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Abstract
We investigated the variation in plant response in host-pathogen interactions between wild

(Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) andWheat dwarf
virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in

the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from

a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the

wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We

studied whether the strong selection during these evolutionary processes, leading to genet-

ic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition,

we investigated whether putative fluctuations in intensity of selection imposed on the host-

pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hy-

potheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly

involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis,

different growth traits and WDV content. The plants were exposed to viruliferous leafhop-

pers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We

found three different plant response patterns: i) continuous reduction in growth over time, ii)
weak response at an early stage of plant development but a much stronger response at a

later stage, and iii) remission of symptoms over time. Variation in susceptibility may be ex-

plained by differences in the intensity of natural selection, shaping the coevolutionary inter-

action between WDV and the wild relatives. However, genetic bottlenecks during wheat

evolution have not had a strong impact on WDV resistance. Further, this study indicates

that the variation in susceptibility may be associated with the genome type and that the an-

cestor Ae. tauschiimay be useful as genetic resource for the improvement of WDV resis-

tance in wheat.
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Introduction
Wild plant populations are constantly influenced by abiotic and biotic factors. The biotic
stresses caused by pathogenic infestations exert a selective pressure on the evolution of defense
mechanisms in host plants. The selective forces act mutually and the plant defense triggers a re-
sponse in the colonizing pathogens. An arms race between the development of virulence in the
pathogen and resistance in the host plant evolves. The strong selection imposed upon the other
partner in the pathogen-host plant interaction will shape the genetic diversity and evolution of
both organisms. The arms race may reach a stable, balanced polymorphism in the host plant-
pathogen interaction if there is a negative frequency-dependent selection on the plant, the
pathogen or both [1]. This means that when a phenotype such as resistance or virulence is rare
in the population, the phenotype is relatively favored by natural selection but when it becomes
more common, the fitness decreases and the interaction has reached an equilibrium.

The domesticated crops are often highly susceptible to many pathogens [2–4], whereas the
wild crop relatives may be resistant to the same pathogens. The susceptibility in crops may be a
consequence of a lack of selection for disease resistance during domestication. Other traits
such as increased seed size, increased apical dominance, suppression of natural seed dispersal,
loss of seed dormancy and synchronized growth seem to have been favored by the ancient
farmers in seed crops and selected from the standing genetic variation in wild crop ancestors
[5–7]. Due to early agricultural practices where farmers selectively collected seeds from plants
with desirable traits and planted them in their fields, the phenotype of the plants changed over
time and much of the genetic diversity was unconsciously left behind in the wild populations.
Thus, the genetic bottleneck caused by domestication may have hampered the arms race be-
tween the pathogen and the crop, and instead increased the susceptibility in the host. Disease
resistance is also widespread in natural plant populations [8] and references therein]. However,
diversity of susceptibility and resistance occur both within and among populations as a result
of trade-offs (cost of resistance and virulence) and/or spatial variation in intensity of selection
in coevolutionary plant-pathogen interactions [9]. By evaluating a number of plant-pathogen
interaction studies, Laine et al. [8] found that the diversity in resistance provided a higher pro-
tection against pathogens at the population level.

For a better understanding of the response to pathogen infections in crops and their wild
relatives as well as the effects of crop domestication on the pathogen resistance we are studying
the response in wild and domesticated wheat toWheat dwarf virus (WDV, family Geminiviri-
dae, genusMastrevirus).

Bread wheat (Triticum aestivum ssp. aestivum) is susceptible toWDV and no highly resistant
cultivar is known. However, variation in susceptibility has been found among cultivars [10–13],
and recently two Hungarian winter wheat cultivars were found to display partial resistance to
WDV [14]. WDV disease outbreaks may occur periodically and cause yield losses in most of Eu-
rope and in parts of Africa and Asia [14,15]. Recently, WDV has also been detected in Syria [16]
and in Iran [17]. The incidence of WDV disease in Swedish bread wheat fields can be up to 90%
in severe cases [12]. Like many other geminiviruses WDV causes severe symptoms on host
plants including dwarfing, tufting, streaks of leaf chlorosis, and reduced number of spikes that
are often sterile and stunted [18]. The virus is transmitted by the leafhopper vector Psammotettix
alienus (family Cicadellidae). However, virus-free P. alienus feeding on wheat plants does not
cause any visible symptoms [19]. The primary spread of WDV to winter wheat takes place in au-
tumn, when the adult leafhoppers migrate into newly sown fields. P. alienus completes two to
three generations per year. In central Sweden the first adult generation appears in June-July and
the second one in August-September [12]. The leafhoppers overwinter as eggs and the first gen-
eration of nymphs appears in May. WDV is not transmitted to the eggs and the nymphs of the

WDV Susceptibility in Wild and Domesticated Wheat

PLOS ONE | DOI:10.1371/journal.pone.0121580 April 2, 2015 2 / 24



first instar [20]. WDVmay be considered as a grass generalist pathogen since its host range en-
compasses not only wheat but also several wild grasses and other cereals such as barley, oat and
rye [18]. For infection of wheat, wild grasses are of less importance as primary sources compared
to cultivated wheat. However, the grasses growing in vicinity to cultivated cereal fields may act as
reservoirs of WDV [21].

WDV has a genome of single-stranded circular DNA [22,23]. Five strains of WDV have
been described, WDV-A to WDV-E [23]. Wheat-infecting isolates of WDV are usually unable
to infect barley and the other way around [24–26]. Most of the WDV isolates from wheat be-
long to the strain WDV-E, which has a very wide geographic distribution throughout Europe
and Asia and with isolates sharing a high genome sequence identity [21,23,25]. However, based
on wheat-infecting isolates of WDV a high genetic diversity has been found to be concentrated
in some regions of the WDV genome including introns, short and long intergenic regions and
the coding region of the replication-association protein Rep A [27]. Interestingly, it has been
shown in maize streak virus (Mastrevirus) that single nucleotide mutations can lead to major
changes in severity of symptoms and host range [28,29]. Presence of genetic variation both
within the virus and the host plants is fundamental for their coevolutionary relationship. More-
over, evidence has been found for a correlation between cereal host divergence times (Triticum,
Hordeum and Aveneae) and WDV divergence times, indicating coevolutionary arms race be-
tween the virus and the host plants [27].

