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Abstract Retrograde BMP signaling and canonical pMad/Medea-mediated transcription regulate

diverse target genes across subsets of Drosophila efferent neurons, to differentiate

neuropeptidergic neurons and promote motor neuron terminal maturation. How a common BMP

signal regulates diverse target genes across many neuronal subsets remains largely unresolved,

although available evidence implicates subset-specific transcription factor codes rather than

differences in BMP signaling. Here we examine the cis-regulatory mechanisms restricting BMP-

induced FMRFa neuropeptide expression to Tv4-neurons. We find that pMad/Medea bind at an

atypical, low affinity motif in the FMRFa enhancer. Converting this motif to high affinity caused

ectopic enhancer activity and eliminated Tv4-neuron expression. In silico searches identified

additional motif instances functional in other efferent neurons, implicating broader functions for

this motif in BMP-dependent enhancer activity. Thus, differential interpretation of a common BMP

signal, conferred by low affinity pMad/Medea binding motifs, can contribute to the specification of

BMP target genes in efferent neuron subsets.

Introduction
Diverse neuronal subtypes are generated by the gene regulatory activities of subtype-specific com-

binations of transcription factors (Allan and Thor, 2015; da Silva and Wang, 2011; Hobert et al.,

2010). In postmitotic neurons, retrograde signaling continues to play prominent roles during neuro-

nal maturation and through life in regulating terminal differentiation and synaptic function

(Allan et al., 2003; Angley et al., 2003; Veverytsa and Allan, 2011; Berke et al., 2013;

Chou et al., 2013; Kelly et al., 2013; Majdazari et al., 2013; Xiao et al., 2013; DuVal et al., 2014;

McCabe et al., 2003; Guha et al., 2004; Lopez-Coviella et al., 2005; Hodge et al., 2007;

Pavelock et al., 2007; Miguel-Aliaga et al., 2008; Eade and Allan, 2009; Henrı́quez et al., 2011).

In Drosophila, retrograde BMP signaling occurs within most efferent neurons, regulating a diverse

suite of target genes in a subtype-specific manner; for example, the neuropeptide genes unique to

each neurosecretory subtype, and the partially overlapping battery of genes that support the growth

and strengthening of motor neuron neuromuscular junction synapses (Veverytsa and Allan, 2011;

Miguel-Aliaga et al., 2008; Allan et al., 2003; Kim and Marqués, 2010; Vuilleumier et al., 2019;

Ball et al., 2010; Marqués et al., 2003). An unresolved question regards how BMP target genes are
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differentially specified within each of these BMP-activated neuron subtypes. Prevailing models sug-

gest that subtype-specific transcription factors play the primary role in target gene selection, and

BMP-responsive DNA motifs within those target gene enhancers encode generic responsiveness to

BMP signaling in any neuron (Veverytsa and Allan, 2011; Miguel-Aliaga et al., 2008; Allan et al.,

2005). Here we describe our identification of a low affinity BMP-responsive DNA motif that instruc-

tively contributes to the differential specification of BMP target genes within efferent neuron

subtypes.

In Drosophila efferent neurons, retrograde BMP-signaling is triggered by Glass bottom boat

(Gbb) ligand engagement at a presynaptic BMP-Receptor (BMP-R) complex of Wishful thinking

(Wit), Thickveins (Tkv), and Saxophone (Sax). This leads to phosphorylation of Mad to pMad (verte-

brate SMAD1/5/9) (Allan et al., 2003; McCabe et al., 2003; Aberle et al., 2002; Rawson et al.,

2003), which then complexes with Medea (vertebrate SMAD4) (Gao and Laughon, 2007;

Gao et al., 2005). This pMad/Medea complex translocates to the nucleus and regulates transcription

by binding DNA in a sequence-specific manner at BMP-response elements (BMP-REs) (Kim et al.,

1997; Xu et al., 1998; Shi and Massagué, 2003). In the nucleus, Schnurri (Shn) can act as a co-

repressor with the pMad/Medea complex at silencer BMP-REs (BMP-SE) to repress target genes

(Gao et al., 2005; Pyrowolakis et al., 2004; Charbonnier et al., 2015). Additionally, Brinker (Brk) is

a DNA binding default repressor of genes in the absence of BMP-signaling (Barolo and Posakony,

2002; Affolter and Basler, 2007; Hamaratoglu et al., 2014).

