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Objective: Improving and validating sleep scoring algorithms for actigraphs enhances

their usefulness in clinical and research applications. The MTIs device (ActiGraph,

Pensacola, FL) had not been previously validated for sleep. The aims were to (1) compare

the accuracy of sleep metrics obtained via wrist- and hip-mounted MTIs actigraphs

with polysomnographic (PSG) recordings in a sample that included both normal sleepers

and individuals with presumed sleep disorders; and (2) develop a novel sleep scoring

algorithm using spline regression to improve the correspondence between the actigraphs

and PSG.

Methods: Original actigraphy data were amplified and their pattern was estimated using a

penalized spline. The magnitude of amplification and the spline were estimated by

minimizing the difference in sleep efficiency between wrist- (hip-) actigraphs and PSG

recordings. Sleep measures using both the original and spline-modified actigraphy data were

compared to PSG using the following: mean sleep summary measures; Spearman rank-order

correlations of summary measures; percent of minute-by-minute agreement; sensitivity and

specificity; and Bland–Altman plots.
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Results: The original wrist actigraphy data showedmodest correspondence with PSG, andmuch

less correspondence was found between hip actigraphy and PSG. The spline-modified wrist

actigraphy produced better approximations of interclass correlations, sensitivity, and mean

sleep summary measures relative to PSG than the original wrist actigraphy data. The spline-

modified hip actigraphy provided improved correspondence, but sleep measures were still not

representative of PSG.

Discussion: The results indicate that with some refinement, the spline regression method has

the potential to improve sleep estimates obtained using wrist actigraphy.

& 2014 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Physical activity and sleep are both recognized as important
health determinants and represent critical targets for chronic
disease prevention. A better understanding of the roles that
these factors play in health and disease has been facilitated by
the development and implementation of ambulatory,
accelerometer-based monitoring devices [1–5]. Actigraphy has
helped establish linkages between sleep disruption or reduced
physical activity and various adverse health outcomes ranging
from metabolic syndrome measures (e.g., obesity, hyperten-
sion), to increased rates of chronic disease and elevated
mortality risk [6–13]. Refinements in actigraphy data proces-
sing and analysis may help to improve assessments of sleep
and physical activity for use in disease prevention efforts.

Characterization of sleep via wrist actigraphy has gained
popularity in clinical and research settings as an alternative
to polysomnography (PSG). Though considered the “gold
standard” for sleep assessment, PSG can be costly, labor-
intensive, and invasive. Also, it typically involves sleeping in
a novel environment and only can be reasonably implemented
for 1–2 nights at a time [1–5]. Advantages of actigraphy include
its low cost, convenience, and an ability to objectively estimate
sleep in large populations for periods up to months at a time.
However, some differences among actigraphs, including mod-
ality of quantifying movement, sampling frequency, and sen-
sitivity of movement detection can influence their accuracy in
estimating sleep. In addition, some sleep actigraphy devices
lack documentation of their validity relative to PSG. With
increasing interest in simultaneous ambulatory monitoring of
sleep and physical activity, an unresolved question is whether
data collected using hip-mounted actigraphs (typically used
solely for physical activity monitoring) also can provide valid
estimates of sleep [1–5,29]. If so, this would allow for reduction
in cost and subject burden in studies involving both measures.

This investigation compared the accuracy of sleep metrics
obtained via wrist- and hip-mounted MTIs actigraphs (Man-
ufacturing Technology, Inc., ActiGraph, Pensacola, FL) with
those derived from PSG recordings in a convenience sample
of individuals attending a local clinic for sleep evaluation via
PSG. The MTIs actigraph has been validated and used to
characterize physical activity [14–16]. However, to our knowl-
edge, this monitor had not been validated for sleep. A similar
actigraph device has recently been used to assess physical
activity and sleep in a nationally representative sample of the
United States population [17].
Another study objective was to use spline regression as a
novel sleep characterization methodology to improve both
wrist- and hip-mounted actigraphic data relative to PSG-
defined sleep. Spline regression is a useful mathematical
technique for modeling complex nonlinear processes. It has
been applied to accelerometer data to estimate energy
expenditure and other physical activity measures, although
it has not been used previously to characterize sleep [18,19].
2. Material and methods

The study sample consisted of patients attending a local sleep
clinic for various sleep complaints (SleepMed, Columbia, SC) as
well as presumed normal sleepers. Participants were given a
physical examination and interview by a board-certified sleep
physician [20]. All participants had been previously scheduled
for an overnight PSG recording session. Clinical staff informed
prospective participants of the present study and participants
provided written informed consent per University of South
Carolina Institutional Review Board (IRB) approval.