WDV is transmitted to the wheat plants by the leafhopper in a persistent manner [19,30].
The virus is mixed with the saliva of the nymph or the adult leafhopper and is inserted to the
phloem fluid when the leafhopper is penetrating the plant tissues with its stylet for feeding
[31]. In non-immune plants, viruses move with the phloem stream first to the young leaves
and root tips, and then to the older parts, until the plant is systematically infected [32]. The re-
sponse of the plant is not only dependent on its genotype but also on the age of the plant when
it is infected. As the wheat plants grow they gradually acquire resistance to the WDV and when
the plant has developed its first node on the stem it has acquired mature resistance [33].

Wheat is one of many crops with origin in the Fertile Crescent in Western Asia (Asian part
of Turkey, Syria, Lebanon, Israel, Jordan, Iraq and western Iran [34–36]. The first two domesti-
cated forms of wheat were diploid einkorn T.monococcum ssp.monococcum, derived from its
wild form T.monococcum ssp. boeticum, and the cultivated tetraploid emmer wheat, T. turgi-
dum ssp. dicoccon derived from wild emmer wheat T. turgidum ssp. dicoccoides (Fig 1). South
Eastern Turkey is supposed to be the domestication site of einkorn and emmer wheat [34,37].
The wild emmer underwent previous to its domestication hybridization and polyploidization
between two diploids: the A genome donor Triticum urartu [38,39] and the suggested B ge-
nome donor Aegilops speltoides [40,41] (Fig 1). The tetraploid cultivated emmer wheat migrat-
ed eastward and hybridized with the wild diploid Ae. tauschii, the D genome donor [42] and
formed the first hexaploid wheat carrying the A, B and D genomes [36]. Whether the first
hexaploid wheat was a hulled or free-threshing form has been discussed and additional models
for the evolution of hexaploid wheat are presented. In a new model, Dvorák et al. [43] proposed
that the ancestral hexaploid wheat was hulled and resulted from a cross between a free-thresh-
ing tetraploid wheat, not hulled cultivated emmer wheat, and the strangulata subspecies of Ae.
tauschii. Through a mutation in the Tg locus, which controls glume tenacity, the ancestral
hexaploid wheat evolved into a free-threshing form. In addition to this evolutionary model,
spelt is derived from a hybridization between a free-threshing hexaploid wheat and hulled tet-
raploid emmer wheat.

Besides the domestication process other bottlenecks created by the natural hybridization
and polyploidization events in wheat evolution have reduced the genetic diversity of the ances-
tral genomes in cultivated wheat [47,48].
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Like all domesticated wheat taxa, their wild relatives, Aegilops spp. (22 species), Triticum
spp. (4 species) and Amblyopyrum muticum, are annuals. The wild relatives carry different ge-
nomes defined as A, B, C, D, G, M, N, S, T, and U types, and have three different ploidy levels
(diploid, tetraploid and hexaploid; [44,49]). They are distributed along the Euro-Asian axis
from the Mediterranean region into China and the largest species diversity of wild wheat rela-
tives is found in Western Asia in the Fertile Crescent region [44,50,51] (Fig 2). The wild rela-
tives are adapted to a wide variety of habitats growing at 400 m.a.s.l. up to 2700 m.a.s.l. and
with different annual rainfall varying from 75 to 1400 mm per year [51]. They show high diver-
sity in morphological traits such as plant height, tiller number and spike length, and physiolog-
ical traits such as number of days to heading [52].

The early diploid Aegilops species have most likely originated in Transcaucasia like the first
hexaploid wheat [50,51]. Most Aegilops spread to the west except the species carrying the D-

Fig 1. Studied species and their role in the evolutionary history of bread wheat. The figure is based on information described in Zohary et al. [36], Kilian
et al. [44], Chantret et al. [45] and Peng et al. [46]. Genome type and ploidy level are given in brackets, LIGHT GREY = wild species, GREY = domesticated
wheat. Dashed lines show the most accepted model of the origin of hexaploid wheat where the ancestral species are tetraploid emmer wheat (Triticum
turgidum ssp. dicoccon) and Aegilops tauschii. A more recent model is described in Dvorak et al. [43].

doi:10.1371/journal.pone.0121580.g001
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genome which spread into Eastern Asia [36,51]. The distribution of wild relatives in the Fertile
Crescent partly overlaps with regions where WDV has been detected in Turkey, Syria and Iran
[15–17].

The wild relatives of the Aegilops genus carry many genes of resistance to fungi and other
pathogens and have been used as genetic sources for improvement of rust and powdery mildew
resistance in bread wheat ([53] and references therein). In addition, variation in resistance has
also been found in Ae. tauschii and T.monococcum to Soil-borne wheat mosaic virus
(SBWMV) [54–56] and in Ae. geniculata to Barley yellow dwarf virus (BYDV) [57]. It has also
been shown that the Aegilops species Ae. caudata, Ae. ovata and Ae. triuncialis responded with
a milder form of symptoms to WDV infection in comparison to spring wheat [18].

The host-pathogen system involving both wild and domesticated wheat provides a unique
opportunity to investigate the effect of crop evolution on pathogen resistance. The overlap of
the distribution of wild wheat relatives and WDV over a large geographical scale in the Fertile
Crescent and adjacent areas suggests that the virus and the wild wheat populations are interact-
ing and co-evolving. The intensity of selection may vary across sites and in time, which have
been seen in a wide range of species interactions ([58] and references therein). Among several
factors, the virulence of WDV, the population density of the vector, and the physical environ-
ment (temperature) may strengthen or weaken the selection locally. We therefore hypothesize
that there is a genetic variation in susceptibility to WDV among wild wheat relatives in the Fer-
tile Crescent region. We are also testing the hypothesis that the domestication and human se-
lection, and other genetic bottlenecks during wheat evolution such as natural hybridization
and polyploidization events have had a negative impact on the resistance to WDV.

To test our hypotheses we studied the response of one accession each of thirteen wild wheat
relatives and five domesticated wheat taxa when exposed to WDV-carrying leafhoppers
(Table 1, S1 Table). These accessions are from the Fertile Crescent and adjacent areas (Fig 2).

Fig 2. Collection sites of wild and domesticated wheat. ● = Aegilops, Amblyopyrum and Triticum accessions, except spelt and the winter wheat cultivar
Tarso, based on SINGER data base, 2009, species richness of Aegilops and Triticum based on information in Zohary et al. [36] and Van Slageren [51];
LIGHT GREEN = 1–5 species, GREEN = 6–10 species, DARK GREEN =>10 species.

doi:10.1371/journal.pone.0121580.g002
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The different taxa have had a direct or indirect role in the evolution of wheat (Fig 1). Interest-
ingly, when the plants were evaluated for various traits associated with WDV resistance, we
found three different response patterns. The variation in response was, however, not associated
with whether the plants were domesticated or wild. Thus, our findings do not support the as-
sumption that evolutionary processes such as natural hybridization followed by polyploidiza-
tion and domestication have had an influence on the resistance to WDV in wheat. Instead the
variation in susceptibility found in this study may be explained by differences in intensity of
natural selection in different geographical areas, shaping the coevolutionary interaction be-
tween WDV and the wild wheat relatives in the Fertile Crescent and adjacent areas.

