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Abstract

Significant improvements in genome sequencing and assembly technology have led to increasing numbers of high-quality
genomes, revealing complex evolutionary scenarios such as multiple whole-genome duplication events, which hinders
ancestral genome reconstruction via the currently available computational frameworks. Here, we present the Inferring
Ancestor Genome Structure (IAGS) framework, a novel block/endpoint matching optimization strategy with single-cut-
or-join distance, to allow ancestral genome reconstruction under both simple (single-copy ancestor) and complex
(multicopy ancestor) scenarios. We evaluated IAGS with two simulated data sets and applied it to four different real
evolutionary scenarios to demonstrate its performance and general applicability. IAGS is available at https://github.com/
xjtu-omics/IAGS.
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Introduction
Inferring ancestral genomes (IAG) among extant species is
one of the most important tasks in comparative genomics.
However, the lack of high-quality genome assemblies has long
impeded research in this area (Anselmetti et al. 2018).
Recently, rapid advances in long-read sequencing technology
and the launch of international genome projects, such as the
Earth BioGenome Project (EBP) (Lewin et al. 2018), which
aims to sequence all eukaryotic biodiversity in ten years,
have driven increases in quality and quantity of available fully
assembled genomes that evolved under different evolution-
ary scenarios. This progress has attracted novel approaches
and analysis methods for IAG to trace the events shaping
modern genomes, investigate potential evolutionary forces
and better understand biodiversity (Murat et al. 2017;
Perumal et al. 2020; Zhou et al. 2021).

During the last 20 years, a series of mathematical models
for IAG based on the parsimonious assumption have been
proposed (Sankoff and Blanchette 1997). The genome me-
dian problem (GMP) (Sankoff and Blanchette 1997) was first

proposed for the inference of ancestral genomes with single-
copy syntenic blocks (referred to as ordinary genomes). The
genome halving problem (GHP) (El-Mabrouk and Sankoff
2003) was introduced to infer the ancestor prior to a single
whole-genome duplication (WGD) event. However, it has
been proven that the solution of GHP is often highly non-
unique. To restrict the solution space of GHP to biologically
relevant solutions, Sankoff and his colleagues proposed the
guided genome halving problem (GGHP), introducing an ad-
ditional ordinary outgroup genome (Zheng et al. 2007) to
guide the search for an optimized solution of GHP.

Although the available mathematical models have laid a
solid foundation for IAG, the rapid development of long-read
sequencing technology and genome assembly has led to the
elucidation of more complex evolutionary scenarios. First, in
traditional models, all syntenic blocks in the ancestral genome
must be single-copy blocks (Avdeyev et al. 2020). However,
WGD or shared WGD events are rather common in plants
(Clark and Donoghue 2018), resulting in multicopy ancestral
syntenic blocks, which are beyond the capabilities of tradi-
tional models. Second, a complex evolutionary scenario
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contains a variety of nested ones, challenging current meth-
ods designed for a specific evolutionary scenario. To fill these
gaps, we developed the Inferring Ancestor Genome Structure
(IAGS) framework based on single-cut-or-join (SCoJ) genomic
distance (Feijao and Meidanis 2011) to unify the computa-
tional task of IAG structure in a single integer programming
(IP) optimization framework. IAGS provides an integrated
solution with four basic models with block/endpoint match-
ing optimization (BMO or EMO) strategies to solve both
simple single-copy (GMP and GGHP) and complex multicopy
ancestor problems (multicopy GMP and GGHP).
Combinations of these four models enable us to decode com-
plex evolutionary histories in a bottom-up manner. We eval-
uated IAGS with two simulated data sets to demonstrate its
accuracy. Then, we applied it to four real scenarios, including
two simple scenarios with three Brassica species (Wang et al.
2011; Belser et al. 2018; Perumal et al. 2020) and nine yeast
species (GMP and GGHP, single-copy and single ancestor)
and two complex scenarios with five Gramineae (Paterson
et al. 2009; International Brachypodium Initiative 2010;
Kawahara et al. 2013; Jiao et al. 2017; Wang et al. 2020) and
three Papaver species (Yang et al. 2021) (multicopy and mul-
tiple ancestors). All the results demonstrated the generaliza-
tion capability of the IAGS framework.

New Approaches
In IAGS, a genome is first transformed to syntenic
block (orthologous conserved segment) sequences
and then represents as block adjacencies. For example,
block sequence abc, representing one chromosome with
three blocks, is denoted as block adjacencies
fð$; atÞ : 1; ðah; btÞ : 1; ðbh; ctÞ : 1; ðch; $Þg, where at and
ah are tail and head endpoints of block a, respectively, as
well as $ is end of a chromosome. IAGS takes syntenic block
sequences as input (supplementary fig. 1, Supplementary
Material online) and contains four models GMP, GGHP, mul-
ticopy GMP and multicopy GGHP based on IP optimization
formulations (fig. 1; see Materials and Methods).

GMP and GGHP models address simple evolutionary sce-
narios with single-copy ancestral block sequences. The IP in
each model yields inferred ancestral block adjacencies with
single-copy endpoints, leading to unique ancestral block
sequences (fig. 1A and B).

Multicopy GMP and multicopy GGHP models solve com-
plex evolutionary scenarios with multicopy ancestor (fig. 1C
and D). Due to multicopy endpoints in initial ancestral block
adjacencies inferred from GMP and GGHP IP formulations,
pairs of block head and tail are not unique, leading to multiple
solutions of block sequences (supplementary fig. 2A and B,
Supplementary Material online). We proposed block and
endpoint matching optimization (BMO and EMO) proce-
dures using a descendant species guided strategy to obtain
biologically relevant solution. BMO is an optimization proce-
dure to identify the best multicopy block matching between
guide and target genomes by minimizing genomic distance.
In BMO procedure, both guide and target genomes are rep-
resented as multicopy block sequences. Self-BMO is a special
case of BMO with target genome as the guide, identifying

multicopy block matching in recent duplication event. (sup-
plementary fig. 2C and D, Supplementary Material online).
EMO is an optimization procedure to identify the best multi-
copy endpoint matching between guide and target genomes
by minimizing genomic distance. In EMO procedure, guide
genome is represented as multicopy block sequences,
whereas target genome as multicopy block adjacencies (sup-
plementary fig. 2E, Supplementary Material online). We built
three IP formulations to solve the above three optimization
procedures. For multicopy GMP, we first found the best mul-
ticopy endpoint matching between a descendant species
(guide block sequences) and ancestor (target block adjacen-
cies) via EMO. Then, we computed ancestor block sequence
based on block head and tail pairs in a descendant species.
Block sequences from any descendant species could be used
as guide, although those from a modern species rather than
inferred one are chosen with higher priority. For multicopy
GGHP, descendant exhibits a duplicated state (duplicated
child nodes) relative to ancestor, introducing ambiguous end-
point matching between ancestor and descendant. Thus, we
first performed self-BMO to identify pairs of blocks in descen-
dant originating from recent WGD and then performed EMO
to obtain ancestral block sequences.

