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Abstract: Photoreduction of Cu2+ ions to Cu metal by titanium(IV) oxide (TiO2) was conducted in
the presence of a silica–surfactant hybrid under sulfuric acid conditions. After irradiation, a dark-red
color, reflections due to Cu metal in the X-ray diffraction pattern, and peaks due to Cu 2p1/2 and
2p3/2 in the X-ray photoelectron spectrum indicated the precipitation of Cu metal in the product.
In addition, an increase in the Brunauer–Emmett–Teller specific surface area from 36 and 45 m2/g
for the silica–surfactant and TiO2, respectively, to 591 m2/g for the product, and a decrease in the
intensity of the C-H stretching band in the Fourier–transform infra-red spectra implied the removal
of surfactant during the reaction. These characteristics were never observed when TiO2 was used
solely. Therefore, this study indicated that the photoreduction of Cu2+ ions to Cu metal by TiO2 was
facilitated under the sulfuric acid medium, where the surfactants extracted from silica–surfactant
hybrids by protons in the acidic condition were successfully photo-oxidized by TiO2. Thus, this study
presents a new application of the conversion of a silica–surfactant hybrid into mesoporous silicas.

Keywords: mesoporous silica; silica–surfactant hybrid; heavy metal ion; photoreduction; titanium oxide

1. Introduction

The discovery of mesoporous silicas prepared by a supramolecular templating ap-
proach in the 1990s [1,2] prompted studies of their fundamental properties and practical
applications, leading to the generation of mesoporous silicas with varied mesostructures
that originated from the mesostructures of silica–surfactant hybrids that form via self-
assembly of surfactants such as alkyltrimethylammonium salts with concurrent silica
precipitation [1–7]. Thus, porous structures form upon removal of the surfactants via
calcination using an electric furnace or via acid extraction under mild conditions [1–7]. The
former process can emit carbon dioxide gas, whereas the latter process proceeds under
mild conditions but generates a waste solvent that contains surfactants. Therefore, we
focused on adding this surfactant-containing waste to wastewater to promote the removal
of pollutants for environmental purification applications. Notably, mesoporous silicas that
release surfactants can be used as adsorbents to purify waste water [6,7].

Here, we report the photoreduction of Cu2+ ions using silica–surfactant hybrids
and titanium (IV) oxide (TiO2) under sulfuric acid conditions (Scheme 1). Specifically,
photoreduction of heavy-metal ions was conducted with the concurrent oxidation of sur-
factants by combining TiO2 with silica–surfactant hybrids. TiO2 is an extensively studied
photocatalyst [8–10] that promotes the photo-oxidation of organic compounds and the
photoreduction of heavy-metal ions to metals [8–11]. The latter process can be used to
produce visible-light-responsive photocatalysts and antibacterial materials [8–11], and the
generated heavy metals can be photo-oxidized by TiO2 [12]. Notably, heavy-metal ions

Materials 2022, 15, 5132. https://doi.org/10.3390/ma15155132 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15155132
https://doi.org/10.3390/ma15155132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7574-3496
https://orcid.org/0000-0002-3841-5354
https://orcid.org/0000-0001-5021-5673
https://doi.org/10.3390/ma15155132
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15155132?type=check_update&version=2


Materials 2022, 15, 5132 2 of 9

are present in sulfuric-acid-containing wastewater from mines [13,14]. Sulfate ions can be
adsorbed onto the surface of TiO2 to decrease its photocatalytic activity [15]. Therefore,
surfactants extracted from silica–surfactant hybrids by sulfuric acid are promising organic
compounds that can be degraded by photo-oxidation by TiO2, promoting the photoreduc-
tion of heavy-metal ions by TiO2 in the presence of sulfuric acid. Thus, the photocatalytic
activity of TiO2 has the potential to both degrade surfactants present as additional waste
and remove heavy-metal ions as metal precipitates.
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Scheme 1. An overview of the present study.

2. Material and Methods

Copper(II) sulfate (CuSO4) pentahydrate and methanol were obtained from Wako Pure
Chemical. Tetraethoxysilane (TEOS) and hexadecyltrimethylammonium chloride (C16TAC)
were obtained from TCI. A 28 wt% ammonia solution was obtained from Kanto Chemical
(Tokyo, Japan). All the chemicals were reagent grade and used without further purification.

