
cancers

Article

Hyperspectral Imaging Combined with Artificial Intelligence in
the Early Detection of Esophageal Cancer

Cho-Lun Tsai 1, Arvind Mukundan 2 , Chen-Shuan Chung 3 , Yi-Hsun Chen 1 , Yao-Kuang Wang 4,5,6,
Tsung-Hsien Chen 1 , Yu-Sheng Tseng 2, Chien-Wei Huang 7,8,*, I-Chen Wu 4,5 and Hsiang-Chen Wang 2,*

����������
�������

Citation: Tsai, C.-L.; Mukundan, A.;

Chung, C.-S.; Chen, Y.-H.; Wang,

Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang,

C.-W.; Wu, I.-C.; Wang, H.-C.

Hyperspectral Imaging Combined

with Artificial Intelligence in the

Early Detection of Esophageal Cancer.

Cancers 2021, 13, 4593. https://

doi.org/10.3390/cancers13184593

Academic Editors: Reza Forghani,

Rajiv Gupta and Farhad Maleki

Received: 3 August 2021

Accepted: 10 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical
Foundation Chiayi Christian Hospital, Chia Yi City 60002, Taiwan; momotsai5@gmail.com (C.-L.T.);
jayshung1985@gmail.com (Y.-H.C.); cych13794@gmail.com (T.-H.C.)

2 Department of Mechanical Engineering, Advanced Institute of Manufacturing with High tech Innovations
(AIM-HI) and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University,
168, University Rd., Min Hsiung, Chia Yi County 62102, Taiwan; arvindmukund96@gmail.com (A.M.);
lonesome310160@hotmail.com (Y.-S.T.)

3 Department of Internal Medicine, Far Eastern Memorial Hospital, No.21, Sec. 2, Nanya S. Rd., Banciao Dist.,
New Taipei City 22060, Taiwan; chungchenshuan3@yahoo.com.tw

4 Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital,
Kaohsiung Medical University, No.100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan;
fedwang@gmail.com (Y.-K.W.); minicawu@gmail.com (I.-C.W.)

5 Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100,
Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan

6 Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Tzyou
1st Rd., Sanmin Dist., Kaohsiung City 80756, Taiwan

7 Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya
District, Kaohsiung City 80284, Taiwan

8 Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu Township, Pingtung City 90741, Taiwan
* Correspondence: forevershiningfy@yahoo.com.tw (C.-W.H.); hcwang@ccu.edu.tw (H.-C.W.)

Simple Summary: Detection of early esophageal cancer is important to improve patient survival,
however, early diagnosis of the cancer cells is difficult, even for experienced endoscopists. This article
provides a new method by using hyperspectral imaging and a deep learning diagnosis model to
classify and diagnose esophageal cancer using a single-shot multibox detector. The accuracy of the
results when using an RGB image in WLI was 83% and while using the spectrum data the accuracy
was increased to 88%. There was an increase of 5% in WLI. The accuracy of the results when using an
RGB image in NBI was 86% and while using the spectrum data the accuracy was increased to 91%.
There was an increase of 5% in NBI. This study proves that the accuracy of prediction when using the
spectrum data has been significantly improved and the diagnosis of narrow-band endoscopy data is
more sensitive than that of white-light endoscopy.

Abstract: This study uses hyperspectral imaging (HSI) and a deep learning diagnosis model that
can identify the stage of esophageal cancer and mark the locations. This model simulates the
spectrum data from the image using an algorithm developed in this study which is combined
with deep learning for the classification and diagnosis of esophageal cancer using a single-shot
multibox detector (SSD)-based identification system. Some 155 white-light endoscopic images and
153 narrow-band endoscopic images of esophageal cancer were used to evaluate the prediction model.
The algorithm took 19 s to predict the results of 308 test images and the accuracy of the test results
of the WLI and NBI esophageal cancer was 88 and 91%, respectively, when using the spectral data.
Compared with RGB images, the accuracy of the WLI was 83% and the NBI was 86%. In this study,
the accuracy of the WLI and NBI was increased by 5%, confirming that the prediction accuracy of the
HSI detection method is significantly improved.