In addition to core functions, IAGS includes three down-
stream utilities to count chromosomal shuffling events, to
evaluate inferred ancestors and to paint chromosome rear-
rangements for facilitating and visualization of inferred results
(supplementary method 1, Supplementary Material online).
The code of IAGS is available at https://github.com/xjtu-
omics/IAGS.

Results

Simulated Evolutionary Scenarios
The evaluation of ancestral genome structure inference is
challenging due to the lack of a gold standard (Alekseyev
and Pevzner 2009). In addition, certain block connections in
ancestral genome may be hidden in modern species due to
extensive rearrangements. Here, we defined completely rear-
ranged endpoint (CRE) as a given endpoint that its associated
adjacencies are all different. Taking endpoint at as an exam-
ple, if the observed adjacencies in modern genomes are
ðat; bhÞ, ðat; chÞ, and ðat; dhÞ, at is a CRE (supplementary
fig. 3, Supplementary Material online). CREs challenge the
parsimonious assumption for IAG structure. To comprehen-
sively evaluate our framework, we designed two types of
simulations and built simulated data in a top–down manner.
We defined the adjacency inconsistency ratio to describe the
difference between two block sequences. A and B are adja-
cency sets for two genomes. Adjacency inconsistency ratio is
ðjA� Bj þ jB� AjÞ=ðjAj þ jBjÞ which used to describe the
difference between two genomes. jXj is the number of adja-
cencies in set X. X � Y is adjacencies in X not in Y. We first
simulated the evolutionary scenario without CREs (fig. 2A and
supplementary fig. 4, Supplementary Material online) to val-
idate models’ accuracy. In the second simulation, we simu-
lated data sets with CREs to establish error estimation
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FIG. 1. Overview of the four computational models of IAGS. (A) Genome median problem (GMP) model. (B) Guided genome halving problem
(GGHP) model. (C) GMP with a multicopy ancestral genome (multicopy GMP model). (D) GGHP with a multicopy ancestral genome (multicopy
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functions between the CRE ratio and the adjacency inconsis-
tency ratio.

For the simulation without CREs, we simulated a scenario
with three WGD events and the starting ancestor has 105
adjacencies. The whole simulation contains five hidden an-
cestral species at intermediate nodes of the evolutionary tree
and four observed species at leaf nodes, and we repeated the
simulation 200 times to estimate the robustness of our ap-
proach. Among these ancestors, species 2, 5, and 8 were pre-
duplicated ancestors, and their block copy numbers were
one, two, and four, respectively, whereas species 3 and 6
were divergent ancestors, and their block copy numbers
were two and four, respectively (fig. 2A and supplementary
fig. 4, Supplementary Material online). In simulation process,
we randomly shuffled five syntenic block adjacencies in each
node from top to bottom following the evolution tree.
During the entire process, at most one modification is allowed
for a given endpoint to guarantee no CREs. We reconstructed
species 8, 5, 6, 2, and 3 in order (fig. 2B and supplementary fig.
4, Supplementary Material online). Preduplicated ancestors
were inferred before the divergent ancestors. For example, we
first reconstructed species 8 by running a multicopy GGHP

model with species 9 and species 7, whereas species 9 was
used as the guide species for EMO. We then rebuilt species 5
in the same way. Next, species 6 was reconstructed using
multicopy GMP with species 7 and 8 and doubled species 5
as the input, with matching with species 7 (EMO). We per-
formed 200 rounds of simulations, and in each round, we
compared five reconstructed ancestral genomes with the sim-
ulated genomes. Perfect matches were observed in all 200
simulations (fig. 2B), indicating 100% accuracy of our frame-
work in the simulation without CREs.

For simulations with CREs, we generated four different
data sets for the scenarios of GMP, GGHP, multicopy GMP,
and multicopy GGHP (fig. 1). For GMP and GGHP, the start-
ing ancestor contained 105 adjacencies. And for multicopy
GMP and multicopy GGHP, the starting ancestor contained
55 adjacencies for efficiency. Each data set contained 1,000
simulations, and CRE ratio ranged from 0% to 100% (supple-
mentary fig. 5, Supplementary Material online). We compared
IAGS with two popular methods MGRA2 (version 2.3.0)
(Alekseyev and Pevzner 2009; Avdeyev et al. 2016) and
Gapadj (Gagnon et al. 2012). MRGA2 is suitable for GMP
but cannot handle events with duplications. We only
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examined IAGS and establish error estimation function on
multicopy GMP and multicopy GGHP, since both MGRA2
and Gapadj are not able to handle multicopy ancestor recon-
struction. We found CRE ratio affects the accuracy of inferred
ancestors and high CRE ratio causes high adjacency inconsis-
tency. The adjacency inconsistency ratio of IAGS was signif-
icantly lower than that of MGRA2 and Gapadj (P¼ 1.22e-05
for MGRA2 and P¼ 2.01e-02 for Gapadj in GMP and
P¼ 8.37e-03 for Gapadj in GGHP, Wilcoxon rank-sum test)
(fig. 2C). We used a quadratic polynomial to fit the relation-
ship between the CRE ratio and adjacency inconsistency in
the four simulation data sets, and all R2 values were higher
than 0.98, indicating high fitting performance (supplementary
table 1, Supplementary Material online). These quadratic
functions facilitate accurate estimation of inferred ancestral
genomes in real scenarios based on the calculated CRE ratio,
which can be readily obtained from input species.