Materials and Methods
Thirteen wild and five domesticated wheat taxa were used (Fig 1). They were selected based on
their direct or indirect role in the evolution history of wheat [36,45,46] and the co-occurrence
with WDVmainly within the Fertile Crescent and adjacent areas. The wild relatives included
Amblyopyrum muticum, nine Aegilops species and three Triticum species. These species have
different genome types and ploidy levels. The domesticated wheat taxa were the diploid culti-
vated einkorn, the tetraploids cultivated emmer and durum, and the hexaploids spelta and
bread wheat. Seeds of these taxa, except the bread wheat cultivar, were provided by the Interna-
tional Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. One

Table 1. WDV content in exposed plants within each species the wild and domesticated groups.

Species Mean 95% CIa

Aegilops comosa 0.90 0.35

Aegilops cylindrical 1.15 0.28

Aegilops juvenalis 1.25 0.23

Aegilops searsii 0.83 0.23

Aegilops sharonensis 1.06 0.18

Aegilops speltoides 0.85 0.33

Aegilops tauschii 0.88 0.17

Aegilops triuncialis 0.77 0.15

Aegilops umbellulata 0.57 0.24

Amblyopyrum muticum 1.29 0.38

Wild einkorn 1.24 0.38

Wild emmer 0.95 0.39

Triticum urartu 1.09 0.16

Bread wheat 1.06 0.50

Spelt wheat 1.83 0.39

Einkorn wheat 1.31 0.30

Emmer wheat 1.65 0.28

Durum wheat 1.13 0.54

Wild-domesticated status

Domesticated 1.41 0.14

Wild 0.99 0.06

Controls

Positive (WDV infected source plant) 1.90 0.33

WDV content is measured as the absorbance at 405 nm using DAS-ELISA.
a95% confidence interval.

doi:10.1371/journal.pone.0121580.t001
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accession of each taxon was studied. Their accession numbers and origins are given in S1
Table. The winter wheat cultivar Tarso is derived from crosses between the winter wheat culti-
var Taras and the breeding line Hadmerslebener 13313–80 and was released commercially by
the breeding company Lantmännen SW Seed AB in 1994.

Wheat dwarf virus
TheWDV sources used for inoculation in our study originate both from infected bread wheat
plants and the leafhopper vector P. alienus. These WDV sources were collected in three wheat
fields in central Sweden (N 60.0022, E 17.5383; N 59.8384, E 17.7914; N 59.7031, E 17.6994).
Sequence analyses of complete genomes have verified that the WDV isolates in this culture are
closely related to the WDV isolates previously identified in Sweden and belong to strain
WDV-E [59].

Vector
The leafhopper vectors were collected using sweep nets in June and July 2010. The species iden-
tification was done using 10 x magnifier glasses. P. alienus leafhoppers were reared in nylon
mesh covered cages (17 cm x 13 cm x13 cm) on wheat source plants not used in the trial. The
plants were grown in ordinary potting soil (Weibulls Horto AB) and the cages were kept in a
greenhouse with 16/8 hrs day/night photoperiod and 20/18°C day/night temperature. The first
generation of source plants was collected in WDV affected wheat fields and was confirmed by
double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA, see below) to
contain the virus. New healthy wheat plants grown from seeds were regularly replacing old in-
fected ones inside the cages. The new plants were infected by viruliferous leafhoppers and in
turn newly hatched and virus-free nymphs acquired WDV from infected wheat plants while
feeding on them. This regenerating host-vector-virus system was successfully developed and a
population size of several hundred leafhoppers has been maintained since 2009.

Exposure to viruliferous leafhoppers
Seeds of the different accessions were sown in a mixture of ordinary potting soil (Weibulls
Horto AB) and sand of 0.5 mm grain size (Rådasand AB, 1:5 proportions) in a growth chamber
with 16/8 hrs day/night photoperiod and 22/20°C day/night temperature. When the plants
reached the 2nd leaf stage they were transferred to 2L pots with the same mixture of potting soil
and sand and placed in a greenhouse (16/8 hrs day/night photoperiod and 20/18°C day/night
temperature). One plant was placed inside a cage (17 cm x 13 cm x 13 cm) covered by nylon
fabric with fine mesh avoiding the escape of leafhoppers. When the plants were at the 3rd leaf
stage, three nymphs and two adult leafhoppers were transferred to each of the exposed plants
by aspirators (insect-collecting tool). After seven days we removed the insects from the cages
using the same tool. To make sure that all insects were removed the plants were also treated by
the insecticides Pirimor and Confidor (Imidacloprid) at the same time as the cages were dis-
mantled. The number of living insects in each cage was counted in the middle of the inocula-
tion period and if necessary additional insects were transferred to keep the number of insects
the same for each exposed plant. Prior to the experiment the nymphs and adult leafhoppers
were feeding on infected wheat source plants for a minimum of three days to acquire WDV.
These plants were confirmed to carry a high level of WDV using DAS-ELISA.
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Block trial
The plants were grown in a complete randomized block design with 6 blocks. Each block con-
sisted of two plants of each of the 18 accessions. One of the two plants was exposed to virulifer-
ous leafhoppers for seven days as described above, while the other plant of the same accession
was not. We randomized the exposed and non-exposed plants of the 18 accessions in each
block using the software Research Randomizer (www.randomizer.org). The randomization of
accessions and treatments in each of the six blocks enabled us to estimate the block effect and
also to reduce the environmental effect on the variation of the studied phenotypes among
accessions.

Evaluated traits
The exposed and non-exposed plants were studied for four traits associated with response to
WDV infection. We measured the plant height (base of the stem to the leaf tip of the longest
leaf), the total number of tillers, total number of leaves, and percentage of leaf chlorosis (ratio
of chlorotic leaves and total number of leaves) 28 days after the end of the exposure to virulifer-
ous leafhopper. A leaf was considered chlorotic if at least 50% of the leaf was yellow. Investigat-
ing all leaves on each plant for chlorosis made it possible to assess the whole plant response to
WDV infection. The number of tillers and leaves were also measured at a second date, 98 and
112 days after the end of exposure. From now on, we refer to 28 dpi (days after post-inocula-
tion) as the first time point, and 98 dpi and 112 dpi as the second time point for analysis of the
different traits. At harvest, 16 weeks after the start of the experiment (112 dpi), each plant was
checked for survival (scored as 0 = dead or 1 = alive). A plant was considered dead when most
of the leaves where necrotic and/or wilted.