A standardized PSG protocol was implemented by clinic
staff. Participants arrived at the clinic sixty minutes before
their self-reported customary bedtime and were prepared for
PSG recording �30 minutes before initiating their sleep
period. Participants completed a single night of PSG recording
using Alice 4 PSG instrumentation operated by a certified PSG
technician. Demographic and anthropometric information
was obtained from clinical records (age, sex, body mass index
[BMI¼weight(kg)/height(m)2]). Participants also completed
the Epworth Sleepiness Scale (ESS) [22].

Each participant was equipped with two actigraphs (MTIs

model 7164 accelerometer, ActiGraph, Pensacola, FL); one was
worn on the non-dominant wrist, and the other was affixed to
the hip. The actigraphs were initialized prior to recording using
the same computer that was used for PSG recording so that the
actigraphs were synchronized to the internal timing of the
computer, thus allowing precise and accurate verification of
the beginning and end of each recording period. Moreover,
synchronization of the initiation of the PSG and actigraphic
recordings also was performed each night with manually acti-
vated event markers on the computer and actigraph. At each
participant's customary bedtime, which varied from 9 pm to
1 am, lights were turned out and participants were asked to
attempt to sleep as desired, for up to a maximum of 8 h.

Recordings that included at least 6 h of complete PSG as
well as wrist and hip actigraphy data were included in the
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analysis. PSG data were initially scored using the automated
Morpheuss software (Widemed ltd., Tel Aviv, Israel) in 30-s
epochs. These data were then manually edited according to
standardized criteria by a registered PSG technologist [21,23].
In order to compare PSG scoring with MTI sleep estimates,
which are scored in 60-s epochs, PSG recordings from every
other 30-sec epoch were synchronized to actigraphy data and
scored for the presence of wake or sleep, without considera-
tion of sleep stage. Ancillary analyses based on sensitivity,
specificity, and minute-by-minute agreement indicated that
differences between this approach and alternative data
matching strategies within a given one minute interval were
negligible. These strategies and their results are addressed in
greater detail in the discussion section. Actigraph epochs
were scored for sleep using the Cole–Kripke algorithm [24],
which was incorporated into the manufacturer's software.
The MTI ActiLife5© software used for this purpose applied a
combination of regression parameters as follows:

D¼ PðW�4A�4 þW�3A�3 þW�2A�2 þW�1A�1 þW0A0

þWþ1Aþ1 þWþ2Aþ2Þ; ð1Þ
where Do1 indicates being asleep, DZ1 denotes being awake, P
is a scale factor for the entire equation, W0, W�4, W�3, W�2,

W�1, Wþ1 andWþ2 are weighting factors for present (0), previous
(� ), and subsequent minutes (þ), and A0, A�4, A�3, A�2,A�1, Aþ1,

Aþ2 are activity scores for the corresponding present (0), previous
(� ), and subsequent minutes (þ). For instance, A�4 represents
activity scores four time units before the present time and W�4

is the associated weighting factor for A�4. The resulting algo-
rithm in ActiLife5© is

D¼ 0:001ð106A�4 þ 54A�3 þ 58A�2 þ 76A�1 þ 230A0

þ74Aþ1 þ 67Aþ2Þ; ð2Þ
where activity scores were constrained not to exceed a max-
imum of 300. This means, for example, that if an epoch had an
activity score of 450 a score of 300 was used.

Alice 4 and ActiLife 5 software provided summary PSG and
actigraphy sleep statistics, respectively, for each night of
recording, including: time-in-bed (TIB, number of minutes
from lights out to lights on); sleep onset latency (number of
minutes from lights out until the first epoch of recorded
sleep); total sleep time (TST, number of minutes scored as
sleep during time-in-bed); sleep efficiency ([TST/TIB]�100);
wake after sleep onset (WASO, number of minutes scored as
wake after sleep onset); and number of awakenings (total
number of transitions to wake from sleep).

