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Notch signaling in astrocytes mediates
their morphological response to an

inflammatory challenge
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Abstract

In the nervous system, Notch pathway has a prominent role in the control of neuronal morphology and in the
determination of the astrocyte fate. However, the role of Notch in morphological astrocyte plasticity is unknown. Here,
we have explored the role of Notch activity on the morphological reactivity of primary astrocytes in response to LPS,
an inflammatory stimulus. We found that LPS induces reactive astrocyte morphology by the inhibition of Notch
signaling via NFkB activation and Jagged upregulation. In contrast, IGF-1, an anti-inflammatory molecule, inhibits LPS-
induced reactive astrocyte morphological phenotype by enhancing Notch signaling through the inhibition of NFkB
and the activation of MAPK. Therefore, Notch signaling pathway emerges as a mediator of the regulation of astrocyte
morphology by inflammatory and anti-inflammatory stimuli.

Introduction

Reactive astrogliosis involves several processes that
astrocytes undergo under pathological conditions' ™, The
alterations suffered by reactive astrocytes vary with the
nature and severity of the insult. Modest metabolic sti-
mulus, infections, inflammatory processes or mild trauma
induce moderate reactive astrogliosis characterized by
changes in the molecular expression of pro-inflammatory
cytokines together with cellular hypertrophy. However, in
severe central nervous system (CNS) injury models,
astrogliosis also involves cell proliferation and scar
formation®.

Astrocytic hypertrophy of reactive astrocytes is char-
acterized by an increase in the number, thickness, and
length of the main cellular processes, which also present a
greater content in GFAP bundles than in nonreactive
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astrocytes®. Although hypertrophy of astrocytes has been
profusely studied, the signaling mechanisms that regulate
morphological aspects of reactive astrogliosis remain
unclear.

Notchl receptor and ligands, Delta-like-1 (DIl-1) and
Jaggeg-1 (Jag-1), have been extensively studied in relation
with cell fate specification of neurons® %, vascular smooth
muscle cells’, pancreatic endocrine cells'®, and astro-
cytes''?. In addition, Notch signaling regulates the
expression of molecules involved in the regulation of cell
morphology in developing neurons'®'*. The canonical
trans-activation of the Notch pathway starts with the
binding of the extracellular domain of the ligand to the
extracellular domain of the receptor expressed in an
adjacent cell. This allows a conformational change in the
receptor that favors its cleavage by metalloproteases and
by the enzymatic complex y-secretase, resulting in the
release of the intracellular domain of Notch (NICD), the
active fragment of the receptor. NICD is then translocated
into the cell nucleus, where it initiates the transcription of
Notch target genes, mainly hairy and enhancer of
split (HES)-1 and 5%'°, the main effectors of the pathway
in the CNS'. Hes-1 and Hes-5 play a crucial role in
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neurogenesis, gliogenesis, neuritogenesis as well as
in the development of sensory organs'’~'. In the
adult brain, Notch is involved in long-term memory®,
dendritic plasticity®, synaptic plasticity*, and postnatal
neurogenesis>.

Even if Notch functions in differentiated glial cells have
not been deeply investigated, it is clear that it plays a role
in neuroinflammation. For instance, Notch regulates
microglia activation and pro-inflammatory cytokine
release by its interaction with NFkB****, It has also been
shown that hypertrophic astrocytes express Jag-1 in vivo>>
and that the intermediate filaments GFAP and vimentin
control Notch pathway activity in astrocytess. Further-
more, Notch pathway regulates proliferation in reactive
astrocytes surrounding an ischemic lesion®**”. However,
the implication of Notch signaling in the morphological
changes experimented by reactive astrocytes has not been
explored previously.

In the present study, we have assessed whether Notch
signaling is involved in the activation of astrocytes by an
inflammatory challenge: the treatment with the bacterial
endotoxin lipopolysaccharide (LPS). We have also
explored whether Notch signaling in astrocytes is regu-
lated by insulin-like growth factor 1 (IGF-1), since this
factor reduces the astrocytic response to inflammatory
stimuli and their expression of inflammatory mediators
such as interleukin 6 (IL-6), tumor necrosis factor-a
(TNF-a), interleukin-1p (IL-1pB), toll-like receptor 4, and
INOS*?,

Results
LPS induces a reactive inflammatory phenotype in primary
astrocytes

Reactive astrogliosis is a set of changes that occur in
astrocytes in response to CNS injury or disease. We
evaluated the use of mouse primary astrocyte cultures
exposed to LPS during 24h, as a model of in vitro
astrogliosis®’. The addition of LPS in concentrations
ranging from 50 to 5000 ng/mL did not decrease cell
viability, as assessed by a FDA test (Fig. 1a). In addition,
immunocytochemistry of astrocytes treated with BrdU
showed that LPS treatment did not change cell pro-
liferation (Fig. 1b). However, 100 and 500 ng/mL LPS
induced a significant increase in the optical density in the
MTS test, while the dose of 5000 ng/mL LPS decreased
the optical density compared to the control group
(Fig. 1c). Based on the results of FDA test and of BrdU
quantification, the changes observed in MTS test may
represent differences in cell metabolic activity induced by
LPS treatment.