Keywords: hyperspectral imaging; single-shot multibox detector; white-light endoscopy;
narrow-band endoscopy and dysplasia
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1. Introduction

Esophageal cancer can be regarded as the least researched and one of the deadliest
cancers around the globe [1,2]. It is the eighth most common cancer and the sixth most
common cause of cancer death [3]. At present, the endoscopists are unable to draw conclu-
sions from the images of esophageal cancer. This also causes early symptoms to be easily
overlooked. A precise assessment for individualized treatment depends on the accuracy
of the initial diagnosis [4]. The images obtained by the means of general instruments
will be affected by tissue secretions or instrument specifications, which may directly or
indirectly lead to misjudgments in diagnosis. However, by using hyperspectral imaging
technology combined with artificial intelligence deep learning methods to perform spectral
data for esophageal cancer will offer a faster and more accurate diagnosis. The hyperspec-
tral images have nanometer-level spectral intervals and hence the amount of spectrum
information that can be detected is much larger than that of multispectral images [5–11].
The image spectrum conversion is the use of an imaging spectrometer to obtain an image
that has a wide wavelength measurement range, the image is divided into a multispectral
image and a hyperspectral image according to the spectral resolution. The two images are
usually separated by a resolution of 10 nm. When the spectral resolution of the image is
less than or equal to 10 nm, it is a hyperspectral image; when the spectral resolution of the
image is greater than 10 nm, it is called a multispectral image. In addition, the spectral
characteristics are unique to each substance, so it can be used to identify any object, which
can be very accurately identified from the spectral characteristics or spectral response of the
material or object in the obtained hyperspectral image [12,13]. In recent years, many schol-
ars have conducted deep learning-related research on esophageal cancer which has proved
to be a potential method for the early detection of esophageal cancer [14–21]. Shahidi et al.
conducted research on white-light endoscopic images and narrow-band endoscopic images
of gastrointestinal cancers to accurately diagnose and treat the esophagus by artificial intel-
ligence [22]. Yoshitaka et al. conducted research on the application of convolutional neural
networks in artificial intelligence to determine the invasion depth of esophageal cancer
under white-light endoscopy. They also proved that the AI diagnostic system is much
more effective for the diagnostic accuracy of esophageal squamous cell carcinoma (ESCC)
as the depth of invasion is higher than that of endoscopists [23]. Hiromu et al. also studied
the comparison between artificial intelligence and endoscopy professional physicians in
real-time assisted diagnosis of ESCC and proved that the AI method had a higher detection
sensitivity and accuracy of noncancerous tissue [24]. Wang et al. developed a single-shot
multibox detector using a convolutional neural network for diagnosing esophageal cancer
by using endoscopic images.

The main objective of this research is to use the hyperspectral conversion of the
esophageal cancer image to obtain the spectrum information and then use the SSD model
to perform deep learning training on the esophageal cancer spectrum information, thereby
establishing the detection model for diagnosis of the stage and the location of cancerous
lesions.

2. Materials and Methods

The number of endoscopic images of esophageal cancer used in this study was 1232.
Out of these images, the number of WLI and NBI esophageal cancers was 620 and 612,
respectively. Among the 620 white-light endoscopic images, the number of images co-
relating with four levels of severity were 100, 112, 196 and 212 normal, low-grade dys-
plasia, high-grade dysplasia, invasive cancer, respectively. Among the 612 narrow-band
esophageal cancer endoscopy images, the number of images co-relating with four stages
in esophageal cancer were 100, 108, 180 and 224 normal, low-grade dysplasia, high-grade
dysplasia, invasive cancer, respectively. In this study, the system was trained by 1232
images of esophageal cancer and its precursor lesions (620 WLI, 612 NBI), and then 308
images (155 WLI, 153 NBI) were evaluated with the trained system (accuracy of AI-HIS).
The hyperspectral conversion technology (Smart Spectrum Cloud, Hitspectra Intelligent
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Technology Co., Ltd., Kaohsiung City, Taiwan) used in this study to convert the two types
of endoscopic esophageal cancer images into 401 bands (380–780 nm) is shown in Figure 1.
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Figure 1. The flow chart of spectrum conversion construction, using standard 24 color blocks (X-Rite Classic, 24 Color
Checkers) as the common target object for spectrum conversion of the endoscope and spectrometer, converting the
endoscopic images into 401 bands of visible light spectrum information.