Simple Scenarios with Single-Copy Ancestor
We then applied our framework to two real, simple scenarios.
First, we examined the GMP model using three Brassica spe-
cies, Brassica rapa, Brassica oleracea, and Brassica nigra (sup-
plementary table 2, Supplementary Material online) (Perumal
et al. 2020). Although three Brassica species shared whole-
genome triplication (WGT) event at 22.5 Ma (Perumal et al.
2020), Perumal et al. built the single-copy syntenic blocks for
the three species and reconstructed the most recent com-
mon ancestor (MRCA) of B. oleracea and B. rapa with con-
sidering B. nigra as the outgroup. We constructed the MRCA
of B. oleracea and B. rapa based on the single-copy syntenic
blocks defined by Perumal et al. with average syntenic block
coverage across the genomes being 62.17% (supplementary
fig. 6, Supplementary Material online) (Perumal et al. 2020).
The IAGS ancestor contained nine chromosomes. There were
25 chromosomal fissions and 24 chromosomal fusions from
the ancestor to B. rapa and 27 chromosomal fissions and 27
chromosomal fusions to B. oleracea (fig. 3A). Compared with
the IAGS ancestor at 6.8 Ma, B. nigra showed 70 chromo-
somal fissions and 71 chromosomal fusions. The CRE ratio for
three Brassica species was calculated to be 13.33%, and the
estimated accuracy of the IAGS ancestor was 94.72% based
on the GMP estimation function (figs. 2C and 3A). Next, we
compared the output of IAGS and Perumal et al. ancestor and
found that only four different breakpoints and 5% adjacency
inconsistency ratio (supplementary table 3, Supplementary
Material online). We calculated the numbers of supporting
adjacencies from three input species for both IAGS and
Perumal et al. ancestors. We found that globally more adja-
cencies supported IAGS ancestor than Perumal et al. ancestor
(fig. 3B and C). We used MRGA2 and Gapadj to build the
MRCA of B. oleracea and B. rapa, and found there were 5%
adjacency inconsistency for all reconstruction compared with
the ancestor of Perumal et al. The reconstructed ancestor
from Gapadj was identical to IAGS output (supplementary
fig. 7 and supplementary table 3, Supplementary Material
online). To evaluate supporting evidence in input species
for each ancestral genome, we calculated SCoJ distances,
the number of difference block adjacencies, between the

reconstructed ancestral genome and all three input genomes.
We found that the SCoJ distances for the ancestors recon-
structed from IAGS, MGRA2, Gapadj and Perumal et al. were
278, 286, 278 and 290 respectively (supplementary table 4,
Supplementary Material online), demonstrating performance
of IAGS in the scenario without WGD.

Next, we tested the GGHP model using nine yeast species,
including three species (Naumovozyma castellii,
Saccharomyces cerevisiae, and Kazachstania naganishii) that
shared a WGD dated to approximately 100 Ma (Gordon et al.
2009) and six species without WGD (Zygosaccharomyces
rouxii, Lachancea kluyveri, Lachancea waltii, Lachancea ther-
motolerans, Eremothecium gossypii, and Kluyveromyces lactis)
(supplementary table 2, Supplementary Material online). We
performed the de novo construction of syntenic blocks using
Orthofinder (version 2.3.4) (Emms and Kelly 2019) and
Drimm-Synteny (Pham and Pevzner 2010). The average syn-
tenic block coverage for each genome was as low as 30.13%
since these species diverged at more than 100 Ma (supple-
mentary fig. 6, Supplementary Material online). We recon-
structed the pre-WGD ancestor and found that it had seven
chromosomes (fig. 3D and supplementary fig. 8,
Supplementary Material online). There were 53 chromosomal
fissions and 57 chromosomal fusions from the ancestor to
N. castellii, 70 chromosomal fissions and 68 chromosomal
fusions to S. cerevisiae, and 62 chromosomal fissions and 63
chromosomal fusions to K. naganishii. The CRE ratio for the
nine yeast species was 0.69%, and the estimated accuracy was
thus 99.74% based on the GGHP estimation function (fig. 3D).
We compared our result with the pre-WGD ancestor recon-
structed by Gordon et al. based on a manual parsimony ap-
proach with 20 yeast species (Byrne and Wolfe 2005; Gordon
et al. 2009, 2011). Since IAGS requires chromosome-level as-
sembly, a subset (nine species) of the 20 species were used.
We found eight breakpoints and as low as 6% adjacencies are
inconsistency between the results of IAGS and Gordon et al.
indicating that the majority of adjacencies reconstructed by
IAGS are consistent with manual reconstruction (fig. 3E and
supplementary table 3, Supplementary Material online). We
observed that all eight breakpoints related adjacencies in
IAGS are well supported in nine input species (fig. 3F).
Then, we applied Gapadj and found the result contained
13% adjacency inconsistency with Gordon et al. pre-WGD
ancestor (supplementary fig. 9 and supplementary table 3,
Supplementary Material online). To evaluate supporting ev-
idence in input species for each ancestral genome, we calcu-
lated SCoJ distances between the reconstructed ancestral
genome and all nine input genomes. We found that the
SCoJ distances for the ancestors reconstructed from IAGS,
Gapadj, and Gordon et al. were 1,193, 1,237, and 1,205 respec-
tively (supplementary table 5, Supplementary Material on-
line), demonstrating performance of IAGS in the scenario
with single WGD.

Complex Scenarios with Multicopy Ancestors
Next, we applied IAGS to two complex scenarios with five
Gramineae species and three Papaver species to demonstrate
its general applicability under scenarios with multicopy
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ancestors. The Gramineae scenario included five species:
Sorghum bicolor, Zea mays, Oryza sativa, Thinopyrum elonga-
tum, and Brachypodium distachyon (supplementary table 2,
Supplementary Material online). They shared a WGD referred
to as the q event (Paterson et al. 2004) at approximately 70
Ma, and Z. mays showed a lineage-specific WGD at approx-
imately 11 Ma (fig. 4A). Since the q event was ancient, pre-
vious research (Murat et al. 2017) has simply ignored it, built
single-copy blocks, and solved this scenario as a simple GMP
(Murat et al. 2017) using S. bicolor, O. sativa, and
Brachypodium distachyon. To demonstrate the capability of
IAGS under complex evolutionary scenarios, we recon-
structed ancestors with both the q event and the Z. mays
lineage-specific WGD event. The average block coverage of
the genome was 18.40% (supplementary fig. 6,
Supplementary Material online) due to the rather long diver-
gence times (approximately 70 Ma) of these five species. We
reconstructed four intermediate nodes in the evolutionary
tree following the order of ancestors 4, 3, 2, and 1 (fig. 4A).
The reconstruction of the ancestor 4 genome satisfied the
multicopy GGHP model by considering S. bicolor as an out-
group (target block copy number of two) and Z. mays as a
duplicated child species (target block copy number of four).
The reconstruction of other ancestors satisfied the multicopy
GMP model (target block copy number of two in all cases).
We reconstructed the evolutionary history of the five
Gramineae species (fig. 4A). For each ancestor, we calculated
the CRE ratio and estimated the accuracy based on previous
estimation functions. For certain reconstructed steps, the in-
put species were also inferred, for example, ancestor 2 was
inferred as the input for the reconstruction of ancestor 1, and
ancestor 4 was inferred as the input for the reconstruction of
ancestor 3, so that the estimation accuracy should be ad-
justed by the multiplication of accuracies from related inter-
mediate steps (ancestors 3 and 1 in fig. 4A).