Stimulation of astrocytes with 500 ng/ml LPS also
enhanced the expression of two of the main pro-
inflammatory factors released by reactive astrocytes: the
cytokine IL-6 and the chemokine IP-10 (Fig. 1d).
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Moreover, this LPS dose induced changes in astrocyte
morphology that are compatible with an increased reac-
tivity. Thus, as shown in Fig. le, the percentage of cells
with bipolar and stellate shapes was higher in the cultures
treated with LPS than in the control conditions. There-
fore, we established a model that at least mimics some of
the main components of reactive astrogliosis by exposing
primary cultures of cortical astrocytes to 500 ng/mL LPS
for 24 h.

Notch signaling is regulated by LPS in astrocytes

To determine the possible implication of the Notch
signaling pathway in the changes induced by LPS in
astrocytes, we evaluated the mRNA expression of differ-
ent genes related with Notch signaling. LPS positively
regulated the transcription of the ligand Jagged-1 (Jag-1)
while significantly reduced the expression of the Notch-1
receptor and the Notch-1 effector Hes-5 (Fig. 2a). In
contrast, LPS did not significantly affect the expression of
DIl and Hes-1 (Fig. 2a).

NFkB activation is involved in the transcriptional
regulation of Jag-1 and Hes-5 by LPS

We had already demonstrated that the increase in the
expression of pro-inflammatory cytokines by astrocytes in
response to LPS is mediated by NFkB activation®.
Accordingly, in our model, the NF«B inhibitor BAY-11,
significantly reduced the effect of LPS on the transcription
of IL-6 and IP-10 (Fig. 2b, c). In addition, the upregulation
of Jag-1 and the downregulation of Hes-5 induced by LPS
were abrogated by this drug (Fig. 2d, e), indicating that the
transcriptional effect of LPS on Jag-1 and Hes-5 depends
on activation of NFkB. In contrast, the effect of LPS on
Notch-1 transcription was not modified by BAY-11
(Fig. 2f).

Hes-5 downregulation by LPS in astrocytes is mediated by
a decrease in NICD

We also evaluated the levels of the Notch intracellular
domain (NICD), which is released when Notch is acti-
vated. We observed that the astrocytes stimulated with
LPS had lower amounts of NICD than control ones
(Fig. 3a). Furthermore, we transfected a NICD-expressing
myc-tagged plasmid into primary astrocytes. Constitutive
expression of NICD generated an activated Notch phe-
notype that was confirmed by a significant increase in
Hes-5 mRNA expression (Fig. 3b). Interestingly, NICD
overexpression prevented the LPS-induced Hes-5 tran-
scriptional downregulation observed in control astrocytes,
clearly indicating that Hes-5 downregulation provoked by
LPS in astrocytes relies upon Notch-1 processing and
NICD release (Fig. 3b).

NICD overexpression in astrocytes did not modify Jag-1
mRNA expression under control conditions, nor
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Fig. 1 LPS stimulation of primary astrocytes. a LPS stimulation (500 ng/mL) during 24 h preserves cell viability as it was evaluated by FDA
fluorescence emission and b it does not modify cell proliferation analyzed by immunocytochemistry against BrdU. ¢ MTS oxidation rate
(mitochondrial respiration) is modified by LPS. * Significant differences (p < 0.05) versus control (Student's t-test, n = 4). d LPS treatment induces the
transcription of pro-inflammatory cytokines; ** significant differences (p < 0.01) versus control (Student’s t-test, n = 4). e Astrocytes exposed to LPS
display a significant change in their morphology, transitioning from a polygonal shape towards more elongated (bipolar and stellate) shapes.
Immunofluorescence images show an example of the three types of astrocytes morphology in cultures, after immunostaining with an antibody
against GFAP. Graphs represent the percentage of each cell type in the culture. *significant differences (p < 0.05) versus control polygonal cells.
Ssigniﬁcam differences (p < 0.05) versus control bipolar cells. “sigmﬁcam differences (p < 0.05) versus control stellate cells (Student’s t-test, n = 4)

prevented its induction by LPS (Fig. 3c). Besides, the  with polygonal morphology and a significant increase in
addition of DAPT (the y-secretase inhibitor) to the the proportion of cells with stellate morphology compared
astrocytic cultures did not alter Jag-1 mRNA expression  to control astrocytes (Fig. 4a). The morphological effect of
(Fig. 3d), indicating that Jag-1 transcription is not under =~ LPS was blocked in the NICD overexpressing astrocytes

the control of Notch-1 receptor activation. (Fig. 4a), suggesting that Notch signaling mediates the
effect of LPS on astrocyte morphology.

