore,
the ionization states were set and the final geometries were minimized using OPLS_2005
force field.

Protein setup. Protein Preparation Workflow (Schrödinger release 2020-4) [46,47] was
used to add all the hydrogen atoms to the CsTIR1 and SlTIR1 receptors, to optimize the
charge state of Asp, Glu, Arg, Lys and His residues and the orientation of hydroxyl and
amide groups.

Docking protocol. Glide receptor grids were generated from the prepared receptor
model, with the docking grids centered on the crystallized ligand. The binding site was
defined by a cubic docking box with the dimensions large enough to accommodate ligands
with a length ≤20 Å, while to the ligand-midpoint box a side of 14 Å was given. The
docking runs were performed with Glide in SP mode using default settings for parameters
(Schrödinger release 2020-4) [48–51].

4. Conclusions and Future Perspectives

In recent years, fluorescent auxins have offered understanding of molecular mecha-
nisms of auxin transport, perception and mode of action. Herein, two new compounds,
HEA-pABA and HEA-pNBA, with higher fluorescence intensity than classical IAA were
tested as potential auxin-like plant growth regulators on two main commercial vegetables,
cucumber and tomato, as related to model plant Arabidopsis. Exogenous treatments have
been reported to influence root growth response in a concentration-dependent manner.
HEA-pABA was found to promote earlier root development, when compared with IAA,
inhibiting primary root length and promoting the formation of lateral roots. The con-
trasting biological activities of HEA-pABA and HEA-pNBA were explained analyzing the
binding modes and affinities of new compounds in relation to IAA into cucumber and
tomato TIR1 auxin receptors. The experimental and theoretical results correlate well and
highlight HEA-pABA as a fluorescent compound with potential auxin-like activity in all
studied species. These promising results will serve as a starting point to extend the utility
of docking new auxin compounds by proposing CsTIR1 and SlTIR1 beside AtTIR1 as
working models in understanding the auxin mode of action. Additional to phenotypic
observation of root development and auxin-binding activities, a future challenge remains
to explore the expression levels of auxin-responsive genes such as ARFs (Auxin-response
factors), SAURs (Small auxin-up RNAs) and GH3s (Gretchen Hagen 3). However, the
development of new sustainable fluorescent auxin-like compounds and understanding
their underlying mechanism of action in plants deserve further investigations.
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