We first compared ancestor 1 with published post-q an-
cestral grass karyotype (post-q AGK) ancestor (Murat et al.
2017) and found that the adjacency inconsistency ratio was as
low as 2% (fig. 4B and supplementary table 3, Supplementary
Material online) and one breakpoint led to different chromo-
some numbers (12 for post-q AGK vs. 11 for IAGS ancestor 1)
(fig. 4C). The adjacencies related with this breakpoint in IAGS
ancestor 1 and post-q AGK are both supported by one of the
five input species. Specifically, the adjacency in Brachypodium
distachyon supported IAGS ancestor 1 and in O. sativa sup-
ported post-q AGK (supplementary table 6, Supplementary
Material online). We argue that both adjacencies are equally
possible with one supporting species. IAGS greedily selected
the adjacency in Brachypodium distachyon. To evaluate sup-
porting evidence in input species for IAGS ancestor 1 and
post-q AGK, we calculated SCoJ distances between the recon-
structed ancestral genome and all five input genomes. We
found that the SCoJ distances for IAGS ancestor 1 and post-q
AGK were 194 and 198, respectively (supplementary table 6,
Supplementary Material online).

Previous studies have shown that the structure of Z. mays
ancestor seems the same as S. bicolor, with 10 ancestral chro-
mosomes (Wei et al. 2007; Wang et al. 2015). We then

compared IAGS ancestor 4 (prerecent WGD ancestor of
Z. mays) and ancestor 3 (MRCA of S. bicolor and Z. mays)
with S. bicolor. We identified 11 breakpoints between IAGS
ancestor 4 and S. bicolor (fig. 4D). All disputed adjacencies in
IAGS ancestor 4 were supported in Z. mays (supplementary
fig. 10A, Supplementary Material online) and the SCoJ dis-
tance between Z. mays and ancestor 4 is 54, smaller than the
distance (88) between Z. mays and S. bicolor (supplementary
table 7, Supplementary Material online). Moreover, the
summed SCoJ distance between IAGS ancestor 4 and two
descendant species is 82, smaller than that for S. bicolor (88)
(supplementary table 7, Supplementary Material online).
IAGS ancestor 3 is highly similar to previous studies with
only one breakpoint difference compared with S. bicolor.
We observed five supporting adjacencies from four out of
five input species (except S. bicolor) for the IAGS ancestor 3
adjacency related with this disputed breakpoint. The
summed SCoJ distance (188) between IAGS ancestor 3 and
five Gramineae species is smaller than that (198) for S. bicolor
(fig. 4E and supplementary fig. 10B and table 8,
Supplementary Material online). These results indicate good
performance of IAGS resolving complex multi-WGD
scenarios.

The Papaver species scenario included Papaver rhoeas,
Papaver somniferum, and Papaver setigerum, which showed
0, 1, and 2 rounds of WGDs, respectively. Compared with the
Gramineae scenario, two rounds of WGD events in the
Papaver scenario were as close as 3.2 Ma, which cannot be
simply ignored. In Papaver scenario, we used the syntenic
blocks defined in Yang et al. (2021) research, and the average
syntenic block coverage of the genome was 48.22% (supple-
mentary fig. 6, Supplementary Material online). We rebuilt
ancestral genomes in the order of ancestors 3, 1, and 2. A
multicopy GGHP model was used to reconstruct ancestor 3
with the input of P. somniferum and P. setigerum. The GGHP
model was applied to rebuild ancestor 1 with the input of
P. rhoeas and P. somniferum. Finally, a multicopy GMP model
was run with the input of doubled ancestor 1, P. somniferum
and ancestor 3 to reconstruct ancestor 2. Finally, we built the
evolutionary history of the three Papaver species, and the
accuracies of the ancestor reconstructions were estimated
to be above 95% (fig. 4F). We compared IAGS ancestor 1
with Gapadj in ancestor 1 and found 4% adjacency inconsis-
tency between the result of IAGS and Gapadj (supplementary
fig. 11 and supplementary table 3, Supplementary Material
online). We calculated SCoJ distances between the recon-
structed ancestral genome and all three input genomes. We
found that the SCoJ distances for the ancestors reconstructed
from IAGS and Gapadj were 122 and 129 (supplementary
table 9, Supplementary Material online). These results indi-
cate good performance of IAGS resolving complex scenario
with recent two rounds of WGD.

Discussion
Advanced long-read sequencing technologies have promoted
rapid increases in available high-quality genomes, signaling
the start of an inspirational age for studies of genome
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structure evolution and requiring new methods to address
the remaining challenges (e.g., ancestral genome reconstruc-
tion under a wide range of evolutionary scenarios). Here, we
developed IAGS, a generalized novel computational frame-
work for IAG structure to facilitate the investigation of evo-
lutionary mechanisms in the tree of life. IAGS includes four
models (GMP, GGHP, multicopy GMP, and multicopy
GGHP) to handle both simple scenarios with a single/
single-copy ancestor and complex scenarios with multiple/

multicopy ancestors, significantly advancing previous mathe-
matical models. The results on both the simulation and real
data indicated the robustness and generalization of IAGS.

For ancestral genome reconstruction, different input spe-
cies and different computational strategies may produce dif-
ferent ancestral protochromosome numbers. For example, for
AGKs, Murat et al. (2010) proposed five ancestral chromo-
somes before WGD, whereas Gagnon et al. (2012) computed
six ancestral chromosomes by Gapadj. Wang et al. (2015)
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proposed seven chromosomes for AGK and telomere-centric
genome repatterning model. Moreover, for ancestral mono-
cot karyotypes (AMK), Murat et al. (2017) proposed five an-
cestral chromosomes, whereas Wang et al. (2021) introduced
two novel genomes (Cn. tall and Cn. dwarf) to construct AMK
and updated its chromosome number to 10. Therefore, we
think the field of IAGs is still fast evolving and well-established
ancestral genomes may need an update when more and bet-
ter chromosome-level genomes become available and better
computational methods are developed. We admitted that if
different species and different strategies are applied, we may
reach different ancestor genome structures.