Notch signaling is involved in the effect of LPS on In contrast to astrocyte morphology, the expression of

astrocyte morphology IL-6 and IP-10 under basal conditions and after LPS sti-

Astrocytes were also transfected with NICD-expressing  mulation was not affected by overexpression of NICD in
plasmid to determine whether Notch signaling is involved  astrocytes (Fig. 4b, c). This suggests that canonical Notch-
in the morphological effects of LPS on these cells. Over- 1 signaling does not mediate the expression of IL-6 and
expression of NICD in astrocytes resulted in a significant  IP-10 under basal conditions and does not mediate their
increase in the proportion of cells with a polygonal upregulation by LPS.
morphology and in a significant decrease in the propor-
tion of bipolar cells compared to control astrocytes IGF-1 regulates Notch signaling and morphology in
transfected with the empty vector (Fig. 4a). This suggests  astrocytes
that Notch signaling regulates astrocyte morphology IGF-1 is a neuroprotective factor that is known to
under basal conditions. In addition, the treatment with  reduce reactive astrogliosis by the inhibition of NF«B in
LPS of astrocytes transfected with the empty vector astrocytes®”*"*. Since our previous results indicate that
resulted in a significant decrease in the proportion of cells  NFkB is involved in the regulation of Notch signaling, we
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Fig. 2 LPS regulates Notch signaling in primary astrocytes. a LPS treatment induces the transcription of the ligand Jagged-1, while reduces the
expression of the receptor Notch-1 and the effector Hes-5. ¥, **, *** significant differences (p < 0.05, p < 0.01, and p < 0.001) versus control (Student’s t-
test, n =4). b—e The NFkB inhibitor BAY-1 is able to significantly reduce the LPS-induced increase in the transcription of IL-6, IP-10, and Jag-1 (b-d)
and decrease of Hes-5 (e). f LPS downregulation on Notch-1 transcription is not modified by BAY-11. Statistical significance was determined using
one-way ANOVA and Bonferroni post hoc test; ¥, **, ***significant differences (p < 0.05, p < 0.01, and p < 0.001) versus control. *significant differences
(p < 0.05) versus LPS

hypothesized that IGF-1 could regulate Notch signaling in
astrocytes.

To explore this possibility, astrocyte cultures were
treated with the growth factor for 24 h. In addition, some
cultures were pre-treated for 4h with NVP, a specific
inhibitor of IGF-1R, and then stimulated with IGF-1 for
24 h. The expression levels of Hes-5 mRNA were mea-
sured by real-time PCR. IGF-1 increased the expression of
Hes-5 (Fig. 5a) and NVP significantly reduced this effect,
indicating that the effect of IGF-1 on the regulation of
Notch pathway is mediated, at least in part, by its binding
to IGF-1R.

To test whether the PI3K or the MAPK pathways, which
are activated by IGF-1R, mediate the effect of IGF-1 on
Notch signaling, we stimulated astrocytes in the presence
of selective inhibitors of these two signaling pathways.
Astrocytes were pre-treated for 4h with each inhibitor
and then stimulated with IGF-1 for 24 h. Levels of Hes-5
mRNA transcription were measured by real-time PCR
(Fig. 5b) and the levels of NICD were measured by wes-
tern Blot (Fig. 5¢). IGF-1 significantly increased the levels
of Hes-5 mRNA (Fig. 5b) and the levels of NICD (Fig. 5¢).

Official journal of the Cell Death Differentiation Association

Inhibition of the PI3K pathway with wortmannin did not
significantly affect the action of IGF-1. However, the
blockade of the MAPK pathway with U0126 resulted in a
total inhibition of Hes5 expression (Fig. 5b) and NICD
production (Fig. 5c).

Since our results indicate that Notch signaling mediates
the morphological changes induced by LPS on astrocytes
and that IGF-1 regulates Notch signaling, we decided to
assess whether IGF-1 regulates astrocyte morphology.
Fig. 5d shows that IGF-1 increased the proportion of
astrocytes with a polygonal morphology and decreased
the proportion of bipolar astrocytes. This effect is oppo-
site to the effect of LPS and seems to depend on Notch
signaling since it was blocked by DAPT, indicating that it
depends on the y-secretase activity.