As the study comprised accessions from both wild and domesticated taxa with different
ploidy level, genome types and degrees of relatedness, variation in the constitutive develop-
mental patterns and morphology was expected. We have therefore chosen to compare the per-
formance of each accession in both exposed and non-exposed control conditions. The
response was measured both as the absolute reduction

�xc � �xe ¼
1

n

Xn

i¼1
�xc � xið Þ ð1Þ

and as the proportional reduction

�xc � �xe
�xc

¼ 1

n

Xn

i¼1
�xc � xið Þ=�xc ð2Þ

between the two treatments for each trait, where�xc is the average in the non-exposed control
condition,�xe the average in the exposed condition and xi the value for the exposed individual
i. It is very important to distinguish between the two viewpoints since they can give very differ-
ent results. For example, an accession may have a small absolute reduction in leaf number rela-
tive to other accessions, indicating a weak response to WDV. However, the same accession
might show a larger proportional reduction for the same trait due to a small number of leaves
formed in the control condition as seen for example in einkorn wheat for leaf number at 112
dpi and Am.muticum for shoot dry weight (Fig 3).

ELISA
Virus infection of the exposed and non-exposed plants was analyzed by DAS-ELISA. This
method has become the standard for detection and quantification of virus content in large
number of samples, especially in agricultural crops. We sampled young leaves from all exposed
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Fig 3. Plant response in wild and domesticated species. BLUE = Mean values and 95% confidence interval (CI) of non-exposed, and RED = exposed
plants, GREEN = absolute reduction, PURPLE = proportional reduction of the Aegilops and Triticum taxa for the studied traits. Pairwise comparison (t-test)
between non-exposed and exposed plants with Bonferroni correction. dpi refers to days after the end of exposure to viruliferous leafhoppers. * = p<0.05, N.
S. = no significance, aMean = -39.8%, 95% CI = 44.0, bMean = -75.0%, 95%CI = 65.7%. cNo surviving plants.

doi:10.1371/journal.pone.0121580.g003
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and non-exposed plants at 28 dpi. Virus content was not analyzed at the later growth stage at
98 and 112 dpi due to large differences in plant morphology among wild and domesticated ac-
cessions and thereby difficulties in identifying the youngest leaves. Leaves sampled at 28 dpi
were kept at -20°C prior to the testing for WDV infection. The plant sap was extracted from 50
mg leaf tissue in 400 μl phosphate buffer (pH 7.4). The samples were diluted 20 times in extrac-
tion buffer and analyzed by DAS-ELISA according to Loewe Biochemica GmbH protocol No.
07082 [60]. The plant sap samples were applied onto 96-well microplates of Microlon 600 type
and with flat bottoms (Greiner Bio-One) precoated with anti-WDV IgG. The samples were an-
alyzed at 405 nm wavelength in a Benchmark Microplate Reader (Bio-Rad) after 2 hours of in-
cubation with alkaline phosphatase-conjugated anti-WDV IgG and substrate. To verify
accuracy and comparison in the tests we included as positive controls 1:20 dilutions of plant
sap from aWDV infected bread wheat source plant. Moreover, we used 1:20 dilutions of sap
from the non-exposed plants in the trial, and samples only with extraction buffer as
negative controls.

Statistical analysis
Residuals for each trait were checked for deviations from normality. Traits with residuals show-
ing normal distribution were analyzed with a mixed proc model for two-way analysis of vari-
ance (ANOVA). Plant height, shoot dry weight, number of tillers at 28 dpi and 98 dpi, number
of leaves at 28 dpi and 112 dpi, and percentage of chlorosis showed normally distributed resid-
uals and were therefore analyzed with two-way ANOVA. However, only the absorbance values
for WDV content in the exposed plants showed normally distributed residuals and thus ana-
lyzed with one-way ANOVA. In addition, difference in mortality, showing binominal distribu-
tion, was analyzed by Chi-square test. The plants were grouped in two ways, according to 1)
species and 2) whether they are wild or domesticated accessions. These two groups were ana-
lyzed separately. We used block as a random factor, and species, wild-domesticated status and
treatment (exposed or non-exposed) as fixed factors. We analyzed the following interactions:
species, treatment and block, and wild-domesticated status, treatment and block. A t-test was
used for pairwise comparisons between the two treatments in each species and correlation
among traits was analyzed by simple linear regression. These analyses were done with the sta-
tistical software JMP ver. 9 (SAS Institute Inc., Cary, NC, USA).

Results

WDV content
In DAS-ELISA tests, the non-exposed plants for all accessions showed low absorbance values
(mean = 0.125, 95% CI = 0.002). All plants exposed to viruliferous leafhoppers, except one rep-
licate of Ae. umbellulata, showed at least twice the absorbance value of the negative control and
the non-exposed plants of the corresponding species. These plants were considered positive
and infected by WDV. Significant difference in absorbance values for infected plants was
found among species (p<0.0001, one-way ANOVA). Ae. umbellulata showed the lowest mean
value (one negative sample excluded), while the domesticated spelt and emmer wheat had the
highest WDV content (Table 1).

Based on pairwise comparisons of infected plants between species the domesticated spelt
wheat had significantly higher mean absorbance value than seven of the wild species (Tukey’s
HSD test, S2 Table). Comparing the wild and domesticated groups a significant difference in
mean absorbance value between the groups (p<0.05, t-test) was found, and the mean value
was higher in the domesticated group (Table 1).
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Trait variation among non-exposed plants
The non-exposed plants showed a large variation among species for all growth traits (Fig 3).
The wild species had a significantly lower plant height and shoot dry weight, but a higher num-
ber of tillers and leaves for both time points than the domesticated taxa (p<0.05, t-test for all
traits, Fig 4). We found also a significant block effect for number of tillers at 28 dpi and number
of leaves at 28 dpi (p<0.05, one-way ANOVA), showing a variation of non-exposed plants
within accessions. This variation could be a result of environmental variation in the greenhouse
and/or the genetic variation within the accessions since the wild accessions, in particular, may
not have gone through many generations of selfing. However, no significant block effect was
found for exposed plants.