The Deep Convolutional Neural Network (CNN) model of the Single Shot MultiBox
Detector (SSD, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung City, Taiwan) used in
this study is a detection architecture based on the VGG-16-Atrous network [25]. SSD mainly
predicts from multiple feature maps [16]. Vgg-16 is a deep learning architecture with 16
hidden layers composed of 13 convolutional layers and 3 fully connected layers [26,27].
The key feature of this model is that it is at least one order of magnitude more efficient than
the existing methods and has a default box with different positions, scales, aspect ratios,
and a multiscale convolutional bounding box output using multiple feature maps [28].
The principle of SSD for target matching will first calculate the intersection over union
(IOU) value between the default frame and the real target, and then will select the default
frame with the largest IOU value to match the real frame. The default frame for successful
matching is the positive sample. Negative samples that are successfully matched will be
evaluated again. If the IOU value of the default box is not successfully matched with the
real box having greater than a certain threshold (generally set to 0.5), it will be reclassified
as a positive sample. For multiple feature maps, SSD uses a set of preset default bounding
boxes to associate with each feature mapping unit, and the default bounding boxes are tiled
on the feature map in a convolutional manner. Therefore, the position of each bounding
box relative to its corresponding unit is fixed. The offset relative to the default bounding
box shape in each feature map is predicted and the category of each object existing in each
bounding box score from the training model loss can be calculated from Equation (1) [29].

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (1)

N is the number of positive samples of the matching default bounding box. If N = 0,
the loss value is defined as 0; c is the predicted value of confidence loss; l is the predicted
position of the bounding box corresponding to the default box; g is the position of ground
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truth parameter. In this study, the spectrum information of esophageal cancer and the
label information that predicts the stage and coordinates of the disease are used in the SSD
detection model framework. The data batch size is 32, the global learning rate is 0.0005,
and the total number of training steps is 80,000. The white-light endoscopic imaging of
esophageal cancer data and the narrow-band endoscopic imaging of esophageal cancer
data are separately trained. The complete flow chart of this study is shown in Figure 2.
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Figure 2. Flowchart of SSD esophageal cancer hyperspectral training.

The spectrum information obtained by image spectrum conversion has 401 character-
istic dimensions in the visible light band (380–780 nm). Figure 3a,c shows the spectrum
of esophageal cancer in four stages: normal, low-grade dysplasia, high-grade dysplasia,
invasive cancer of white-light endoscopic images and narrow-band endoscopic images,
respectively. The high-dimensional spectrum information of the white-light and narrow-
band endoscopes is reduced to three-dimensions using principal component analysis
(PCA) [30]. The two kinds of endoscope spectrum information after dimension can show
good variability between the severity of esophageal cancer as shown in Figure 3b,d.

The color image obtained by the white-light and narrow-band endoscope needed
to be subjected to a series of preprocessing. In order to increase the training data, the
preprocessed images were augmented, and the label information of the data was created
based on this, which contained the name and coordinate location of the disease stage.
On the other hand, using 24 color blocks as the reference object, a spectrometer was
used to establish an image spectrum conversion module for the endoscope. By using
the multivariate regression analysis, the conversion matrix that converted the endoscopic
images into the spectrum of the visible light band could be obtained. With the conversion
matrix, the images could be converted into the spectrum of the visible light band to obtain
the spectrum information of the esophageal cancer. Next, the spectrum information of
esophageal cancer was reduced by principal component analysis. Finally, by using SSD
we trained a diagnostic model to predict the number and location of esophageal cancers,
based on frequency spectrum.
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Figure 3. White-light and narrow-band endoscopic imaging of esophageal cancer spectrum and dimensionality reduction
data distribution map. (a) White-light endoscopic images of esophageal cancer spectrum; (b) white-light endoscopic
images of esophageal cancer spectrum dimensionality reduction data in the first two principal components of the data
distribution map; (c) narrow-band endoscopic imaging of esophageal cancer spectrum; (d) narrow-band endoscopic
imaging of esophageal cancer spectrum dimensionality reduction data in the first two principal components of the data
distribution map.

In this study, 155 white-light esophageal cancer spectrum data and 153 narrow-band
esophageal cancer spectrum information were used to test the white-light prediction model
and the narrow-band prediction model, respectively. The resulting prediction model can
be presented at the same time as the corresponding original esophageal cancer image. This
kind of visualization allowed us to observe and evaluate the prediction results with a
very intuitive presentation effect. The results displayed a rectangular box surrounding
the esophageal cancer lesion in the endoscopic image. The predicted rectangular box
represented a corresponding color according to the assigned disease stage name; dysplasia
corresponds to low-grade dysplasia, high-grade dysplasia corresponds to light blue-gray,
invasive cancer corresponds to orange, and for normal there would not be any prediction
box. The kappa statistic is frequently used to test interrater reliability [31]. The importance
of reliability lies in the fact that it represents the extent to which the data collected in the
study are correct representations of the variables measured. Like most correlation statistics,
the kappa can range from −1 to +1. The kappa is one of the most commonly used statistics
to test interrater reliability [32].