IGF-1 blocks the effect of LPS on Notch signaling and
morphology in astrocytes

Since IGF-1 exerted opposite effects to LPS on Notch
signaling, we tested whether IGF-1 could counteract the
effect of LPS on Notch signaling in astrocytes. Fig. 6a
shows that, in agreement with our previous experiments,
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Fig. 3 Hes-5 downregulation by LPS in astrocytes is mediated by a decrease in NICD. a Representative immunoblot shows NICD expression
levels in astrocytes cultures treated with LPS. Actin was used as a loading control. Statistical significance (p < 0.01) was determined using Student's t-
test, n=7. b, c The influence of LPS on the expression of Hes-5 and Jag-1 determined by gPCR in astrocytes cultures overexpressing NICD. **,
=*Significant differences (p < 0.01 and p < 0.001) versus control cultures that express myc-tag and “significant difference (p < 0.05) versus control that
express myc-NICD (Student's t-test, n =4). d Expression of Jag-1 determined by qPCR in cultures treated with DAPT

the addition of IGF-1 to the astrocyte cultures increased
Hes-5 mRNA levels and abrogated the reduced expression
of Hes-5 induced by LPS. In addition, IGF-1 significantly
decreased the expression of Jag-1 and counteracted the
upregulation of Jag-1 by LPS (Fig. 6b).

Astrocytes treated with IGF-1 showed a striking
increase in NICD levels (Fig. 6¢), indicating a strong
Notch activation. LPS was able to significantly reduce
NICD levels in the astrocytes treated with IGF-1. How-
ever, NICD levels in astrocytes treated with LPS and IGF-
1 were much higher than the levels in astrocytes treated
with LPS alone. This indicates that Notch maintains a
high degree of activation in IGF-1 treated astrocytes even
in the presence of LPS. Treatment of astrocytes with
DAPT blocked the effect of IGF-1 on NICD levels
(Fig. 6c), on Hes-5 expression (Fig. 6d) and on Jag-1
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expression (Fig. 6e) suggesting that the effect of IGF-1 on
Notch signaling depends on the y-secretase activity.

As our results indicated that IGF-1 neutralizes the effect
of LPS on Notch signaling in astrocytes, we decided to
assess whether IGF-1 was also able to block the changes
induced by LPS on astrocyte morphology. Fig. 6f shows
that IGF-1 counteracted the effect of LPS on the pro-
portion of astrocytes with polygonal and bipolar
morphology.

Jag-1 depletion impairs the effect of LPS on the astrocyte
morphology

The above experiments show that astrocytes treated
with LPS have higher levels of Jag-1 expression and more
reactive morphology. On the contrary, cultures treated
with IGF-1 present Jag-1 downregulation and more
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Fig. 4 Notch activation counteracts the effect of LPS on astrocytes morphology but not on the transcription of pro-inflammatory
cytokines. a Notch activation by overexpressing NICD in the culture, changes astrocyte morphology in the opposite way that LPS: increases the
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resting morphology. To directly assess the role of Jag-1 on
astrocyte morphology, we transfected astrocyte cultures
with a specific Jag-1-siRNA. The silencing efficacy was
confirmed measuring Jag-1 expression by real-time PCR
(Fig. 7a) and by western blotting (Fig. 7b). We found that
silencing of Jag-1 expression had no effect on IL-6
(Fig. 7c) and IP-10 (Fig. 7d) mRNA levels, under basal
conditions and after LPS stimulation. In contrast, Jag-1
silencing impaired the effect of LPS on astrocyte mor-
phology (Fig. 7e).

Discussion

Our findings indicate that Notch signaling is involved in
the reactive morphological changes of astrocytes in
response to a pro-inflammatory stimulus, such as LPS.
Indeed, our data suggest that the effects of LPS on
astrocyte morphology depend on the upregulation of Jag-
1 by NF«B. In turn, Jag-1 upregulation causes the
downregulation of NICD, which mediates the change in
astrocyte morphology. In contrast, Notch signaling is not
involved in the upregulation of the pro-inflammatory
molecules IL-6 and IP-10 in response to LPS.

Official journal of the Cell Death Differentiation Association

Our results show that LPS decreases the expression of
Hes-5 and Notch-1 and increases the expression of Jag-1,
but does not affect the expression of DIl. The increased
expression of Jag-1 by LPS is in concordance with pre-
vious results that shown that Jag-1 is under the control of
the NFkB signaling pathway®>** and that LPS activates
NF«B in astrocytes by promoting the translocation of
p65/NFkB subunit to the cell nucleus®.