Effect of treatment
Treatment had a significant effect on all traits (Table 2). The exposed plants showed signifi-
cantly lower plant height, shoot dry weight and leaf and tiller number at the different time
points than the virus-free plants within the domesticated and wild plant groups (Fig 4). The ex-
posed plants within the wild group had also higher percentage of leaf chlorosis, while the ex-
posed and non-exposed domesticated plants were not significantly different. However,
pairwise comparisons between exposed and non-exposed plants within each species showed
non-significant differences for several species (Fig 3). Most domesticated species showed non-
significant differences for percentage of leaf chlorosis and number of leaves and tillers at the
two time points, while a larger variation in response was found among the wild species. The
mortality was significantly higher in the exposed plants than in the non-exposed plants
(Table 3; p<0.05, χ2-test,). However, only half of the species was affected. Notable is that all ex-
posed plants of T. urartu and cultivated emmer died before the harvest at 112 dpi. Also Ae.
juvenalis and wild einkorn showed high mortality. No significant difference was found in mor-
tality between the domesticated and wild groups (p<0.58, χ2-test).

Variation in response
To determine if there is a variation in susceptibility and resistance to WDV among species as
well as the domesticated and wild status groups, we were also focusing on the treatment x spe-
cies interactions and the treatment x domesticated/wild status. Both the treatment x species
and the treatment x domesticated/wild status interactions had significant effect on shoot dry
weight, number of tillers at 28 and 98 dpi, number of leaves at 28 dpi, and percentage of chlo-
rotic leaves (Table 2), showing that the species differed in the response to WDV infection. In
addition, significant effect was found in the treatment x species interaction for number of
leaves at 112 dpi, while no effect was found in the treatment x domesticated/wild status interac-
tions. The variation in response among species is supported by the above pairwise comparisons
between treatments. However, all taxa responded in a similar way regarding plant height since
no significant interaction was found between treatment x species or between treatment x do-
mesticated/wild status.

Leaf chlorosis. Surprisingly, cultivated spelt and emmer wheat showed a lower percentage
of chlorotic leaves in the WDV infected plants compared to the non-infected (Fig 3). All other
species showed an increase in chlorosis. However, the increase was least severe in Ae. juvenalis
and wild emmer and the bread wheat cultivar Tarso. The highest increase in chlorosis was
found in the wild Ae. sharonensis and Ae. searsii. The wild plant group showed a significantly
larger increase in percentage of chlorotic leaves in the infected plants compared to the domesti-
cated group (p<0.05, t-test; Fig 4).
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Fig 4. Plant response in the wild and domesticated groups. BLUE = Mean values and 95% confidence interval (CI) of non-exposed, and RED = exposed
plants, GREEN = absolute reduction, PURPLE = proportional reduction of the wild and domesticated groups for the studied traits. Pairwise comparison (t-
test) between non-exposed and exposed plants with Bonferroni correction. dpi refers to days after the end of exposure to viruliferous leafhoppers. * =
p<0.05, N.S. = no significance.

doi:10.1371/journal.pone.0121580.g004
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Leaf number at 28 dpi. The leaf number in cultivated emmer and its ancestor wild emmer
wheat was not negatively affected by the WDV infection considering both the absolute and
proportional reduction (Fig 3). The WDV infection had also a minor effect on cultivated spelt
and the bread wheat cultivar Tarso. The highest proportional reduction was found in three
wild species T. urartu, Ae. triuncialis and Ae. searsii. In fact, the absolute and proportional re-
ductions in leaf number were most severe in the wild plant group (p<0.05, t-test; Fig 4).

Leaf number at 112 dpi. As expected most species were more severely affected at 112 dpi
compared to 28 days (Fig 3). In fact, all plants of T. urartu and cultivated emmer wheat showed
a very slow and stunted growth and died before 112 dpi. However, interestingly, the exposed
plants of spelt showed an increase in leaf number. WDV infection had also a relatively small ef-
fect on Ae. tauschii and Ae. juvenalis. Ae. triuncialis and Ae. searsii, which were among the
most severely affected species at 28 dpi, differed in response at 112 dpi. Ae. searsii showed a
milder response to WDV at 112 dpi than at 28 dpi, while Ae. triuncialis had a high absolute
and proportional reduction also at 112 dpi. The wild plant group showed a higher absolute re-
duction also at 112 dpi than the domesticated plants (p<0.05, t-test; Fig 4). The proportional
reduction was, however, about the same in both groups.

Tiller number at 28 dpi. We found the largest proportional reduction in tiller number at
28 dpi in the wild species Ae. searsii, Ae. cylindrica, T. urartu, and the wild einkorn (Fig 3). In
addition, Ae. cylindrica and Ae. triuncalis showed a large absolute reduction. Wild emmer, the

Table 2. Two-way ANOVA results showing the effects of treatment (exposed or non-exposed), species and their interactions as well as the effect
of treatment, wild/domesticated status and their interactions on the studied traits.

Trait Source F Source F

Plant height (28 dpi) Treatment 341.3*** Treatment 71.8***

Species 23.7*** Wild/domesticated 15.9***

Treatment x species 1.5 Treatment x wild/domesticated 0.0

Leaf chlorosis (28 dpi) Treatment 74.8*** Treatment 22.9***

Species 4.7*** Wild/domesticated 5.8*

Treatment x species 2.8*** Treatment x wild/domesticated 10.9**

Number of leaves (28 dpi) Treatment 92.1*** Treatment 29.4***

Species 9.5*** Wild/domesticated 13.8***

Treatment x species 2.9*** Treatment x wild/domesticated 6.1*

Number of tillers (28 dpi) Treatment 91.8*** Treatment 28.0***

Species 11.9*** Wild/domesticated 29.9***

Treatment x species 2.5** Treatment x wild/domesticated 6.5*

Number of leaves (112 dpi)a Treatment 63.0*** Treatment 13.1***

Species 20.0*** Wild/domesticated 28.5***

Treatment x species 4.7*** Treatment x wild/domesticated 3.3

Number of tillers (98 dpi)a Treatment 110.2*** Treatment 21.1***

Species 24.5*** Wild/domesticated 35.2***

Treatment x species 7.4*** Treatment x wild/domesticated 5.5*

Shoot dry weight (112 dpi)a Treatment 236.1*** Treatment 74.6***

Species 29.8*** Wild/domesticated 10.9**

Treatment x species 9.9*** Treatment x wild/domesticated 4.2*

aDead plants were not included in the analysis.

* = p<0.05,

** = p<0.01,

*** = p<0.001.

doi:10.1371/journal.pone.0121580.t002
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bread wheat cultivar Tarso and spelt wheat had the lowest absolute and proportional
reduction.