We attempted to develop a novel method to improve
actigraphic sleep estimates by applying a smoothing spline
to actigraph activity data using PSG as the reference. The
penalized smoothing spline fits a non-linear curve to dis-
cretely observed data while maintaining the pattern of the
original data. The penalty parameter controls how curvilinear
(or smooth) the curve can be. By modeling sleep actigraphy
data as continuous rather than discrete time points, our
intent was to estimate an actigraphic time series that more
closely approximated the pattern of sleep–wakefulness
recorded via PSG. This was performed in two stages. First,
an overall adjustment to the original activity amplitude was
implemented because the magnitude of wrist and hip acti-
graphy data can be low, which would generate false negative
assignment of sleep using the algorithm denoted above.
Second, the temporal pattern of the adjusted activity was
estimated via a penalized cubic spline, where its smoothness
was controlled by a penalty parameter. The inferred non-
linear curve was then used to estimate activity levels that
were processed using the Cole–Kripke algorithm [24] found in
the manufacturer's software to score each epoch as awake or
asleep. The overall adjusting magnitude and penalty para-
meter were selected such that their combination minimized
the difference in sleep efficiency between the actigraphy and
PSG data. Scoring for sleep–wake using the predicted activity
values of wrist and hip actigraphy data was conducted in the
same manner as the original actigraphy data using the Cole–
Kripke algorithm included within the manufacturer's soft-
ware (ActiLife 5).

Statistical comparisons between PSG and actigraphy mea-
sures obtained from either the original or spline-modified
data were performed using several methods: (1) Sleep sum-
mary measures obtained from the wrist and hip actigraphy
recordings were compared with mean PSG values using a
nonparametric Wilcoxon rank sum test applied to differ-
ences. (2) Associations of PSG with actigraphy summary
data were further assessed using Spearman correlations.
(3) Minute-by-minute agreement of PSG with actigraphy was
determined by serially evaluating concordant or discordant
epochs of PSG and actigraphy. The total number of concor-
dant epochs were divided by TIB then multiplied by 100 to
obtain the percent agreement and then averaged among all
subjects. (4) Sensitivity of actigraphy scoring was calculated
for each participant as the percent of PSG-scored sleep
epochs that also were scored as sleep by the actigraph;
specificity was calculated as the percentage of PSG-scored
wake epochs that also were scored as “awake” by the MTI
software. Individual sensitivity and specificity data were then
averaged across all subjects. (5) Bland–Altman plots were
used to provide a visual summary of the agreement between
PSG and other sleep summary measures. These graphs were
generated by plotting the mean of the two sleep measures
(e.g., spline-modified sleep efficiency and PSG sleep effi-
ciency) against the difference between the actigraphy and
referent (PSG) sleep efficiencies, along with the 95% limit of
agreement for the mean differences, and the intraclass correla-
tion coefficient (ICC) (BA.plot function, R MethComp package,
http://cran.r-project.org/web/packages/MethComp/MethComp.
pdf). All analyses were performed using the R Gui© software
program (The R Foundation for Statistical Computing). The
statistical significance level was set at α¼0.05.
3. Results

Analyses were performed among the 54 qualified participants
who had at least 6 h of PSG sleep and data from both
actigraph monitors (54/84; 64%). The average age (7 standard
deviation) of the study population was 51713 years, includ-
ing 29 (54%) women, 20 men (37%) for whom sex data were
recorded. Subjects were given a presumptive diagnosis based
on their initial assessment and self-reported symptoms
which may or may not have been consistent with their final
diagnosis. Many patients reported more than one symptom



Fig. 1 – Comparison of PSG sleep relative to original and
spline-modified wrist actigraphy. Top panel presents
polysomnographic sleep scores (gray: asleep, white: awake).
Middle panel presents sleep scores overlaid with original
activity scores from wrist actigraphy (black line). Bottom
panel presents spline-modified sleep scores overlaid with
predicted wrist activity values from inflation and penalized
spline (black line).
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(e.g., insomnia or hypersomnia with sleep apnea). Based on
their presumptive diagnosis, the sample consisted of 32
patients with primary symptoms of obstructive sleep apnea,
11 with insomnia, 1 with narcolepsy, and 10 normal or
undiagnosed sleepers. Table 1 summarizes demographic
characteristics of the participants.