The efficiency of a computational approach is vital for its
success. We performed runtime test on a laptop (Intel(R)
Core(TM) i7-9750H CPU @ 2.60 GHz). Since multicopy
GGHP model is the most complicated model in IAGS, we
examined how runtime changes for different CREs or the
number of rearrangements. We first fixed the block adjacency
number (n¼ 105) but changed the CRE ratio from 0% to
100% (supplementary fig. 12A, Supplementary Material on-
line). The runtime is rather stable at about eight seconds. And
then, we fixed ratio (50%) of block adjacencies for shuffling
and varied block adjacency number (supplementary fig. 12B,
Supplementary Material online). As expected, the runtime
increased super linearly with block adjacency number.
These results indicated that IAGS is able to solve scenarios
with less than 200 block adjacencies within minutes on a
regular PC.

As promising as IAGS is, there are still some technical
limitations that we plan to tackle in our future work. IAGS
demands the correct copy number of blocks if a WGD event
occurs. However, a longer evolutionary history and the inclu-
sion of more species will significantly reduce the number of
shared blocks satisfying copy number constraints. For exam-
ple, in our test, the average coverage of balanced blocks in the
five Gramineae (approximately 70 Ma) was as low as 20%.

Current version of IAGS was developed based on mathe-
matical optimization of block adjacencies. In matching strat-
egy (BMO and EMO), for extreme situations, if the block
adjacencies are all the same or all different, any matching is
equivalent if judged only by adjacency information, leading to
deviations from real situations. This may not be devastating in
the computation of overall genome structure rearrange-
ments, but it is harmful if a conclusion regarding focal events
is important. In addition, considering more biological infor-
mation (telomere, centromere, and repeats) and chromo-
some rearrangement model, like telomere-centric genome
repatterning model proposed by Wang et al. (2015), can fa-
cilitate better ancestral genome reconstruction in rearrange-
ment hot spots.

The models are based on cut-and-join distance, which
might lead to an incorrect circular genome structure.
However, the design of a model with a proper solution strat-
egy to output only a linear genome structure is still an open
problem. Here, we cut an adjacency with the least support to
linearize the circular genome. Different genomic distances
require specific design of models and formula. Currently, we
have systematically explored multicopy ancestor

reconstruction problem and built the entire computational
framework based on SCoJ. Current framework does not work
for other distance measures. We will examine other distance
measurements if we encounter specific scenarios, in which
SCoJ fails.

Although IAGS is able to solve ancestral genome recon-
structions under a wide range of evolutionary scenarios, a
scenario involving multiple WGTs still represents a limitation
of this approach due to the nature of pairwise comparison in
self-BMO.

Currently, IAGS contains four separated models to handle
corresponding scenarios. The scenario and its suitable model
are shown in figure 1. IAGS is not able to automatically de-
termine the model to apply but requires users to specify. The
new version of IAGS to automate model selection and solve a
complete phylogeny is still being developed.

Materials and Methods

Definitions
Block
A typical block is defined as a syntenic block with head (h)
and tail (t) as its two endpoints (supplementary fig. 1,
Supplementary Material online). For example, for block a,
the block head is ah and the block tail is at. at and ah are
endpoints We defined end of a chromosome as a special
block with only one endpoint ($).

Block Sequences/Block Sequence Format
Block sequences represent a genome as syntenic blocks with
direction and order as a string (supplementary fig. 1,
Supplementary Material online). For example, a forward con-
nected block sequence with a, b, and c as components is
represented as abc.

Block Adjacencies/Block Adjacency Format
Block adjacency is defined as a tuple consisting of two end-
points from two corresponding blocks. A set of block adja-
cencies is represented as a list with occurrence frequency for
each block adjacency. For example, for block sequence abc, its
block adjacency format is fð$; atÞ : 1; ðah; btÞ : 1; ðbh; ctÞ :
1; ðch; $Þg (supplementary fig. 1, Supplementary Material
online).

Completely Rearranged Endpoint
Completely rearranged endpoint (CRE) is defined as a given
endpoint that its associated adjacencies are all different.
Taking endpoint at as an example, if the observed adjacencies
in modern genomes are ðat; bhÞ, ðat; chÞ, and ðat; dhÞ, at is a
CRE (supplementary fig. 3, Supplementary Material online).

Adjacency Inconsistency/Adjacency Inconsistency Ratio
In the comparison of two genomes, if one adjacency in one
genome does not appear in another genome, we call it ad-
jacency inconsistency. A and B are adjacency sets for two
genomes. Adjacency inconsistency ratio is ðjA� Bj þ jB�
AjÞ=ðjAj þ jBjÞ which used to describe the difference
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between two genomes. jXj is the number of adjacencies in
set X. X � Y is adjacencies in X not in Y.

Block Matching Optimization
BMO is an optimization procedure to identify the best multi-
copy block matching between guide and target genomes by
minimizing genomic distance. In BMO procedure, both guide
and target genomes are represented as multicopy block
sequences. Self-BMO is a special case of BMO with target
genome as the guide, identifying multicopy block matching
in recent duplication event (supplementary fig. 2C and D,
Supplementary Material online).

Endpoint Matching Optimization
EMO is an optimization procedure to identify the best multi-
copy endpoint matching between guide and target genomes
by minimizing genomic distance. In EMO procedure, guide
genome is represented as multicopy block sequences,
whereas target genome as multicopy block adjacencies (sup-
plementary fig. 2E, Supplementary Material online).

Genomic Distance and Basic Data Structure of IAGS
All IP formulations in IAGS are all based on parsimonious
assumptions to minimize the SCoJ genomic distance (Feijao
and Meidanis 2011) with the observed species. The definition
of SCoJ is as follows:

dSCoJ ¼ jA� Bj þ jB� Aj; (1)

in which both A and B are genome block adjacencies. jX � Yj
is the number of adjacencies in X not in Y. SCoJ was applied to
measure the difference in adjacencies between two genomes.

We used block adjacencies as our basic data structure to
build an adjacency matrix. The matrix columns and rows
were all block endpoints, and values represented the number
of block adjacencies that appeared (supplementary fig. 1,
Supplementary Material online).