Tiller number at 98 dpi. Interestingly, the exposed plants of spelt showed a notable in-
crease in tiller number (Fig 3). Considering both the absolute and the proportional reduction
in tillers the wild species Ae. tauschii and Ae. searsii showed the weakest response. Based on the
proportional reduction, Ae. umbellulata was among the most affected species. Ae. umbellulata
showed also a large absolute reduction together with Ae. triuncalis. The domesticated plant
group had significantly lower absolute reduction compared to the wild plants at both time
points (p<0.05, t-test; Fig 4). However, the two groups did not differ significantly in the pro-
portional reduction. The difference between the result of the absolute and proportional reduc-
tions is most likely due to the large difference in the total number of leaves between the wild
and domesticated plants.

Shoot dry weight. The proportional reduction in shoot dry weight was less than 50% in
Ae. tauschii and Ae. cylindrica, while all the other accessions showed a reduction between 53%
to 83% (Fig 3). Shoot dry weight of T. urartu and cultivated emmer was not analyzed since all
plants of both species died before 112 dpi. The change in absolute values was noticeably large
in the wild Ae. triuncalis and cultivated einkorn. The absolute reduction was significantly
higher in the domesticated plant group (p<0.05, t-test; Fig 4). No significant difference in the
proportional reduction in shoot dry weight was shown between the two groups.

No correlation between response to WDV and growth habit. The variation in response
to WDVmeasured both as absolute and proportional reduction was independent of the varia-
tion among species in the non-exposed condition for all traits studied (R2<0.16 for each of the
studied traits). This indicates that the response measured as the absolute and proportional re-
duction is independent of the growth habit of the species under non-exposed condition.

Table 3. Plant mortality rate at 112 days after the end of exposure to virouferious leafhoppers.

Species Treatment

Exposed Non-exposed

Aegilops comosa 0.00 0.00

Aegilops cylindrica 0.00 0.00

Aegilops juvenalis 0.67 0.17

Aegilops searsii 0.33 0.00

Aegilops sharonensis 0.00 0.00

Aegilops speltoides 0.00 0.00

Aegilops tauschii 0.00 0.00

Aegilops triuncialis 0.00 0.00

Aegilops umbellulata 0.33 0.00

Amblyopyrum muticum 0.50 0.17

Wild einkorn 0.67 0.00

Triticum urartu 1.00 0.00

Wild emmer 0.00 0.00

Einkorn wheat 0.00 0.00

Bread wheat 0.17 0.00

Spelt wheat 0.17 0.00

Emmer wheat 1.00 0.00

Durum wheat 0.50 0.00

doi:10.1371/journal.pone.0121580.t003
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Variation in response over time. Comparing the different time points the response pat-
tern in leaf number differed among species (Table 4, Fig 3 and 5). For example, the WDV infec-
tion had no effect on cultivated emmer at 28 dpi, whereas all emmer plants were dead at 112
dpi (Table 3). In addition, the exposed plants of wild emmer showed a small increase in leaf
number at the first measurement, but an almost 50% reduction 12 weeks later. On the contrary,
the Aegilops species such as Ae. tauschii and Ae. searsii showed a much less proportional reduc-
tion in leaf number at the second time point compared to the first. While WDV infection had a
small reduced effect on cultivated spelt, at 28 dpi spelt showed a striking increase in leaf pro-
duction at 112 dpi. Other species such as Ae. triuncialis and Ae. umbellulata were highly affect-
ed by the WDV infection at both time points.

As for the leaf number, we also observed a difference in response pattern in tiller number
between the two time points. Most notable is the much weaker response at 98 dpi compared to
28 dpi for Ae. tauschii and Ae. searsii. Even though the bread wheat cultivar Tarso and wild
emmer wheat were among the species with lowest proportional and absolute reduction in tiller
number at the first measurement, they were much more severely affected at 98 dpi. Ae. umbel-
lulata and wild einkorn showed a strong response to WDV at both time points.

Taking also chlorosis, plant height, shoot dry weight and mortality in consideration, culti-
vated spelt was among the least affected species for all studied traits and time points (Table 4).
In contrary, the wild species T. urartu, Ae. triuncialis, Ae. umbellulata and wild einkorn showed
a strong response. Interestingly, some of the wild species such as Ae. tauschii, Ae. searsii and
Ae. comosa were severely affected in most traits measured at the first time point, while they

Table 4. Ranking of the studied species based on their response toWDV infection.

Chlorosis(28 dpi) Height(28
dpi)

Leaves(28
dpi)

Tillers(28
dpi)

Leaves
(112 dpi)

Tillers(98
dpi)

Weight
(112 dpi)

Species A P A P A P A P A P A P A

Ae. comosa 9 9 4 13 13 14 9 7 8 4 7 3 2

Ae. cylindrica 16 8 9 15 15 15 18 4 11 5 10 2 7

Ae. juvenalis 4 16 13 6 6 5 10 2 2 12 11 4 8

Ae. searsii 18 14 8 16 16 18 16 6 4 3 2 6 1

Ae. sharonensis 17 17 18 8 8 9 7 10 14 10 14 12 13

Ae. speltoides 11 11 14 5 5 7 14 8 12 6 12 5 6

Ae. tauschii 10 7 10 14 14 13 15 3 3 2 3 1 3

Ae. triuncialis 7 2 2 18 18 10 17 13 16 13 16 13 15

Ae. umbellulata 14 5 1 12 12 12 12 15 15 16 15 9 9

Am. muticum 6 18 7 10 10 8 4 16 7 15 5 14 4

Wild einkorn 13 13 16 9 9 16 13 14 13 14 13 11 11

Wild emmer 5 10 15 1 1 1 1 9 10 9 9 15 14

Triticum urartu 15 4 6 17 17 17 11 -a -a -a -a -a -a

Bread wheat 3 12 12 4 4 2 2 5 6 8 8 8 9

Spelt wheat 1 3 5 3 3 3 3 1 1 1 1 7 5

Einkorn wheat 12 15 17 7 7 4 5 11 5 7 4 16 16

Emmer wheat 2 1 3 2 2 6 6 -a -a -a -a -a -a

Durum wheat 8 6 11 11 11 11 8 12 9 11 6 10 12

Number 1 signifies the species with the lowest proportional (P) or absolute (A) reduction and number 18 the species with the largest reduction for each

trait. dpi refers to the end of the exposure time to viruliferous leafhoppers.

doi:10.1371/journal.pone.0121580.t004
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were among the least affected species at the later measurements. The bread wheat cultivar
Tarso, showed a different level of response for various traits and time points.