Fig. 1 presents an example of the spline-modified wrist
actigraphy data (lower panel) relative to the original (middle
panel) and PSG-defined sleep and wake (upper panel) for a
participant's single night sleep record (An example of hip
actigraphy data is presented in the supplemental appendix
Fig. S1.) The estimated overall adjusting magnitude and penalty
parameter that minimized the sleep efficiency between acti-
graphy and PSG for the wrist data was 300 and 0.00025,
respectively, and for the hip data 400 and 0.00025, respectively.
Note that in this example, wakefulness (white background) for
the spline-modified sleep scoring procedure coincides more
consistently with PSG sleep–wake scores relative to the original
actigraphy data, and that sleep efficiency using spline-modified
values more closely approximates PSG sleep efficiency.

Sleep summary measures for PSG, original wrist and hip
actigraphy, and spline-modified wrist and hip actigraphy data
are presented in Table 2. Compared to the statistics using
spline-modified data, summary statistics based on original
wrist actigraphy data were farther from the statistics for PSG.
The spline-modified wrist actigraphy means for sleep effi-
ciency, TST, WASO, and number of awakenings were not
statistically different from PSG data. The spline-modified
latency was statistically lower (po0.001) than the PSG data,
but it is still closer to the PSG value than if not modified. The
mean spline-modified hip actigraphy data corresponded
more closely with PSG than the original hip data, although
the summary measures were statistically different from the
PSG measures (all po0.01, Table 2).

Spearman rank-order correlations between PSG and acti-
graphy measures are presented in Table 3. Positive correla-
tions were noted between PSG and both wrist actigraphy
sleep summary measures (original: r¼0.24–0.53, all po0.05
and spline-modified: r¼0.29–0.56, all po0.05). In general, the
correlations with PSG measures were improved or compar-
able when using spline-modified data except for WASO and
number of awakenings. Across all epochs, the minute-by-
minute agreement between PSG sleep scores and those
obtained using the original wrist actigraphy data was 81%
(7 standard deviation: 10%). The spine-modified wrist acti-
graphy data produced a similar agreement with PSG (81%
79%). For the hip actigraphy data, spline-modified hip acti-
graphy recordings produced higher agreement (78%712%)
than the original data (74%714%).
Table 1 – Study population descriptive characteristics.

Variable Minimum Median

Age 21 51
BMI 21 33
Epworth 0 11
AHI 0.7 12.8

Epworth sleepiness scale score (n¼7 missing), AHI – apnea hypopnea in
(kg/m2).
Across all epochs, the minute-by-minute sensitivity and
specificity of the original wrist actigraphy data to detect PSG-
defined sleep or wake was 96% (75%) and 41% (723%),
respectively. The spline-modified wrist actigraphy data gen-
erated a much improved specificity (59%723%) to detect
wakefulness, while the sensitivity was still reasonably high
(89%79%). For hip actigraphy, the sensitivity and specificity
of the original values relative to PSG were both o0.01% and
the corresponding values for spline-modified hip actigraphy
were both improved, 0.21% (75%) and 0.05% (719%),
respectively.
Mean7SD Maximum

51712 74
3579 60
1277 6
19718 7

dex (n¼6 missing). SD – Standard deviation. BMI – body mass index



Table 2 – Mean sleep summary measures by data collection method (n¼54).

Variable PSG Original wrist Spline-modified wrist Original hip Spline-modified hip

TST (min) 334769 396767n 353776 452746n 410756n

Sleep efficiency (%) 73714 8671n 77714 9972n 8978n

WASO (min) 94752 58743n 98756 677n 48735n

Latency (min) 30733 477n 8715n 071n 172n

No. awakenings 2177 1377n 2178 373n 1677n

PSG: Polysomnography, TST: total sleep time, WASO: wake after sleep onset.
n p-Valuer0.01; the tests compared PSG to other data collection methods using Wilcoxon rank-sum tests.

Table 3 – Correlation of actigraphic sleep summary measures with PSG (n¼54)a.