Studies of BMP-dependent morphogenesis in the Drosophila embryo and wing imaginal disc

have established core principles and sequence preferences for BMP-REs and transcriptional regula-

tors of the BMP pathway. BMP-dependent gene activation is mediated directly by pMad/Medea act-

ing at a bipartite 15 bp BMP-AE; GGCGCCA(N4)GNCV (Weiss et al., 2010; Chayengia et al.,

2019). BMP-dependent gene silencing is mediated directly by pMad, Medea, and Shn acting in a

complex at a bipartite 15 bp BMP-SE; GRCGNC(N5)GNCT (Gao et al., 2005; Pyrowolakis et al.,

2004; Charbonnier et al., 2015). In these complexes, two pMad proteins bind to the 6 bp GC-rich

sequence, and a single Medea protein binds to the 4 bp GNCV/GNCT sequence (Gao et al., 2005).

An additional widely-utilized mechanism for BMP target gene activation in Drosophila involves brk-

dependent de-repression (Affolter and Basler, 2007). Here BMP signaling results in pMad, Medea

and Shn binding to multiple BMP-SE motifs in the brk locus (Pyrowolakis et al., 2004; Marty et al.,

2000; Torres-Vazquez et al., 2000; Müller et al., 2003). Subsequent reduction in Brk levels relieves

its default repression of many genes, which thereby become de-repressed in a BMP-dependent

manner (Pyrowolakis et al., 2004; Jaźwińska et al., 1999; Campbell and Tomlinson, 1999;

Winter and Campbell, 2004; Minami et al., 1999; Moser and Campbell, 2005).

We recently demonstrated that the BMP-AE motif serves as a widely-deployed BMP-dependent

activator of gene expression in larval Drosophila efferent neurons (Vuilleumier et al., 2019). In that

study, BMP-AE motifs were shown to confer BMP-dependence on enhancers that were active in

diverse patterns across the many subtypes of efferent neurons. This diversity did not appear to be

encoded by sequence differences within BMP-AEs. For example, enhancers that included similar 15

bp BMP-AE sequences differed greatly in expression pattern (such as Van 50 and Van 27 reporters),

and swapping BMP-AE sequences between enhancers failed to change expression pattern

(Vuilleumier et al., 2019). This notion is supported by recent work in Drosophila follicular epithelium

and wing imaginal disc showing that the cis-regulatory environment around BMP-AE motifs, bound

by other transcription factors, determines the enhancer’s spatiotemporal activity, while the BMP-AE

itself acts as a ‘monotonic’, or generic, interpreter of BMP activity (Chayengia et al., 2019).

The integration of BMP-activated pMad/Medea with subtype-specific transcription factors in Dro-

sophila neurons has only been examined in detail in Tv4-neurons (Chayengia et al., 2019). Here a

Tv4-neuron-specific transcription factor code and pMad/Medea were found to bind within a

Tv4neuron-specific enhancer of the FMRFa gene (Allan et al., 2003; Allan et al., 2005; Miguel-

Aliaga et al., 2004; Berndt et al., 2015; Benveniste et al., 1998), at a minimal 25 bp Homeodo-

main-Responsive Element, and a minimal 39 bp BMP-Responsive Element, respectively

(Berndt et al., 2015). Misexpression of combinations of these transcription factors in other efferent

neurons (with activated retrograde BMP signaling) led to widespread ectopic FMRFa gene activation

(Allan et al., 2003; Eade and Allan, 2009; Allan et al., 2005; Miguel-Aliaga et al., 2004;

Berndt et al., 2015; Benveniste et al., 1998; Baumgardt et al., 2009). By contrast, neither ectopic

activation nor reduction in BMP signaling was found to alter Tv4-specific FMRFa expression. A
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parsimonious model emerging from these studies would suggest that activator BMP-RE motifs add a

generic BMP-responsive input for an enhancer whose spatiotemporal activity is otherwise deter-

mined by subtype-specific transcription factors.