Correlation between traits, and between traits and ELISA-values. Based on simple linear
regression we found strong positive correlation between number of tillers at 98 dpi and leaves
at 112 dpi considering both exposed and non-exposed plants together (S3 Table). A strong pos-
itive correlation was also found when the exposed and non-exposed plants were analyzed sepa-
rately. The same traits also showed a positive correlation at 28 dpi, although weaker, for all the
three plant groups analyzed (all plants, exposed plants, and non-exposed plants). However, no
strong correlation was found between number of leaves and the other growth traits (height and
weight), or between the number of tillers and the two growth traits. Interestingly, there was no
evident correlation between any growth trait and ELISA-value. Moreover, chlorosis did not
correlate strongly with ELISA-value or any of the growth traits.

Discussion
Crops are constantly confronted with a wide variety of potential pathogens within their envi-
ronment. Cultivation of monocultures with genetically uniform plants in dense stands allowing
closer contact between plants and vectors has led to efficient transmission of pathogens and
evolution of more aggressive strains [61,62]. These strains cause substantial damage to crops
but our knowledge to prevent the pathogen infestations is often limited to the use of pesticides,
leading to environmental and ecological risks. Aiming for a sustainable agriculture, breeding
for disease resistant cultivars is an important component in the process. As strong selection
during crop domestication often resulted in loss of genetic diversity and traits not directly se-
lected for such as resistance to pest and diseases, the wild relatives may be the most useful or
only genetic sources for introgression of resistance into crops.

We have compared the variation in response to WDV infections in wild and domesticated
wheat taxa to test whether the interaction between wild wheat relatives and the virus has co-
evolved under divergent intensity of selection and led to varying degrees of susceptibility in the
host plants. We have also investigated if the genetic bottlenecks created by natural

Fig 5. Proportional reduction of leaf and tiller number between non-exposed and exposed plants of wild and domesticated speciesmeasured at
two time points. All exposed plants of T. urartu and cultivated emmer were dead at the second time point and not included in the figure.

doi:10.1371/journal.pone.0121580.g005
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hybridization and polyploidization followed by the domestication process have resulted in a
loss of resistance to WDV in wheat.

Aiming to increase the understanding of the variation in response to WDV in an evolution-
ary history context, one accession of each of thirteen wild and five domesticated species directly
or indirectly involved in wheat evolution were selected rather than a larger number of acces-
sions within a few species. The large genetic diversity among the studied species, with different
genome type and ploidy level, and from different geographic locations, has most likely in-
creased the chances of variation in intensity of selection and strength of coevolution between
the virus and the host plants. The large diversity will therefore increase the ability to identify
genetic resources, which are critical for effective breeding programs. Because the within-species
variation has not been studied here our results may not be broadly applied to the species level.

We have chosen a number of different traits for the experimental study of symptomatic re-
sponse such as leaf chlorosis, plant height, shoot dry weight and leaf and tiller number. To our
knowledge this is the first study which has investigated the response to WDV infection in wild
and domesticated wheat by combining the analyses of leaf chlorosis, different growth traits and
WDV content. Chlorosis and reduced growth are commonly associated with WDV infection
in wheat and were therefore selected for the investigation of variation in response in wild and
domesticated wheat. These symptoms are caused by large changes in cellular and developmen-
tal processes in the host plants, but the genetic and cellular mechanisms behind these changes
are not well known. However, studies of geminiviruses have demonstrated that they interact
with different plant proteins leading to a transition from normal host growth processes to al-
tered metabolic pathways and defense responses ([63,64] and references therein). These pro-
teins are joined in different protein complexes. Some of these complexes are players in cellular
processes known as RNA silencing. This antiviral response restricts the accumulation and
movement of viruses within the plant. However, as a way to escape the RNA silencing defense
the viruses have evolved RNA silencing suppressor proteins (RSS). Several RSSs have been de-
scribed for geminiviruses [65], and recently two replication-associated proteins encoded by
WDV were shown to suppress the RNA silencing system [66,67]. The RSSs are not only in-
volved in antiviral defense, but are also affecting the growth and development of the plant by
interfering with cellular processes regulated by RNA silencing [63,68,69]. In another virus-
plant interaction it was recently shown that the coat protein of the Cucumber mosaic virus
(CMV; family Bromoviridae) and the encoded RNA silencing suppressor 2b protein repress
the expression of chloroplast and photosynthesis related genes [70]. This reduces the number
of chloroplast thylakoid membranes and causes chlorosis in CMV infected tobacco leaves. A
decrease of photosynthesis may in turn initiate respiration and other processes involved in the
host plant defense [71]. Callose deposition of saccharide callose at the plasmodesmata channels
in the cell walls is another defense response that restricts the cell-to-cell movement of viruses
within the plant [72]. At the same time the callose deposition may also delay photoassimilate
export from the infected leaves and restrict phloem transportation followed by chlorophyll
breakdown [73].

Large variation in symptomatic response among accessions
We found a large variation in response to WDV infection in the wild relatives of wheat in leaf
chlorosis as well as the different growth traits. The response ranged from increased growth, to
modest decrease of growth and no surviving plants. By combining the results from the various
traits and time points with the analysis of WDV content we were able to obtain a more com-
plete picture of the variation in response in the different wild and domesticated wheat taxa. In-
terestingly, the response also changed over time for some accessions, where the plants showed
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severe symptoms at an early developmental stage but milder symptoms at a later stage and con-
tinued to produce new leaves and tillers. We found three different plant response patterns over
time (Fig 5). Several of the accessions of the wild species such as Ae. umbellulata, Ae. triuncialis,
Am.muticum, wild einkorn and durum wheat showed a continuous reduction in the number
of tillers and leaves between the time points. The growth was also severely affected in T. urartu
and no plants were alive at the second time point. Other accessions such as bread wheat, wild
emmer and cultivated emmer wheat showed a weak response to the WDV infection at the first
time point but a much stronger response at the end of the experiment. In fact, all plants of cul-
tivated emmer wheat died before the end of the experiment. An opposite response was found
in the accessions Ae. tauschii, Ae. cylindrica and Ae. searsii, where the plants were severely af-
fected at the first measurement, but showed a relative increase in production of tillers and
leaves at the later time point. This increase in production over time was even more pronounced
in spelt wheat, where the number of leaves and tillers in exposed plants was higher in compari-
son with the production in the non-exposed plants. Increased growth of tillers has also been
observed in WDV infected winter wheat [19], and in BYDV infected oat and barley plants
grown in field trials [74,75]. It has been suggested that increased vegetative production in
BYDV infected oat is the result from reduced grain sink strength [76], and reallocation of host
resources [77,78]. Spike formation was noted in our study and a reduction in spike formation
was found in almost all accessions infected with WDV (S4 Table). However, the reduction was
not more prominent in the accessions with no or less affected growth of leaves and shoots such
as spelt wheat and Ae. tauschii. The data of the spike formation have to, however, be treated
with caution since some of the studied accessions, including winter bread wheat, may be ver-
nalization-sensitive, producing fewer spikes when the seedlings of these accessions have not
been exposed to lower temperatures.