Variable Original wrist Spline-modified wrist Original hip Spline-modified hip

TST 0.53 (o0.001) 0.56 (o0.001) 0.52 (o0.001) 0.45 (o0.001)
Sleep efficiency 0.41 (0.002) 0.42 (0.002) 0.22 (0.105) 0.24 (0.079)
WASO 0.39 (0.004) 0.29 (0.031) 0.05 (0.699) 0.02 (0.875)
Latency 0.24 (0.077) 0.31 (0.023) 0.20 (0.148) 0.26 (0.057)
No. awakenings 0.45 (0.001) 0.32 (0.017) 0.03 (0.828) 0.23 (0.091)

PSG: Polysomnography, TST: total sleep time, WASO: wake after sleep onset.
a Spearman rank correlation coefficient (p-value).
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Bland–Altman plots of PSG sleep relative to original and
spline-modified wrist actigraphy are presented in Fig. 2 along
with the corresponding ICCs. Similarities between PSG and the
sleep scores are observed if there are small differences between
means that cluster near the horizontal line, indicating small
differences, and by moderate to strong ICCs. Dissimilar results
produce larger differences that are typically outside the 95%
limit of agreement. Relative to the original wrist actigraphy
data, the spline-modified wrist data generated sleep efficiencies
that were closer to those obtained using PSG. The original wrist
data (Fig. 2 top panel) tended to have a less symmetric
distribution around zero with more positive differences,
whereas the spline-modified wrist actigraphy measures tended
to have a more symmetric distribution around zero (Fig. 2
bottom panel). The ICC for sleep efficiency between PSG and the
predicted wrist data (0.47) also was higher than the correspond-
ing ICC between PSG and the original wrist data (0.29).

Bland–Altman plots for both the original (Fig. S2 top panel)
and spline-modified hip actigraphy (Fig. S2 bottom panel) data
had positive differences and similar averages, indicating that
both measures had estimated sleep efficiencies greater than
PSG and that they were missing assignment of wakefulness
epochs captured by PSG. Hip actigraphy from the original data
had a distinct negative linear relationship, indicating that
differences between PSG and original hip data decreased as
mean sleep efficiency increased. Sleep efficiencies from both
the original and spline-modified hip actigraphy data had low
ICCs in relation to PSG (0.01 and 0.09, respectively).
4. Discussion

Characterization of sleep via wrist actigraphy has gained
popularity in clinical and research settings, and has helped
advance the understanding of how sleep disruption can affect
the incidence or mortality of various diseases including
depression, obesity, hypertension, cardiovascular disease
and cancer [6–13]. Actigraphy is more cost-efficient and can
be used to collect data over many consecutive nights while
also being less disruptive to natural sleep than is PSG.
Actigraphy has been used in some cases to help establish
diagnoses of insomnia [25] or circadian rhythm sleep dis-
orders [26]; however, clinical consensus is that a full-night
PSG exam is required for establishing a sleep disorder
diagnosis.

In this study, the original wrist actigraphy data for this
previously non-validated monitor had only modest corre-
spondence with PSG, and the correspondence of hip actigra-
phy data with PSG was unsatisfactory. Several of the average
sleep measures were statistically different between PSG and
actigraphy; correlations between these data were low; and
minute-by-minute agreement was modest. These correspon-
dences were lower than other published comparisons. For
example, minute-to-minute agreement between wrist acti-
graphy and PSG was 86–95% in studies of other actigraphy
devices [24,27,28], whereas it was 80% in the present study.
For most sleep summary measure comparisons, the spline-
modified sleep measures obtained using wrist-mounted acti-
graphs produced better agreement with PSG-defined sleep
than the data summarized using the standard method for the
original wrist-mounted data.

Despite its practical appeal, a key issue is how well
actigraphic data approximates patterns of PSG-defined sleep,
and how this agreement can be maximized. By modeling
sleep using spline regression, this study sought to more
closely approximate patterns of sleep–wakefulness recorded
via PSG. Spline regression combined with inflation proved
useful for these purposes because it enhanced both the
amplitude and duration of activity during sleep, which
provided a better opportunity to capture bouts of wakefulness.



Fig. 2 – Bland–Altman plots of mean spline-modified wrist
sleep efficiency versus the difference between the original
(top) or spline-modified (bottom) wrist actigraphy and
polysomnographic (PSG) sleep efficiencies. (—) mean of the
differences, (⋯) horizontal marker at zero, (.) point difference
original PSG sleep efficiency and wrist actigraphy sleep
efficiency, (- - -) UAL: Upper 95% agreement limit and LAL:
Lower 95% agreement limit.
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Compared with the original summary measures, the spline-
modified data produced fewer statistically significant differ-
ences between PSG and wrist-derived sleep summary mea-
sures, a higher ICC, and improved specificity to detect PSG-
defined wakefulness. Moreover, the Bland–Altman plot compar-
ing spline-modified wrist actigraphy with PSG indicated that
this approach generated sleep efficiencies that matched PSG
more closely than the original wrist actigraphy data. On the
other hand, spline-modified wrist actigraphy measures did not
differ appreciably from the original data when minute-to-
minute agreement, sensitivity, or correlations with WASO or
number of awakenings were considered.