Here we provide evidence for a second model, in which low affinity BMP-RE motifs instructively

contribute to subtype-specific gene expression within subsets of BMP-activated efferent neurons. By

functional and biochemical dissection of the 39 bp BMP-responsive cis-element of the FMRFa

enhancer, we identified a non-canonical minimal pMad/Medea binding motif [GGCGCC(N5)GTAT],

which has low affinity (LA) compared to BMP-AE and BMP-SE motifs, that we herein term BMP-LA.

Our genetic analysis showed that pMad and Medea act through this motif to directly activate FMRFa

expression, without any contribution from brinker or schnurri. Notably, by converting this motif into

a high affinity BMP-AE motif, we observed ectopic expression of BMP-dependent reporter activity

into other neuronal populations, and a loss of expression in the Tv4-neuron itself. Finally, in silico

searches and subsequent enhancer activity analysis revealed other functional instances of this motif

in the genome. Overall, our results identify a novel low affinity BMP-RE motif type (BMP-LA), and

lead to our proposal that the relative strength of BMP-responsive motifs is utilized to confer sub-

type-specific expression of BMP target genes in neurons.

Results
A 445 bp enhancer region mediates Tv4-neuron-specific expression of the FMRFa gene

(Benveniste et al., 1998; Benveniste and Taghert, 1999). We recently sub-mapped this enhancer

and defined two short cis-elements that are together necessary for enhancer activity, but are not

individually sufficient (Berndt et al., 2015). Toward defining the information encoded by each cis-

element, we found that concatemers for both cis-elements independently generate highly specific

Tv4-neuron activity in late embryos. Thus, both contain sufficient information for Tv4-specific activity.

This allowed us to explore their transcription factor inputs, leading to their definition as a homeodo-

main-responsive cis-element (HD-RE) and a BMP-responsive cis-element (BMP-RCE). The HD-RE

recruits and is activated by the LIM-homeodomain transcription factor, Apterous, but does not

require BMP-signaling for activation. The BMP-RCE requires BMP-signaling for its activity and

recruits pMad sequence-specifically at a GGCGCC site (Berndt et al., 2015; Figure 1A).

The 15 bp FMRFa BMP-responsive cis-element contains a novel pMad/
Medea-binding motif
Here we explored how the 39 bp BMP-RCE encodes activity that is BMP-dependent and Tv4-neu-

ron-specific. We previously defined the necessity of a palindromic GGCGGC pMad-binding

sequence, but not its associated Medea-binding sequence (Berndt et al., 2015). Here we find two

GNCV-types sequences 5’ of the GGCGCC sequence; spaced 3 and 11 nucleotides away (green

highlight in Figure 1B). Although not of canonical 5nt length, BMP-AE motifs with altered linker

lengths have been shown to retain activity (Weiss et al., 2010; Chayengia et al., 2019;

Esteves et al., 2014). We substitution mutagenized the 15 bp region containing these sequences,

within the context of a full-length 445 bp Tv4-enhancer (Figure 1—figure supplement 1A). This

mutant reported wildtype levels of enhancer activity in Tv4-neurons; therefore, we discounted all

sequences 5’ of the pMad-binding site as essential (Figure 1—figure supplement 1B,C).

Within sequences 3’ of pMad-binding site in the remainder of the minimal 39 bp region, there are

no consensus GNCV or GTCT motifs. However, three sequences deviate from the consensus by only

a single nucleotide, including a perfectly conserved GTAT sequence spaced five nucleotides from

the pMad site (yellow highlight in Figure 1B), and a conserved GTTACA spaced 12nt from the

pMad motif, with partially overlapping GTTA and TACA sequences (orange highlight in Figure 1B).

pMad and Medea are direct activators of FMRFa
The lack of a canonical Medea site, necessary for BMP-RE motif activity, led us to test if Medea is

even required for FMRFa expression. In two different null Medea backgrounds, immunoreactivity to

the FMRFa prepropeptide was entirely lost (Figure 1D–F). Anti-Eya staining revealed that all four Tv

neurons were generated. We also examined EYFP reporter expression driven from the full length

445 bp TvWT-EYFP enhancer, and from the concatemerized BMP-RCE and HD-RE reporters