Canonical Notch signaling is initiated by ligand binding
to the Notch receptor on neighboring cells, which leads to
the proteolytic processing of the receptor and the release
of NICD. Nevertheless, our experiments demonstrate that
LPS induces changes in astrocyte morphology by blocking
Notch signaling, while enhancing the mRNA expression
of Jag-1. Jagged ligands have been described as inhibitory
or antagonistic for the activation of Notch signaling by
DII*, Several studies demonstrated that DIl and Jagged
may have opposite functions. In angiogenesis, activation
of Notch by DII4 inhibits tip cell selection®. In contrast,
Jagged-Notch signaling promotes tip cell selection and
sprouting by antagonizing DIl4-Notch signaling®*"%,
These findings clearly show that the balance between the
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two Notch ligands is a key factor in cell fate definition and
in cell morphology acquisition. Inhibition of Notch sig-
naling by y-secretase inhibitors or DIl blockade produces
hyperbranching in endothelial cells; however, Jagged
inhibition decreases branching and reduces angiogen-
esis>”*. The attenuation of Notch signaling induced by
Jag-1 can be attributed to cis-inhibition by Jag-1 binding
to the Notch receptor and inhibition of the signal medi-
ated DIl in receiver cell***,

Considering the different function of the two Notch
ligands, the LPS-induced altered balance in the expression
of Jag-1 and DIl in astrocytes may explain that the
increase in Jag-1 expression after LPS is associated with
lower levels of NICD and Hes-5, indicating an inhibition
of Notch signaling. When NICD was overexpressed in
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astrocytes, LPS was unable to modify the expression of
Hes-5, indicating that the effect of LPS on Notch activity
is produced by the canonical signaling pathway'>. Fur-
thermore, Jag-1 silencing or NICD overexpression in
astrocytes resulted in a resting cellular phenotype after
LPS stimulation, suggesting that increased Jag-1 expres-
sion and the consequent reduction in Notch activity
mediates the effect of LPS in the induction of reactive
morphology.

The involvement of Notch signaling in the morphology
of astrocytes after LPS stimulation may be relevant for the
mechanisms of reactive gliosis. Thus, reactive astrocytes
present hypertrophy of cell body and increase the thick-
ness of their main cellular processes®**. Further studies
should determine whether Notch signaling is also
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involved in the changes in morphology of microglia,
which upon stimulation changes from a ramified, quies-
cent morphology to an amoeboid, activated
morphology™”.

In microglia cells, Notch signaling amplifies the pro-
inflammatory  response by  enhancing = NF«B/
p65 signaling®**, suggesting that both pathways syner-
gistically regulate the inflammatory function in activated
microglia. In contrast, in astrocytes our findings indicate
that this signaling pathway is not involved in the effect of
LPS on the expression of pro-inflammatory molecules.
This further suggests that the regulation of Notch sig-
naling in astrocytes by LPS is downstream of NF«B acti-
vation since the inhibition of NFkB with BAY-11 blocked
the upregulation of Jag-1 and the downregulation of Hes-
5 by LPS. Previous studies have shown that LPS-mediated
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production of cytokines by astrocytes involves the acti-
vation of the NFkB pathway’>***’, Thus, we may hypo-
thesize that NFkB stimulates neuroinflammation in
reactive astrocytes by the upregulation of pro-
inflammatory molecules and, in parallel, by the upregu-
lation of Jag-1, which induces reactive morphological
changes in astrocytes (Fig. 8a).

IGF-1 regulates inflammation in a context-dependent
manner. In the brain, several studies showed anti-
inflammatory effects of IGF-1 acting on astrocytes and
microglia and revealed that IGF-1 levels may be critical
for regulating the neuroinflammatory response®.
Experiments in vivo show that the level of IGF-1 increases
at the injury site, but at least part of it comes from the
periphery in response to brain damage®. Following this
paradigm, we analyzed the effect of exogenous IGF-1 in
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Fig. 8 Summary of the effects of LPS and IGF-1 on Notch
signaling in astrocytes. a Inflammatory conditions in primary
astrocytes: LPS activates NFkB that promotes the expression of (1)
molecules that generate inflammation and (2) the Notch ligand Jag-1
that reduces Notch activity and consequently induce a reactive
morphology in astrocytes. b Anti-inflammatory conditions in primary
astrocytes: IGF-1 produces an increase of Notch activity by: (1)
activating MAPK signaling pathway and (2) reducing Jag-1 NFkB-
dependent expression. Both IGF-1 effects drive to enhance Hes-5
expression and result in a resting morphology in astrocytes