In the present study, we conducted photoreduction of Cu2+ ions because their con-
centration is easily measured and estimated by UV–vis spectrophotometric analysis of
the well-known blue-colored complex [Cu(NH3)4]2+ [16]. To easily determine the parti-
cle morphology, in accordance with a previous study [17], we prepared spherical silica–
surfactant hybrid particles via homogeneous precipitation of both silica and C16TAC in a
methanolic solution containing ammonia. After TEOS was added to the methanol/water
mixture containing ammonia (the TEOS:C16TAC:H2O:methanol:ammonia molar ratio was
1:0.4:774:1501:72 in the initial dispersion), the solution was shaken for 3 s and aged at room
temperature for 20 h. After the reaction, the resultant solid was centrifuged, washed with
methanol, and then dried for 80 ◦C for 1 day. A field-emission scanning electron microscopy
(FE-SEM) image of the product is shown in Figure 1. For comparison, the as-synthesized
spherical particles (ASP) were calcined at 550 ◦C for 20 h, similar to the procedure used
in a previous study [17] to prepare calcined spherical particles (CSP) as a nanoporous
silica. The TiO2 was a standard photocatalyst (P25, Degussa, Düseldolf, Germany). After
both P25 (20 mg) and ASP (80 mg) were dispersed in a 10 mmol/L CuSO4 solution (5 mL)
adjusted to pH 4 by the addition of sulfuric acid, the dispersion was irradiated with a
He–Xe lamp for 4 h though a quartz plate. The irradiation area was the same as the width of
the reaction vessel, and the distance between the top of the dispersion (whose height from
the bottom of the reaction vessel was 1 cm) and the lamp was 0.5 cm. During irradiation,
the dispersion was briefly stirred for every hour. The dispersion was also continuously
stirred for comparison purposes. After the reaction, the resultant solid was centrifuged at
5000 rpm for 10 min and then washed with distilled water, to obtain the product denoted
herein as Cu–P25–ASP. The resultant supernatant showed an increase in pH from 4 to 5
and contained bubbles on its surface, a common feature of surfactant aqueous solutions.
The obtained solid was dried under a reduced pressure for 1 day. For comparison, these
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procedures were also applied to separate starting solutions containing P25 (20 mg), ASP
(80 mg), and C16TAC (20 mg) individually.
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Figure 1. FE-SEM image of ASP.

3. Results and Discussion

After irradiation, the P25–ASP mixed dispersion was dark-red (Figure 2), whereas the
dispersions of P25 or ASP and the solution of C16TAC containing Cu2+ were not. Notably,
when the P25-ASP mixed dispersion was continuously stirred, the red coloration was not
observed. Because the powders used in the present study did not immediately settle in the
reaction vessel, UV light likely did not reach the vessel bottom and a certain UV irradiation
time was necessary to change the dispersion color. The X-ray diffraction (XRD) pattern
for the Cu–P25–ASP shows reflections attributable to P25 and ASP as well as Cu metal;
no reflections attributable to copper oxides are observed (Figure 3). Transmission electron
microscopy (TEM) and scanning TEM (STEM) images of the Cu–P25–ASP show spherical
particles (ASP) and ~30 nm particles of P25. The latter particles exhibit relatively dark
and bright regions (Figure 4a,b). The light regions contain high concentrations of Cu, as
evident in the corresponding energy-dispersive X-ray (EDX) mapping image (Figure 4d).
In addition, the spherical particles and the ~30 nm particles of P25 contain Si and Ti, as
revealed in the EDX mapping images, respectively (Figure 4e,f). The X-ray photoelectron
spectrum of the Cu–P25–ASP (Figure 5) shows peaks at binding energies of 953.5, 943.0,
933.0, and 932.5 eV, which are attributed to Cu 2p1/2, Cu2+ satellite, Cu2+ 2p3/2, and Cu
2p3/2, respectively [18,19]. The ratios of the decrease in Cu2+ concentration relative to those
in the starting solutions are reported in Table 1. The dispersion that contained both P25
and ASP resulted in the largest decrease, whereas the Cu2+ concentration hardly decreased
for the P25 dispersion or the C16TAC solution. In contrast, the ASP dispersion resulted in a
40% decrease in Cu2+ concentration.
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Table 1. Ratios reflecting the decrease in Cu2+ concentration after irradiation of the additives com-
bined with the starting solution.

Addtives Cu2+ Decrease Ratios (%)

P25 + ASP 48

P25 0.010

ASP 40

C16TAC 2.5

The intensities of the C–H stretching bands [20] at 2922 and 2872 cm−1 and the
C–N stretching band [20] at 1460 cm−1 in the Fourier transform infrared (IR) spectrum
of the solid mixture of P25 (20 mg) and ASP (80 mg) are substantially lower than those
in the spectrum of the Cu–P25–ASP (Figure 6). Based on the CHN analyses, the C and
N contents (2.9 and 0.13 mass%, respectively) in the Cu–P25–ASP are lower than those
in the mixed solid before irradiation (18 and 0.95 mass%, respectively). Figure 7 shows
N2 adsorption/desorption isotherms for the ASP, P25, Cu–P25–ASP, and CSP, recorded at
−196 ◦C. Based on these isotherms, the specific surface areas of the ASP, P25, Cu–P25–ASP,
and CSP were calculated to be 36, 45, 591, and 806 m2/g using the Brunauer–Emmett–Teller
(BET) method [21]. These BET surfaces areas, the Barrett–Joyner–Halenda (BJH) [22] pore
sizes, and the pore volumes estimated using the BJH method are listed in Table 2 for
Cu–P25–ASP and CSP.