(Berndt et al., 2015). As expected, TvWT-EYFP and BMP-RCE-EYFP expression were eliminated,
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Figure 1. A novel BMP-Response element (BMP-RE) in the Tv4-neuron-specific enhancer of the FMRFa gene. The 445 bp Tv4-enhancer depicted in (A)

contains two cis-elements critical for FMRFa activation, the homeodomain response element (HD-RE that recruits Apterous), and the BMP response

element (BMP-RCE) that binds pMad and mediates the BMP-dependence of the Tv4-enhancer. (B) Output from the UCSC Browser shows sequence

conservation through the BMP-RE across 21 Drosophila species. Capitalized letters are conserved across all species. Highlighted sequences include the

Figure 1 continued on next page
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while the BMP-insensitive HD-RE-EYFP exhibited expression comparable to controls (Figure 1—fig-

ure supplement 1D–I). Thus, Medea is selectively required for the BMP input that activates FMRFa

expression.

The apparent dichotomy of Mad and Medea-dependence in the absence of a canonical BMP-RE

motif led us to test whether brinker (brk) de-repression accounts for BMP-dependent FMRFa expres-

sion (Figure 2A). In numerous Drosophila tissues outside the nervous system, brk-mediated de-

repression results in BMP-dependent gene expression (Hamaratoglu et al., 2014). In the absence of

BMP-signaling, Brk binds GGCGYY motifs to default repress many genes that are activated upon the

onset of BMP signaling (Zhang et al., 2001). In the presence on BMP signaling, pMad, Medea, and

Shn bind BMP-SE motifs to repress brk (Pyrowolakis et al., 2004; Marty et al., 2000; Torres-

Vazquez et al., 2000; Müller et al., 2003), lowering its expression and resulting in the de-repression

of BMP gene targets (Pyrowolakis et al., 2004; Jaźwińska et al., 1999; Campbell and Tomlinson,

1999; Winter and Campbell, 2004; Minami et al., 1999; Moser and Campbell, 2005).

The BMP-responsive GGCGCC sequence in the FMRFa BMP-RCE matches this Brk consensus

motif (Zhang et al., 2001). If a Brk de-repression model were correct for FMRFa expression

(Figure 2H), BMP-induced pMad, Medea, and Schnurri (Shn) would be required to silence brk,

resulting in FMRFa de-repression (Marty et al., 2000; Müller et al., 2003). Thus, we would expect

that Brk expression would be increased in wit nulls, resulting in FMRFa repression. To test this model

genetically, we first examined brkXA/Y hemizygotes, but observed no change in either anti-FMRFa

immunoreactivity or Tv4WT-EYFP reporter expression (Figure 2B,E). Second, we tested brk;;wit dou-

ble mutants to test if the absence of FMRFa in wit mutants is due to upregulation of the brk repres-

sor. Contrary to this hypothesis, FMRFa expression was absent in brk/Y;;witA12/witB11 double

mutants (Figure 2D,E), phenocopying wit mutants (Figure 2C,E).

However, this analysis did not rule out the possibility that FMRFa activation requires de-repres-

sion by brk as well as direct activation by pMad/Medea, as occurs at BMP-AE motifs regulating dad

(Weiss et al., 2010). In such a model, the absence of FMRFa in brk; ;wit nulls may be due to a lack

of activation by pMad/Medea. Therefore, we tested FMRFa expression in shn nulls. In this genotype,

Brinker and pMad/Medea would all be expressed. In shn (Allan and Thor, 2015) null mutants, we

found that FMRFa immunoreactivity was wildtype in late stage 17 embryos, the latest age testable in

these mutants due to shn (Allan and Thor, 2015) late embryonic lethality (Figure 2G). Thus, brk de-

repression cannot function as the primary mechanism for BMP-dependent FMRFa expression. We

conclude that FMRFa is directly activated by pMad/Medea (Figure 2I), with no apparent involvement

for shn and brk-mediated de-repression.