GMP IP Formulation
The GMP definition is as follows:

min
XK�1

k¼0

dðanc� spkÞ; (2)

which means that given K species, the ancestor, anc, is found
by minimizing the sum of the genomic distance, d, between
anc and species spk. The IP formulation for GMP (notations
are listed in table 1) is as follows:

min
XK�1

k¼0

X2B

i¼0

X2B

j¼0

janci;j � spk;i;jj; (3)

s:t: 8i; j 2 ½0; 2B�; i; j; anci;j 2 N; 0 � anci;j � tcn; (4)

8i 2 ½1; 2B�; i 2 N :
X2N

j¼0

anci;j ¼ tcn; (5)

8i 2 ½0; 2B�; i 2 N : anci;i ¼ 0; (6)

8i; j 2 ½0; 2B�; i; j 2 N : anci;j ¼ ancj;i: (7)

Each block contains two types of endpoints, t (block tail) and
h (block head). Thus, there are 2Bþ 1 columns in the adja-
cency matrix, including 2B endpoints and an additional $.
Formula (4) is a range constraint. Formula (5) is an endpoint
connection constraint indicating that the sum of adjacency
for each endpoint must equal the target copy number, except
for $. Formula (6) is a diagonal constraint forbidding the self-
connection of endpoints. Formula (7) demands a symmetric
ancestral genome adjacency matrix.

GGHP IP Formulation
The basic definition for GGHP is as follows:

min
�

mindðdup; 2� ancÞ þ dðout; ancÞ
�
; (8)

which means that given a duplicated species, dup, and an
outgroup species, out, we reconstructed the ancestor, anc, by
minimizing the genomic distance between them. Here, we
generalized the definition of the basic GGHP:

min
�

mindðdup; dt1 � ancÞ þ dðout; dt2 � ancÞ
�
: (9)

We used dt1 and dt2 to denote the number of duplications
required in the ancestor to match the copy numbers of the
duplicated and outgroup species genomes. With these
parameters, IAGS is able to handle various scenarios with
multiple duplicated species and outgroup species, such as
the yeast scenario with six outgroup species and three shared
WGD species (dt1 and dt2 are both six). Since GGHP aims to
find the ancestors of duplicated species, the second part of
distance, jdt2 � anci;j � outi;jj which represents the distance
between ancestor and outgroup species, should be reduced
the weight. Thus, we proposed our IP formulation for the
generalized GGHP (notations are listed in table 2):

min
X2B

i¼0

X2B

j¼0

jdt1 � anci;j � dupi;jj þ
1

2� tcn� dt2
jdt2 � anci;j � outi;jj

� �
;

(10)

s:t: 8i; j 2 ½0; 2B�; i; j; anci;j 2 N; 0 � anci;j � tcn; (11)

8i 2 ½1; 2B�; i 2 N :
X2N

j¼0

anci;j ¼ tcn; (12)

Table 1. Notations Used in the GMP Formulation.

Notations Meaning

sp A list of genome adjacency matrixes for input species
anc 2D variable representing the ancestor adjacency matrix
B Number of genome blocks
tcn Target copy number of the ancestor
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8i 2 ½0; 2B�; i 2 N : anci;i ¼ 0; (13)

8i; j 2 ½0; 2B�; i; j 2 N : anci;j ¼ ancj;i: (14)

In these formulas, the second distance can be considered
as a regularization, and the range is ½0; jdt2 � tcnj�. Therefore,
we added a small hyperparameter 1

2�tcn�dt2
for second dis-

tance to make the range as 0; 1
2

� �
. This strategy reduces the

weight of second distance in the objective function to ensure
the priority of the first distance. The constraints (formulas 11,
12, 13, and 14) of the GGHP formulation are the same as
those of the GMP formulation (formulas 4, 5, 6, and 7).

Variable Space Optimization of GMP and GGHP
However, in GMP and GGHP, the variable number of the
ancestor is Oðn2Þ, which impacts the solving efficiency.
Thus, we introduced another constraint, requiring that an-
cestor endpoint adjacencies be supported in related species.
For example, if three related species contain adjacencies
ðat; bhÞ, ðat; chÞ, and ðat; dhÞ, the ancestor’s adjacency for
at must be one of them. However, in an extreme case, all
connected endpoints can be occupied by other endpoints. In
this case, we allowed the endpoint to be connected with $.
Thus, the final adjacency options were ðat; bhÞ, ðat; chÞ,
ðat; dhÞ, and ðat; $Þ. Based on this constraint, we were able
to reduce the number of optimization variables to OðnÞ, im-
proving the solving efficiency.

The IP formulation for the reduced variable GMP can be
transformed as formula (15) (notations are listed in table 3):

min
XK�1

k¼0

XI�1

i¼0

jancri � sprk;ij; (15)

s:t: 8i 2 ½0; I� 1�; i; ancri 2 N; 0 � ancri � tcn; (16)

8i 2 ½1; 2B�; i 2 N :
Xrvi;1�rvi;0

j¼0

ancrjþrvi;0
¼ tcn; (17)

8i 2 sc : ancri ¼ 0; (18)

8i 2 ½0; I� 1�; i 2 N : ancri ¼ ancrsvi
: (19)

in which I is the total number of all endpoint adjacency
options. We used three new constants, rv, sc, and sv, to record
the original features of the adjacency matrix. Formula (16) is
the range constraint. Formula (17) is the endpoint connec-
tion constraint, similar to formula (5). rvi represents the ad-
jacency option index range of endpoint i in ancr. rvi;0 is the

start index, and rvi;1 is the end index. Formula (18) is a diag-
onal constraint forbidding the self-connection of endpoints.
Each item in sc records the self-connection adjacency option
indexes in ancr, which should be forbidden in the ancestor.
Formula (19) is similar to formula (7), demanding symmetric
ancestral genome adjacencies. sv records the symmetry adja-
cency index of each adjacency.

The IP formulation for the reduced variable GGHP can be
transformed as formula (20) (notations are listed in table 4):

min
XK�1

k¼0

XI�1

i¼0

jdt1 � ancri � duprij þ
1

2� tcn� dt2
jdt2

� ancri � outrij;
(20)

s:t: 8i 2 ½0; I� 1�; i; ancri 2 N; 0 � ancri � tcn; (21)

8i 2 ½1; 2B�; i 2 N :
Xrvi;1�rvi;0

j¼0

ancrjþrvi;0
¼ tcn; (22)

8i 2 sc : ancri ¼ 0; (23)

8i 2 ½0; I� 1�; i 2 N : ancri ¼ ancrsvi
: (24)

The constraints (formulas 21–24) for the reduced variable
GGHP formulation are the same as those for the reduced
variable GMP (formulas 16–19).