astrocytes. Our findings indicate that Notch signaling in
astrocytes also mediates their morphological transforma-
tion induced by IGF-1. In contrast to LPS, IGF-1 induced
a significant decrease in the expression of Jag-1 and a
significant increase in the levels of NICD and the
expression of Hes-5. Thus, IGF-1 and LPS had opposite
effects on Notch signaling in astrocytes (activation and
inhibition, respectively). In agreement with this, IGF-1
and LPS exerted also opposite effects on astrocyte mor-
phology. Thus, IGF-1 decreased, while LPS increased, the
proportion of astrocytes with reactive morphology, an
effect that was mediated by y-secretase. In addition, IGF-1
was able to counteract the effect of LPS on Notch sig-
naling and on astrocyte morphology. Since Jag-1 expres-
sion is regulated by NF«B signaling (our present findings)
and NFkB pathway is blocked by IGF-1*!, we may hypo-
thesize that the action of IGF-1 on Notch signaling is
upstream of NFkB. Nevertheless, the IGF-1 induced
decrease in Jag-1 expression is not enough to explain the
huge accumulation of NICD generation and the change in
astrocyte morphology. Jag-1 mRNA downregulation in
astrocytes was achieved by siRNA and by IGF-1 treat-
ment, however, only the later was able to increase the
percentage of cells displaying less reactive shapes. Block-
ade of MAPK pathway completely suppress IGF-1 pro-
duction of NICD as well as increased expression of Hes-5.
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So our results suggest that actions of IGF-1 on astrocytes
involve both, blockade of NFkB pathway and activation of
MAPK signaling (Fig. 8b).

In summary, our findings demonstrate for the first time,
that Notch signaling is involved in the morphological
changes induced in astrocytes by inflammatory and anti-
inflammatory factors, expanding the known roles of
Notch to the regulation of astrocyte morphology.

Materials and methods
Animals

Postnatal day 0 (PNDO0)-PND2 male and female CD1
mouse pups were raised in our in-house colony at the
Cajal Institute. Male pups were distinguished from female
pups by a larger genital papilla and longer anogenital
distance. All the procedures applied to the animals used in
this study were in accordance with the European Com-
mission guidelines (2010/63/UE) and the Spanish reg-
ulation (R. D. 53/2013) on the protection of animals for
experimental use. These procedures were approved by our
institutional animal care and use committee (Comité de
Etica de Experimentacién Animal del Instituto Cajal) and
the Consejeria del Medio Ambiente y Territorio (Comu-
nidad de Madrid, PROEX 200/14).

Cortical astrocyte cultures

Astrocytes were cultured from male and female
PNDO-PND2 pups (50% each). The brain was extracted,
meninges were removed, and the cerebral cortex was
isolated under a dissecting microscope and then
mechanically dissociated and washed twice in Hank’s
balanced salt solution (Sigma-Aldrich, Tres Cantos,
Madrid). After complete dissociation in Dulbecco’s
modified Eagle’s medium/Nutrient mixture F-12
(DMEM/F-12) culture medium with phenol red (Sigma-
Aldrich) containing 10% fetal bovine serum (FBS, Invi-
trogen, Carlsbad, CA) and 1% antibiotic—antimycotic
(Invitrogen), the cells were filtered through a 40 um nylon
cell strainer (Corning Inc., Corning, NY). The cells were
centrifuged, resuspended in the same medium, and plated
onto poly-L-lysine-coated 75-cm? flasks at 37 °C and 5%
CO,. The medium was replaced after the first day in vitro
and twice per week until the cells reached confluence
(~7 days). Then, the cell cultures were shaken overnight at
37°C and 280rpm on a tabletop shaker (Infors HT,
Bottmingen, Switzerland) in order to minimize oligo-
dendrocyte and microglia contamination. The astrocytes
were incubated with 0.5% trypsin (Sigma-Aldrich), cen-
trifuged, resuspended in DMEM/F-12 with 10% FBS and
1% antibiotic—antimycotic, and seeded in poly-L-lysine-
coated 75-cm2 flasks at 37°C and 5% CO2. When the
cells reached confluence for the second time (~ after
5 days), the subculture process was repeated but the
astrocytes were plated onto poly-L-lysine-coated plates (6,
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24, or 48 wells) or glass coverslips using DMEM/F-12 with
10% FBS and 1% antibiotic—antimycotic. Using this pro-
tocol we obtained cultures with less than 4% of Iba-1
positive cells, checked by double immunocytochemistry
with anti-Iba I (microglial marker) and anti-GFAP anti-
bodies (astroglial marker). Fibroblast contamination was
also assessed by immunocytochemistry using an anti-Thy
1 antibody (against CD90, 1:500), but no staining was
detected.

Cell treatments

When cells were confluent in the multiwell plates, they
were rinsed once with pre-warmed PBS and then the
treatments were applied in DMEM-F12 without additives.
Cells were pre-treated with the inhibitory drugs (Table 1)
for 4 h, and then IGF-1 (100 nM), and/or LPS (500 ng/mL)
were added to the culture medium for 24 h.