There were several noteworthy limitations or uncertain-
ties in this study. Reductions in sample size that occurred due
to missing data may have reduced statistical power and
representativeness of data used in the analyses. The sleep
scoring algorithm implemented in the MTI software was
originally developed by Cole et al. [24] for a different acti-
graphy device and was not calibrated to maximize its corre-
spondence with PSG measures, which may have contributed
to its reduced correspondence with PSG in the present study.

Another potential limitation was that PSG readings were
measured every 30 s while actigraphic data were measured
every minute, and the analyses were based on the use of every
other PSG epoch in order to match the data collection scheme
to the actigraphy readings. To assess the possibility that this
influenced the results, supplementary analyses were conducted
using three different scenarios to evaluate whether alternative
methods for selection of PSG epochs within a one-minute time
frame would alter correspondence between actigraphic and PSG
data. First, the PSG sleep score between two consecutive 30-s
epochs was randomly chosen. In the second scenario, the one-
minute interval was scored as “awake” if one of the 30-s PSG
epochs was scored as awake. In the third scenario, the one-
minute interval was scored for sleep if one of the 30-s PSG
epochs was scored as “asleep”. For each scenario, the average
minute-by-minute agreement, sensitivity, and specificity were
compared, and differences in average agreement among these
scenarios were negligible (o1%) relative to the ‘every other PSG'
method used in the analysis, which indicates that the use of
every other PSG epoch did not bias the analysis.

In the present study, hip actigraphy data corresponded
poorly with PSG by all measures evaluated. This was likely
due to less hip movement compared with the wrist, which is
consistent with recent findings by Hjorth et al. [29], who
reported low specificity and overestimation of sleep when
waist-worn actigraphy data were examined. On the other hand,
Enomoto et al. [28] and Paavonen et al. [27] found that hip
actigraphs produced statistically similar results to PSG or wrist
actigraphy measures. Similar to our objective, Enomoto et al.
[28] aimed to create an algorithm that improved the sleep
scores for wrist actigraphy (Lifecorder PLUS, LC; Suzuken Co.
Ltd., Nagoya, Japan), whereas Paavonen et al. [27] applied wrist
and hipmounted Mini-MotionLoggers actigraphs (Mini-Motion-
Logger, Ambulatory Monitoring, Inc., Ardsley, NY) to assess
which location could best describe the sleep habits of children.
Inconsistencies between results obtained for hip measures in
the present study and in Hjorth et al. [29] and those reported
previously in Enomoto et al. [28] and Paavonen et al. [27] could
be due, in part, to differences among actigraphic devices, or
among the populations studied.

In previous studies, correspondence between actigraphy and
PSG tended to be better among participants who were normal
sleepers relative to those with sleep disorders or other medical
conditions [4,30,31]. Spline-modified wrist actigraphy data in
the present study modestly improved the ability to detect
wakefulness, a key element of actigraphic sleep characteriza-
tion, yielding a specificity of 59% relative to a specificity of 41%
for the original wrist actigraphy data. The study population was
comprised of individuals attending a sleep clinic, most of whom
had presumed sleep disorders. Our results suggest that spline-
modified sleep scores may help improve the use of wrist
actigraphy for sleep characterization among those with clini-
cally referable sleep disruption.

Further refinement of the spline regression sleep estimation
procedures used in this study may provide more favorable
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agreement with PSG scores. Examination of the original actigra-
phy data indicated that peak activity did not necessarily corre-
spond with median wakefulness episodes recorded via PSG.
Once inflation and spline regression were applied, the bouts of
wakefulness for the actigraphy were slightly shifted compared to
those from PSG. An additional factor that would adjust for these
shifts when implementing spline regression may enhance the
ability of this method to evaluate actigraphy data from different
devices and manufacturers. Implementation of spline regression
separately among patients with different types of sleep disorders
may provide some additional benefit.
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