Table 2. List of BET surface areas, BJH pore sizes, or pore volumes for ASP, P25, Cu–P25–ASP,
and CSP.

Samples BET Surface Area (m2/g) BJH Pore Size (nm) Pore Volume (cm3/g)

ASP 36 - -

P25 45 - -

Cu–P25–ASP 591 1.2 0.11

CSP 806 1.2 0.18
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Collectively, the product appearance (Figure 2), XRD patterns (Figure 3), XPS spectrum
(Figure 5), and electron microscopy and elemental analysis results (Figure 4) reveal that Cu2+

was photo-reduced, resulting in the precipitation of Cu metal in the P25–ASP mixed product
after irradiation. Copper oxides are absent, consistent with the lower redox potential of the
conduction band of TiO2 (−0.52 V) [8] relative to those for Cu2+/Cu+ (0.15 V), Cu2+/Cu
(0.34 V), and for Cu+/Cu (0.52 V) [23].

Alkylammonium ions are well known to be degraded by •OH and •O2 radicals, which
can be generated by reaction of H2O and O2 molecules with holes photogenerated in the
valence band of TiO2 [24]. In the present study, the IR spectra, N2 adsorption/desorption
isotherms (Figure 7), and elemental analyses indicate a decrease in the concentration of
hexadecyltrimethylammonium ions (C16TMA+) in the ASP after the reaction. Because
a decrease in the concentration of Cu2+ was observed when ASP alone was used for the
present reaction (Table 1) and because the cation-exchange reactions of silanol groups on
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silicas are well known [25], exchange reactions of C16TMA+ with protons and/or Cu2+ ions
in the CuSO4 acidic solution are highly likely, as indicated by an increase in the pH of the
dispersion after the reaction (see Material and Methods). The presence of Cu2+ detected by
XPS (Figure 5) thus results from Cu2+ ions adsorbed onto the ASP, which are not accessible
on P25 surfaces (Figure 4) or on the white regions observed after irradiation (Figure 2); the
latter situation can be improved by modifying the experimental conditions. The dispersion
never became dark-red as shown in Figure 2 when the present reaction was conducted with
P25 alone; it remained white. In addition, the Cu2+ decrease ratio for the Cu–P25–ASP is
higher than those for the P25 and ASP. Notably, the solution after irradiation was still under
sulfuric acid conditions (refer to the experimental conditions). Therefore, photo-oxidation
of C16TMA+ extracted from ASP is evident in the present reaction, and this photo-oxidation
successfully promoted the photoreduction of Cu2+ under sulfuric acid conditions.

After the dispersion containing P25 and ASP was irradiated for 4 h, slight bubbling
was observed on the surface of the dispersed particles, suggesting the presence of unde-
graded C16TMA+. In addition, C16TMA+ and/or C16TAC was incompletely extracted
from the ASP according to the residual alkyl chains in Cu–P25–ASP, as revealed by the IR
spectra and CHN analyses; this interpretation is further supported by the lower porosity of
Cu–P25–ASP compared with that of CSP, as determined from the N2 adsorption/desorption
isotherms (Figure 7). Notably, silica–surfactant hybrid spheres have been prepared us-
ing alkyltrimethylammonium salts with shorter side-chain lengths [4]. In addition, the
synthesis of silica–surfactant hybrids has been used to coat silica–surfactant layers onto var-
ious inorganic surfaces to form inorganic solid/silica–surfactant core–shell particles [5,17].
Increasing the amounts of TiO2 and TiO2-based compounds [26,27] and/or other mate-
rials [28] added to the present reaction is also feasible. Meanwhile, because the Cu2+

adsorption capability of P25 is low under sulfuric acid conditions (Table 1), the cation
adsorption ability of TiO2 surfaces in the presence of protons, where acid sites on TiO2
surfaces could be strongly related to their adsorption ability, warrants further investiga-
tion [29–32]. However, the present product containing Cu metal might find applications
where visible-light-responsive photocatalysts and antibacterial materials [7–14] have been
used. We plan to conduct such studies in the future.

4. Conclusions

We demonstrated the photoreduction of Cu2+ ions to Cu metal by TiO2 under sulfuric
acid conditions, where the surfactant molecules extracted from silica–surfactant hybrid
spheres were successfully photo-oxidized by TiO2. Therefore, the present study might
provide a new strategy for environmental purification, where the addition of another
waste to wastewater efficiently promotes both degradation and removal of surfactants and
heavy metals.
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