Cell viability assay

The non-cytotoxic dose of LPS used for all the experi-
ments was set after the analyses of a dose-viability curve
using LPS at final concentrations from 50 to 5000 ng/mL
in the culture. To assess cell viability, we performed the
fluorescein diacetate (FDA)/propidium iodide (PI) assay.
Cells were seeded in 24-well plates and treated for 24 h
with increasing concentrations of LPS (in phenol red-free
DMEM-F12 medium without additives). Just before the
end of the treatment, cells were incubated for 50 min at
37 °C with FDA (100 uM) and PI (15 uM). Fluorescence at
520 and 620 nm wavelength was measured in a plate
reader (FluoStar OPTIMA, BMG Labtech, Germany).

To evaluate the cells metabolic activity (mitochondrial
respiration), the 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
inner salt (MTS) assay was performed with the same LPS
concentrations (50-5000 ng/mL). Astrocytes were plated
in 48-well microplates and treated for 24 h with LPS at
concentrations of 50, 100, 500, 1000, or 5000 pg/mL. After
the addition of 20 puL of CellTiter 96 AQueous One
Solution (Promega, Madison, USA), the plates were
incubated for 4h at 37°C and 5 % CO,. Absorbance at
490 nm wavelength was measured in a plate reader.

Table 1 Inhibitory drugs

Target Inhibitor Concentration Supplier

IGF-1R NVP 400 nM Cayman Chemical
PI3K Wortmannin 100 nM Calbiochem

MEK 1/2 u1026 10 pM Cell Signaling
y-secretase DAPT 2,5uM Calbiochem

NFkB BAY-11 10 pM Calbiochem
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Proliferation assay

Astrocytes were seeded in glass coverslips (pre-coated
with poly-l-lysine) at a density of 25,000 cells/cm? and
exposed to a 30 min-pulse of BrdU (bromodeoxyuridine,
10 uM) in order to assess cell proliferation. BrdU
incorporation was detected by double immunocy-
tochemistry using antibodies against BrdU and GFAP.
Briefly, paraformaldehyde-fixed cells were incubated
with 2 N HCl/ 0.5% triton X-100 during 30 min at room
temperature. Then, pH was neutralized with sodium
tetraborate and primary and secondary antibodies were
added.

Transfections

Astrocytes were transfected at 60% of confluence using
the Effectene Transfection Reagent (Qiagen GmbH, Hil-
den, Germany), following the manufacturer’s instructions.
Cells were transfected with a pcDNA1 vector encoding a
myc epitope and NICD*® using the empty vector as
control; other cultures were co-transfected with pmax-
GEFP plus small interfering RNA (siRNA) oligonucleotide
targeted to Jag-1. After 20 h of expression time, cells were
treated with the indicated drugs for each assay during 24
h. Then the astrocytes were harvested and processed for
real-time polymerase chain reaction (PCR) and western
blot analysis or fixed in 4% paraformaldehyde in 0.1 M
phosphate buffer for immunostaining.

SiRNA oligonucleotides were purchased from Applied
Biosystems/Ambion and the concentration was 30 nM
during transfection. SiRNAs targeting Jag-1 was Silencer®
Select siRNA ID # s68530. A non-targeting siRNA was
used as negative control (Silencer® Select Negative Con-
trol #1 siRNA, catalog number 4390843).

Quantitative RT-PCR

Total RNA was extracted from cultures with Illustra
RNAspin Mini RNA isolation kit from GE Healthcare
(Buckinghamshire, UK). First strand cDNA was pre-
pared from RNA using the Moloney murine leukemia
virus reverse transcriptase (Promega Corp., Madison,
Wisconsin) following the manufacturer’s instructions.
Quantitative PCR reactions were carried out on an ABI
Prism 7500 Sequence Detector (Applied Biosystems,
Weiterstadt, Germany) using the TagMan or Sybr
Green Universal PCR Master Mix. TagMan probe and
primers for Hes-5 were Assay-on-Demand gene
expression products (Applied Biosystems). Primer
sequences for the rest of genes evaluated and control
housekeeping gene 18S rRNA, were designed using
Primer Express (Applied Biosystems) (Table 2). All
reactions were done in duplicates, from at least 4 dif-
ferent cultures. Gene expression was normalized for 18S
rRNA expression. The AACT method was used for
relative quantification analysis.
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Table 2 Primer sequences for real-time polymerase chain reaction