BMO and EMO IP Formulations
In multicopy GMP and multicopy GGHP, the GMP and
GGHP formulations produce initial ancestral block adjacen-
cies with multicopy endpoints, leading to multiple equivalent
results of ancestral block sequences, since both head and tail
from any given block may have more than one outreach link
(supplementary fig. 2A and B, Supplementary Material on-
line). To obtain one set of block sequences representing an-
cestral genome from multicopy block adjacencies, we
proposed two formulations, BMO and EMO, to relabel and
connect the multicopy endpoints in target ancestral block
adjacencies using guide genome block sequences while min-
imizing the SCoJ distance between guide genome and target
genome. In both formulations, one genome must be block
sequences employed as a guide genome. BMO is suitable for
target genome in block sequence format, whereas EMO is
suitable for target genome in block adjacency format (sup-
plementary fig. 2, Supplementary Material online). Although
the inputs for the two models are different, the solving
strategy is the same. First, we relabeled the endpoints
in both multicopy genomes. For example, block sequences
fðabcÞ; ðacbÞg are represented as fða1b1c1Þ; ða2c2b2Þg.
Each relabeled block is considered as single copy. Then, we
built a constant, mp, to collect block adjacencies in labeled
state (fð$; a1tÞð$; a2tÞg) with the same unlabeled block end-
points (ð$; atÞ) in both genomes (supplementary fig. 13,
Supplementary Material online). The second component
is variable mml, indicating the matching relationship

Table 2. Notations used in GGHP Formulation.

Notations Meaning

dup Genome adjacency matrix for a duplicated species
out Genome adjacency matrix for an outgroup species
B Number of genome blocks
anc 2D variable representing the ancestor adjacency matrix
tcn Target copy number of ancestor
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between each labeled block (in BMO) or block endpoint (in
EMO). We proposed two IP formulations for BMO and EMO
(table 5). The modeling of EMO is as follows:

max
�X

i2mp

X
j2i1

ði0;2 �mmlbi0;0=Pc;i0;0%P;j0%Q þ 1� i0;2Þði0;3

�mmlbi0;1=Pc;i0;1%P;j1%Q þ 1� i0;3Þ
�
;

(25)

s:t: 8k; i; j 2 N; k 2 ½0; L� 1�; i 2 ½0; P� 1�; j
2 ½0;Q� 1�;mmlk;i;j 2 f0; 1g; (26)

8k; i; j 2 N; k 2 ½0; L� 1�; i 2 ½0; P� 1� :
XQ�1

j¼0

mmlk;i;j

¼ R1;

(27)

8k; i; j 2 N; k 2 ½0; L� 1�; j 2 ½0;Q� 1� :
XP�1

i¼0

mmlk;i;j

¼ R2:

(28)

Each i in mp contains two parts. The first part is adjacency
i0 in the relabeled target genome, and the second part is
adjacency list i1, with same unlabeled block endpoints in
the relabeled guide genome. Each j represents an adjacency
in list i1. For each genome, we built the labeled block endpoint
lists and each endpoint was denoted by its index in the list
(the index starts from 0 in each list and $ is�1). For example,
genome 1 fðabcÞ; ðacbÞ; ðbcaÞ; ðacbÞg has four chromo-
somes, whereas genome 2 fðabcÞ; ðacbÞg has two chromo-
somes. Both genomes have three blocks a, b, and c, whereas
the copy numbers for genome 1 and genome 2 were four and

two, respectively. We built the labeled block endpoint lists,
a1t; a2t; a3t; a4t; a1h; a2h; a3h; a4h;

b1t; b2t; b3t; b4t; b1h; b2h; b3h; b4h;

c1t; c2t; c3t; c4t; c1h; c2h; c3h; c4h

2
664

3
775 and

a1t; a2t; a1h; a2h;

b1t; b2t; b1h; b2h;

c1t; c2t; c1h; c2h

2
664

3
775. And we used indexes in each list to

represent the corresponding endpoint, for example, a2h in ge-
nome 1 and genome 2 was represented as 5 and 3, respectively
(supplementary fig. 13, Supplementary Material online). The ad-
jacency ðat; bhÞ indicates the connections of two blocks (a and
b), whereas the adjacency ðat; $Þ indicates the connection of
block a with an end of chromosome. We aim to identify nearest
block endpoint (or block in BMO) pairs among multicopy end-
points (blocks) from either one or multiple species. Here, the $
sign should be specially handled. We included additional nota-
tions in each i0 as i0;2 and i0;3 to indicate whether the first and
the second endpoint are $, respectively (supplementary fig. 13,
Supplementary Material online). As a consequence, if i is a $
related adjacency, ðat; $Þ, i0;2 ¼ 1 and i0;3 ¼ 0, formula (25)
becomes mmlbi0;0=Pc;i0;0%P;j0%Q and only one endpoint is left for

optimization. Otherwise, if i is ðat; bhÞ adjacency without $, i0;2
¼ 1 and i0;3 ¼ 1 the formula (25) becomes mm

lbi0;0=Pc;i0;0%P;j0%Q �mmlbi0;1=Pc;i0;1%P;j1%Q and both endpoints

are available for optimization. P and Q are the copy numbers
of the two genomes. For the above example, P is four and Q is
two. bi0;0=Pc and bi0;1=Pc are used to locate matching matrixes
in mml, whereas i0;0%P, j0%Q and i0;1%P, j1%Q indicate the
items in the corresponding matching matrix. The objective of
formula (25) is to find the best multicopy endpoint matching
between two genomes and to maximize adjacency consistency,
which is equivalent to minimizing SCoJ. In this way, we relabeled
block adjacencies in the target genome based on the guide ge-
nome and guaranteed a one-to-one relationship of the block tail
and head in the target genome to obtain the block sequences. In
the constraints, R1 and R2 represent the matching ratio between
the target genome and the guide genome. For the above exam-
ple, R1 ¼ 1 and R2 ¼ 2 due to P ¼ 4, Q ¼ 2(4 : 2 ¼ 2 : 1).

The modeling of BMO is as follows:

max
�X

i2mp

X
j2i1

ði0;2 �mmlbi0;0=2Pc;i0;0%P;j0%Q þ 1� i0;2Þði0;3

�mmlbi0;1=2Pc;i0;1%P;j1%Q þ 1� i0;3Þ
�
;

(29)

s:t: 8k; i; j 2 N; k 2 ½0; L� 1�; i 2 ½0; P� 1�; j
2 ½0;Q� 1�;mmlk;i;j 2 f0; 1g; (30)

8k; i; j 2 N; k 2 ½0; L� 1�; i 2 ½0; P� 1� :
XQ�1

j¼0

mmlk;i;j

¼ R1;

(31)

Table 3. Notations Used in Reduced Variable GMP Formulation.