3. Results

Figure 4 shows the image results of esophageal cancer prediction presented on a
white-light endoscopic imaging while Figure 5 shows the image results of esophageal
cancer prediction presented on a narrow-band endoscope.
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Figure 4. The results of the prediction of esophageal cancer on the white-light endoscopic imaging.
The correct position is represented by green rectangle is shown for comparison with the predicted
result. (a) The result of the esophagus test is normal. It is not displayed under the diagnosis of SSD.
(b) represents the detection result of the area with low-grade dysplasia, under the diagnosis of SSD,
the blue bounding box surrounds the lesion area; (c) shows the area with high-grade dysplasia. The
test result shows that the gray bounding box surrounds the lesion area under the diagnosis of SSD;
(d) shows the detection result of the invasive cancer area, and the orange bounding box surrounds
the lesion area under the diagnosis of SSD.
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that the efficiency in detecting the esophageal cancer in the normal stage has been im-
proved by 16%. In the low-grade dysplasia stage, the sensitivity rate of WLI in RGB was 
61% while for the same stage in the WLI spectrum the sensitivity was 75%. This drop in 
the sensitivity rate was due to fewer sample rates being available for this stage. However, 
in the high-grade dysplasia and invasive cancer stages the sensitivity rate in WLI RGB 
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Figure 5. The results of the prediction of esophageal cancer are displayed on the narrow-band
endoscopic imaging, where the correct position (green rectangle) is compared with the predicted
result; (a) is the normal esophageal test result, which is not displayed under the diagnosis of SSD;
(b) shows the detection result with low-grade dysplasia. Under the diagnosis of SSD, the blue
bounding box surrounds the lesion area; (c) shows with the area between high-grade dysplasia and
low-grade dysplasia. The test result shows that the gray bounding box surrounds the lesion area
under the diagnosis of SSD; (d) shows the detection result of the invasive cancer area, and the orange
bounding box surrounds the lesion area under the diagnosis of SSD.
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Table 1 compares the test results of the esophageal cancer spectrum data in this study
with the test results using RGB esophageal cancer images. The table sorts out the spectrum
data obtained by white-light endoscopes and narrow-band endoscopes. The test data
results of RGB images are shown under four severity levels. The experimental data was
statistically based on the confusion matrix and the results are shown in Table 2. In the
white-light endoscopy spectrum data, out of the 155 images, 25, 28, 49 and 53 images
represent the normal, low-grade dysplasia, high-grade dysplasia, invasive cancer case
respectively. Among the prediction results of the four cancer stages, 23 in normal, 21 in
low-grade dysplasia, 45 in high-grade dysplasia, and 48 in invasive cancer were predicted
correctly. Therefore, the accuracy of the white-light endoscopy data test result was 88%.
On the other hand, in the narrow-band endoscopy spectrum data, out of the images, 25,
27, 48 and 56 images represent the normal, low-grade dysplasia, high-grade dysplasia,
invasive cancer case respectively. Among the prediction results of the four cancer stages,
24 in normal, 24 in low-grade dysplasia, 41 in high-grade dysplasia, and 51 in invasive
cancer were predicted correctly. Therefore, the accuracy of the white-light endoscopy data
test result was 91%. As seen from Table 2, the sensitivity rate of WLI of normal stage in
RGB is 76% while for the same stage in the WLI spectrum the sensitivity was 92%. This
proves that the efficiency in detecting the esophageal cancer in the normal stage has been
improved by 16%. In the low-grade dysplasia stage, the sensitivity rate of WLI in RGB was
61% while for the same stage in the WLI spectrum the sensitivity was 75%. This drop in
the sensitivity rate was due to fewer sample rates being available for this stage. However,
in the high-grade dysplasia and invasive cancer stages the sensitivity rate in WLI RGB was
86% and 93%, respectively, while the WLI spectrum was 92 and 91%, respectively. The
same pattern could be found in the NBI band also. As seen from Table 2, the sensitivity rate
of NBI of normal stage in RGB was 68%, while for the same stage in the NBI spectrum the
sensitivity was 96%. This proves that, similar to the WLI band, the efficiency of detecting
the esophageal cancer in the early stage by using NBI spectrum was improved by 28%.
In the low-grade dysplasia stage, the sensitivity rate of NBI in RGB was 83%, while for
the same stage in the NBI spectrum the sensitivity was 89%. Unlike the WLI band, the
sensitivity rate was increased by 6%. From this interference it is clear that for the first two
stages of detecting esophageal cancer, the NBI band can be used, while for the latter two
stages, the WLI band can be used. However, in the high-grade dysplasia and invasive
cancer stages the sensitivity rate in NBI RGB was 88 and 98%, respectively while in the NBI
spectrum, both were 91%. As seen in Table 2, the kappa WLI RBG and NBI RGB was 0.76
and 0.81 while the kappa for the WLI spectrum and NBI spectrum was 0.84. This shows
that there was an increase of 0.8 and 0.3 in kappa for the WLI and NBI spectra.