Gene Symbol Forward 5°-3" Reverse 5°-3°

185-rRNA CGCCGCTAGAGGTGAAATTCT CATTCTTGGCAAATGCTTTCG

Hes-1 CCAGCCAGTGTCAACACGA AATGCCGGGAGCTATCTTTCT
Notch-1 CCCTTGCTCTGCCTAACGC GGAGTCCTGGCATCGTTGG

Dlk-1 AATGTCTGCAGGTGCCATGTT TGCACTGCCATGGTTCCTT

Jag-1 TCAGGACACACAACTCGGAAGT CTCCTCTCTGTCTACCAGCGTATACA
IGF-1 GTGATCTGAGGAGACTGGAGATGTACT TGAGTCTTGGGCATGTCAGTGT

IL-6 GAAACCGCTATGAAGTTCCTCTCTG
CAGGAGAATGAGGGCCATAGG

IP-10

TGTTGGGAGTGGTATCCTCTGTGA
CGGATTCAGACATCTCTGCTCAT

Western blot

Primary cultures were lysed in 150 pL of Laemmli buf-
fer, heated during 5 min at 100 °C and sonicated for 5 min.
Solubilized proteins (30 pL) were resolved in 8—10% SDS-
PAGE bis-acrylamide gels and transferred to nitrocellu-
lose membranes (Trans-Blot turbo transfer pack, Biorad)
in a semi-dry system (Trans-Blot Turbo Transfer System,
Biorad). Membranes were blocked for 2h in a 5% BSA-
TTBS (138 mM NacCl, 25 mM Tris-HCI, pH 8.0 and 0.1%
Tween-20) solution, and incubated overnight with the
primary antibodies (Table 3) at 4°C under moderate
shaking. Anti-p-actin, anti-Tubulin and anti-GAPDH
mouse monoclonal antibodies were used as loading con-
trols. All secondary antibodies were from Jackson
Immuno Research (West Grove, PA, USA). Proteins were
visualized with a chemiluminescence detection reagent
according to the manufacturer’s instructions (Amersham,
GE Healthcare Europe, Barcelona, Spain). The densito-
metric analysis of scanned films was performed with
Image] software (Maryland, USA. http://imagej.nih.gov/).

Immunocytochemistry

Cells were seeded in glass coverslips (pre-coated with
poly-l-lysine) at a density of 25,000 cells/cm®. After the
appropriate treatments, astrocytes were fixed for 20 min
with 4% paraformaldehyde at room temperature and
permeabilized for 4 min with 0.12% Triton-X plus 0.12%
gelatin in PBS. Cells were then washed with PBS/gelatin
and incubated for 1 h with primary antibodies (Table 3).
After washing in the same buffer, cells were incubated for
45 min at room temperature with the proper fluorescent
secondary antibodies (Table 3). For morphology assess-
ment, GFAP-positive cells were classified into three dif-
ferent categories: Polygonal astrocytes were those
without any cytoplasmic protrusions, Bipolar astrocytes
presented an elongated cell body or one thin and long
protrusion, and Stellate astrocytes were those with a
reduced cell body and three or more long ramifications
(Fig. 1e).
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Table 3 Antibodies used

Antigen Host  Dilution Source

NICD, cleaved at Val Rabbit  1:500 Cell Signaling

1744

Jagged-1 Rabbit  1:500 Santa Cruz

f-actin Mouse  1:5000 Sigma-Aldrich

a-Tubulin Mouse  1:5000 Sigma-Aldrich

Ibal Rabbit  1:2000 Wako

GFAP(GAS clon) Mouse  1:500 Sigma-Aldrich

BrdU Mouse  1:50 Hybridoma Bank

GFAP Rabbit  1:500 Dako

c-myc (9E10) Mouse  1:500 Roche

Thy-1 (against CD90)  Mouse  1:500 Bio-Rad (Formerly AbD
Serotec)

Anti-mouse-HRP Goat 1:10000  Jackson Laboratories

Anti-rabbit-HRP Goat 1:10000  Jackson Laboratories

Anti-mouse Alexa 488  Goat 1:1000 Jackson Laboratories

Anti-rabbit Alexa 594 ~ Goat ~ 1:1000  Jackson Laboratories

Anti-mouse Alexa 647  Goat 1:50 Invitrogen

Statistical analysis

Data shown in the figures are the result of 4—10 inde-
pendent experiments and are presented as the mean +
standard error of the mean (SEM). Statistical analyses
were carried out using SPSS Statistics 23 software (IBM,
Armonk, NY). Gaussian distribution of data sets was
assessed by Kolmogorov—Smirnov test. Statistical sig-
nificance was evaluated by the unpaired Student’s T-test
for one to one comparisons, and by two-way analysis of
variance (ANOVA) followed by Bonferroni or Games-
Howell post hoc tests (depending on whether variances
were homogeneous or not, respectively) for multiple
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comparisons. When an interaction between two factors
was not detected, data were split and each factor was
analyzed by one-way ANOVA followed by Bonferroni or
Student’s t-test. The statistical significance level was set at
p<0.05.
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