The remission of symptoms found in several Aegilops species and spelt wheat has also been
observed in dicots infected with geminiviruses such as tobacco, cassava, Arabidopsis, pepper,
zucchini and melon [79–84]. These decreases of symptoms are associated with a reduction of
virus content triggered by the RNA silencing system. We observed medium to high levels of
virus content in all studied accessions at 28 dpi. Due to large differences in plant morphology
among wild and domesticated accessions and thereby difficulties in identifying the youngest
leaves the WDV content was not investigated at the later time point. Sampling of leaves of dif-
ferent ages would most likely have caused a bias in the analysis. We could therefore not investi-
gate if the decrease of symptoms in some Aegilops species was associated with a reduction in
virus content in the plants. Interestingly, in a preliminary study of a collection of Ae. tauschii
accessions kept at John Innes Centre, Norwich, UK, we observed a reduction of both symptoms
andWDV content in some accessions between two different developmental stages. However,
in the present study at 28 dpi the severity of symptoms in wild and domesticated wheat was
not correlated with the WDV content. Plants with high virus content did not necessarily show
strong reduction in growth or high levels of chlorosis. In fact, spelt wheat had the highest
WDV content but showed the mildest symptoms among accessions, which may indicate some
degree of tolerance against WDV. In addition, the remission of symptoms over time in Ae.
tauschii and some other Aegilops species may likewise indicate tolerance. On the other hand,
Ae. umbellulata and Ae. triuncialis showed very strong response in almost all traits even though
they had the lowest WDV content among the studied accessions.

The lack of correlation between WDV content and severity of symptoms in the different
Aegilops and Triticum species may at first be surprising as one may expect that the rate and ex-
tent of the virus amplification and movement within the plant will influence the severity of
symptoms. It has, however, been shown that even though the RSSs of plant-infecting viruses
are involved in the induction of symptoms, symptom severity and virus accumulation are not
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necessarily correlated [85,86]. The activity of the RSSs may have a stronger effect on the symp-
tomatic responses than the virus content in the plant and may be one of the explanations to the
lack of strong correlation between the severity of symptoms and WDV content in the Aegilops
and Triticum plants.

No impact of domestication onWDV resistance
To test the hypothesis that domestication and human selection have had a negative impact on
the resistance to WDV we compared the response between the two groups, domesticated
wheats and their wild relatives. We found no strong evidence that the domesticated wheats suf-
fered from more severe symptoms than the wild relatives. In fact, no significant difference in
proportional reduction was found between wild and domesticated wheats for chlorosis and all
growth traits except leaf number at dpi 28. These results suggest that the loss of genetic diversi-
ty expected by the domestication process and other bottlenecks such as natural hybridization
and polyploidization events during wheat evolution have not resulted in a general increase in
susceptibility to WDV infection. The reduced genetic diversity caused by these bottlenecks
may have been compensated by the hybridization of the different ancestral genomes followed
by duplication, resulting in new genetic diversity. In addition, the polyploid nature of tetraploid
and hexaploid wheats enables buffering capacity and greater robustness against gene muta-
tions. This allows for a rapid formation of new genetic variation and novel traits [35]. However,
the WDV content was significantly higher in the domesticated wheat group. This suggests that
the virus amplification and/or movement within the plants in the domesticated group are
higher than in the wild plant group. Virus encoded movement proteins (MPs) interact with
host proteins to promote virus movement within the plant. Different host proteins have been
identified at different subcellular locations and in different virus host-plant interactions ([63]
and references therein). In our study all plants have been infected with the sameWDV strain.
However, not much is known about host proteins interacting with plant virus MPs in grasses.
The domesticated and wild wheat species studied differs in genome type and ploidy level. If
this diverse plant material would harbor a variation in host proteins, one may ask if specific in-
teractions between WDV and plant proteins could explain the difference in WDV content
among the wild and domesticated species.

Conclusions
Our findings do not support the assumption that evolutionary processes such as natural hy-
bridization followed by polyploidization and domestication have had a strong influence on the
resistance to WDV in wheat. Instead other processes such as natural selection may have shaped
the coevolutionary interaction between WDV and the wild wheat relatives in the Fertile Cres-
cent and adjacent areas. The arms race involving differences in the intensity of selection im-
posed on the interaction between the virus and the different host plants has resulted in a
variation in response to WDV. Variation in virulence and host susceptibility among popula-
tions, geographical regions and related species will create what Thompson [87] has called geo-
graphic mosaics of coevolutionary hotspots with strong reciprocal selection and cold spots
with relaxed selection. These selection mosaics have been seen in a wide range of species inter-
actions [87]. The variation in susceptibility found among Aegilops and Triticum species is likely
caused by an evolutionary response to variation in selection pressure on the interacting organ-
isms—host plants, virus and insect vector—over time. The influence of the leafhopper vector
on the evolution of this interaction is not known. However, the population density of the vector
and its efficiency in transferring the virus to the different hosts may vary across sites and there-
by further affect the intensity of selection.

WDV Susceptibility in Wild and Domesticated Wheat

PLOS ONE | DOI:10.1371/journal.pone.0121580 April 2, 2015 19 / 24



Moreover, we found that the accessions of the A genome donor, T. urartu, the putative B ge-
nome donor Ae. speltoides and the D genome donor of bread wheat, Ae. tauschii, showed dif-
ferent patterns of response to WDV. Both infected T. urartu and Ae. speltoides plants had a
continuous reduction in growth, whereas Ae. tauschii displayed a remission of symptoms over
time. Even though our results may not be broadly applied to a species level since only one ac-
cession of each ancestral species have been studied, our findings indicate that the susceptibility
to WDVmay be associated with the genome type and that Ae. tauschiimay be useful as a ge-
netic resource for the improvement of resistance to WDV in bread wheat. From the viewpoint
of our results, we suggest further evaluation of different accessions of Ae. tauschii. In addition,
it would be of interest to further investigate the potential of Aegilops species, Ae. cylindrica, Ae.
comosa and Ae. searsii, as well as spelt wheat as genetic resources for the improvement of
WDV resistance in wheat. For a more complete picture of the response to WDV, we propose
that different traits associated to WDV infection will be investigated at different plant develop-
ment stages.
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