Table 1. RGB image and spectrum data test results analysis.

WLI RGB Sensitivity
(%)

Precision
(%)

F1-Score
(%)

Accuracy
(%) Kappa

Normal 76 72 74

83 0.76
Low-grade dysplasia 61 85 71

High-grade dysplasia 86 86 86

Invasive cancer 93 85 89

NBI RGB Sensitivity
(%)

Precision
(%)

F1-score
(%)

Accuracy
(%) Kappa

Normal 68 89 77

86 0.81
Low-grade dysplasia 83 88 85

High-grade dysplasia 88 86 87

Invasive cancer 98 84 90
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Table 1. Cont.

WLI spectrum Sensitivity
(%)

Precision
(%)

F1-score
(%)

Accuracy
(%) Kappa

Normal 92 85 88

88 0.84
Low-grade dysplasia 75 84 79

High-grade dysplasia 92 88 90

Invasive cancer 91 92 91

NBI spectrum Sensitivity
(%)

Precision
(%)

F1-score
(%) Accuracy (%)

Kappa

Normal 96 89 92

91 0.84
Low-grade dysplasia 89 92 91

High-grade dysplasia 91 89 90

Invasive cancer 91 94 93

Table 2. Confusion matrix statistics table of RGB image and spectrum data test results, which compares the esophageal
cancer spectrum data test and the test results using RGB esophageal cancer images.

Confusion Matrix True Value Total

WLI RGB Normal Dysplasia High-Grade
Dysplasia Invasive Cancer

Predicted value

Normal 13 3 0 2

112
Low-grade dysplasia 1 11 1 0

High-grade dysplasia 3 1 30 1

Invasive cancer 0 3 4 39

NBI RGB Normal Low-Grade
Dysplasia

High-grade
dysplasia Invasive Cancer

Predicted value
Normal 25 2 0 1

152
Low-grade dysplasia 1 15 1 0

High-grade dysplasia 5 1 38 0

Invasive cancer 6 0 4 53

WLI spectrum Normal Low-Grade
Dysplasia

High-grade
dysplasia Invasive Cancer

Predicted value

Normal 23 2 1 1

155
Low-grade dysplasia 2 21 1 1

High-grade dysplasia 0 3 45 3

Invasive cancer 0 2 2 48

NBI spectrum Normal Low-Grade
Dysplasia

High-grade
dysplasia Invasive Cancer

Predicted value

Normal 24 2 1 0

153
Low-grade dysplasia 1 24 0 1

High-grade dysplasia 0 1 41 1

Invasive cancer 0 0 3 51
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4. Discussion

From this article, it is very clear that by using a hyperspectral imaging (HSI) and deep
learning diagnosis model the accuracy in the early detection of esophageal cancer can
be increased significantly. This study provides SSD, a fast single-shot multi-class object
detector. The model is characterized by a multiscale convolutional bounding box output
using multiple feature maps. The position, scale and aspect ratio of the predicted sample
were greater by at least one order of magnitude when compared with the existing methods.
This advantage enables the model to train the bounding box shape space more effectively.
The algorithm took 19 s to predict the results of 308 test images. The accuracy of the
results when using RGB image in WLI was 83% and while using the spectrum data the
accuracy was increased to 88%. There was an increase of 5% in WLI. The accuracy of the
results when using RGB image in NBI was 86% and while using the spectrum data the
accuracy was increased to 91%. There was an increase of 5% in NBI. At present, there are
not many studies on spectrum information of esophageal cancer. Even so, by increasing
the amount of data for training spectrum information, the accuracy of model diagnosis can
be improved significantly. This study was conducted at the Kaohsiung Medical University
and a total of 45 patients took part in this study. Currently this method has not been used
in any clinical diagnosis. However, in the future, if research on the band selection for
spectrum information of esophageal cancer is proposed in the future, using this method to
reduce the amount of spectrum information, combined with the detection and diagnosis
methods of this study will be useful for the early diagnosis of esophageal cancer and will
have better predictions.

5. Conclusions

This study proves that the accuracy of prediction when using spectrum data has been
significantly improved and the diagnosis of narrow-band endoscopy data is more sensitive
than that of white-light endoscopy.
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