Notations Meaning

spr A list of genome adjacencies for input species
ancr A list of variables representing ancestor adjacencies
rv Each endpoint adjacency options’ index range in ancr
sc Self-connection adjacency option indexes in ancr
sv Symmetry adjacency index of each item in ancr
B Number of genome blocks
I Number of all endpoint adjacency options (length of ancr)
tcn Target copy number of ancestor

Table 4. Notations Used in the Reduced Variable GGHP Formulation.

Notations Meaning

dupr Genome adjacencies for a duplicated species
outr Genome adjacencies for an outgroup species
ancr A list of variables representing ancestor adjacencies
rv Each endpoint adjacency options’ index range in ancr
sc Self-connection adjacency option indexes in ancr
sv Symmetry adjacency index of each item in ancr
B Number of genome blocks
I All endpoint adjacency options number (length of ancr)
tcn Target copy number of ancestor

Gao et al. . doi:10.1093/molbev/msac041 MBE

12

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac041#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac041#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac041#supplementary-data


8k; i; j 2 N; k 2 ½0; L� 1�; j 2 ½0;Q� 1� :
XP�1

i¼0

mmlk;i;j

¼ R2:

(32)

bi0;0=2Pc and bi0;1=2Pc are different from EMO since one
block contains two block endpoints. Three constraints (for-
mulas 30, 31, and 32) are the same as the EMO formulations
(formulas 26, 27, and 28). In addition to these three con-
straints, two other constraints are included for the self-
matching mode of BMO (supplementary fig. 2D,
Supplementary Material online):

8k; i; j 2 N; k 2 ½0; L� 1�; i 2 ½0; P� 1� : mmlk;i;i ¼ 0;

(33)

8k; i; j 2 N; k 2 ½0; L� 1�; i 2 ½0; P� 1�; j 2 ½0;Q� 1�
: mmlk;i;j ¼ mmlk;j;i;

(34)

which mean that blocks cannot match themselves and that
the matching matrixes should be symmetric. All of the above
optimization instances are solved with GUROBI (version 9.1.2,
https://www.gurobi.com/, last accessed January 13, 2022).

Simulation without CREs
We recursively built nine simulated species block sequences
based on an assumed evolutionary tree with three WGD events
from the top to bottom (supplementary fig. 4, Supplementary
Material online). The starting ancestor is the parent of species 1
and 2, and it has 105 adjacencies. In each divergence node in
evolutionary, we copied the block adjacencies of the parent
species twice to generate two descendant species and randomly
shuffled five block adjacencies During the entire process, at most
one modification is allowed for a given endpoint to guarantee
no CREs (non-CREs). In figure 2A, we produce species 1, 2, 4, 5, 7,
and 8 following the above strategy. For WGD events, we first
duplicated the parent species to obtain perfectly duplicated
species and then randomly shuffled five block adjacencies on
each copy and at most one modification is allowed for a given
endpoint to guarantee no CREs. This strategy yielded species 3,
6, and 9 in figure 2A. Species 1, 4, 7, and 9 were leaf nodes in the
evolutionary tree and were used as the input to infer ancestral
genomes 2, 3, 5, 6, and 8. We introduced the adjacency incon-
sistency ratio to measure the accuracy of the calculation (sup-
plementary method 2, Supplementary Material online).

Simulation with CREs
We also simulated four scenarios similar without the re-
quirement of being at different endpoints. For GMP and
GGHP, the starting ancestor contained 105 adjacencies.
For each divergence or WGD event, we randomly shuffled
n adjacencies (the range of n was 0 to 99) and calculated CRE
ratio. For each n, we repeated 10 times to obtain 1,000 ex-
perimental data sets in total. For multicopy GMP and multi-
copy GGHP, the starting ancestor contained 55 adjacencies
for efficiency. We generated 1,000 experimental data sets
under the same strategy employed for GMP and GGHP.

For each reconstruction, we calculated the CRE ratio (i.e., the
number of CREs divided by the total number of endpoints) and
the adjacency inconsistency ratio. For the multicopy GMP and
multicopy GGHP models, we first applied BMO between re-
lated species and then transformed them into GMP and GGHP
models. Finally, we use the lm function of R to fit the relation-
ship of the CRE ratio and the adjacency inconsistency ratio with
a quadratic polynomial to obtain accuracy estimate functions
for the four models (supplementary method 3, Supplementary
Material online). We compared with MRGA2 and Gapadj
(https://mybiosoftware.com/tag/gapadj, last accessed January
13, 2022) in GMP and GGHP.

Data Collection and Processing for Four Real
Evolutionary Scenario Tests
We used four real data sets, including three Brassica, nine yeast,
five Gramineae, and three Papaver species (supplementary table
2, Supplementary Material online). For Brassica and Papaver, we
obtained syntenic blocks from the original studies. Among the
yeast species, for comparison with Gordon et al. result, we
added Gordon et al. pre-WGD ancestor to the nine genomes
and applied Orthofinder to find orthogroups for complete ho-
mologous gene sequences. Then, we filtered the orthogroups
with gene copy numbers larger than the target copy number
(two for WGD and one for no WGD) in the corresponding
species to obtain homologous gene sequences to build a non-
overlapping syntenic block by Drimm-Synteny (http://bix.ucsd.
edu/projects/drimm/, last accessed January 13, 2022). Finally, we
applied the longest common subsequence algorithm between
the rebuilt homologous gene sequence generated by Drimm-
Synteny and the complete homologous gene sequence to ob-
tain the gene sequence for each block copy with the correct
target copy number in each species. The strategy of generating
blocks for the five Gramineae data sets was the same as that for
the yeast species, and we added the post-q AGK ancestor for
comparison.

For multicopy ancestors in all real scenarios, the calculation
of the adjacency inconsistency ratio and the counting of
chromosomal fission and fusion events (shuffling events)
should be performed after BMO. We first duplicated a pre-
duplicated ancestor and then identified shuffling events. For
multicopy GMP and GGHP, we first applied BMO between
related species and then transformed the results into GMP
and GGHP models. Finally, we calculated the CRE ratio for
accuracy estimation. For a high-level ancestor with an inferred
ancestor as the input during calculation (e.g., ancestors 1 and
3 in fig. 4A), the estimated accuracy should accumulate by

Table 5. Notations Used in the EMO and BMO Formulations.

Notations Meaning

mml 3D variable representing the matching matrix list
mp Matching pair data set
P,Q Copy numbers of the target genome and guide genome
L Number of matching matrixes in mml
R1,R2 Matching ratio between target genome and guide genome
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multiplication (supplementary method 4, Supplementary
Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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