The 15 bp FMRFa BMP-RE has reduced pMad/Medea binding relative
to canonical BMP-REs
These data led us to test if the pMad/Medea complex is recruited by a non-canonical motif within

the FMRFa BMP-RCE. We used an Electrophoretic Mobility Shift Assay (EMSA) to examine nucleoti-

des essential for pMad/Medea binding. We activated BMP signaling in S2 cells, by transfecting S2

cells with FLAG::Mad, Myc::Medea, and activated BMP type I receptor Thickveins (TkvQD)

(Gao et al., 2005). From these cells, we obtained total cell lysates to perform EMSA tests on

IRDye700-tagged DNA oligonucleotides containing a 27 bp BMP-RE sequence. In Figure 3, we

show that co-transfection of all three plasmids was required for a band shift of the FMRFa BMP-RCE

probe by BMP-activated S2 cell lysates. Addition of either an anti-Myc or anti-FLAG IgG to the lysate

Figure 1 continued

putative Mad/Brinker binding site (magenta), two 5’ optimal GNCV Medea binding sequences with non-canonical spacing (green), and three 3’

sequences that deviate from a non-stringent GNCN sequence in one critical nucleotide (yellow, orange). The yellow GTAT motif is ideally spaced but

has a C > A switch. The orange GTTACA contains two motifs (GTTA with a C > T switch, and TACA with a G > T switch). (C) Comparison of a putative

FMRFa BMP-RE with the well-defined BMP-SE and BMP-AE motifs. (D-F) FMRFa immunoreactivity in Tv4-neurons is lost in Medea nulls (E,F) compared

to controls (D). Insets show mean number of FMRFa-positive Tv4-neurons per VNC ± SD. (D’-F’’) Fluorophore splits of single Tv -clusters in A-C,

showing Tv-neurons (circled) labeled by anti-Eya (green) and anti-FMRFa (magenta) expression in each genotype.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. FMRFa expression in Tv4-neurons requires Medea.
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Figure 2. Neither brinker nor schnurri are required for BMP-dependent FMRFa. (A,B) Expression of the BMP-

dependent FMRFa prepropeptide and the Tv4WT-EYFP reporter were not affected in brk mutants. (C,D) Loss of

FMRFa prepropeptide and Tv4WT-EYFP in wit nulls was not rescued by the loss of brk in the double mutant of brk

and wit. Thus, FMRFa is not lost in wit mutants due to the de-repression of brk. (E) Quantification of data in A-D

(n = 7–12 animals per group, *p<0.01 compared to controls using One-way ANOVA with Tukey HSD post-hoc). (F,

G) No change in the number of FMRFa-positive Tv4-neurons was observed between control and shn nulls in late

stage 17 embryos. Mean ± SD number of FMRFa-positive Tv4-neurons per VNC shown in inset, n = 5 per

genotype. (H) In a Brinker de-repression model, brinker would act as an FMRFa repressor by binding to the BMP-

LA element (at the GGCGCC motif). When the BMP signaling pathway is active, the activated pMad/Medea

complex would translocate to the nucleus and bind to the brk BMP-SE element, recruiting Schnurri, and silencing

brk expression. This would allows expression of FMRFa, activated by other transcription factors and/or direct

Figure 2 continued on next page
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super-shifted the band, whereas a control IgG had no effect. Thus, a BMP-activated pMad/Medea

complex isolated from S2 cells bind and band shift the FMRFa BMP-RCE.

Figure 2 continued

binding of a pMad/Medea complex. (I) In a direct pMad/Medea complex activation model, FMRFa is only

expressed when an activated pMad/Medea complex binds to the BMP-LA sequence. Our work indicates that this

latter model is likely correct, as neither brk nor shn manipulation modulates BMP-dependent FMRFa expression.

Genotypes: Control (TvWT-nEYFP). brk (brkXA/Y;;TvWT-nEYFP/TvWT-nEYFP). wit (TvWT-nEYFP,witA12/TvWT-nEYFP,

witB11). brk;;wit (brkXA/Y;; TvWT-nEYFP,witA12/TvWT-nEYFP,witB11). shn control in F (w;shn 1/+). shn null in G (shn1/

shn1).

Figure 3. An activated pMad/Medea complex binds to the FMRFa BMP-RE. EMSA using IRDye700-tagged DNA oligonucleotides of the FMRFa BMP-

RE incubated with S2 cell extracts transfected with FLAG::Mad and/or Myc::Medea, and/or activated BMP-receptor TkvQD. Lanes 2–7 showed no

specific band shift that differed from empty vector transfected cells (lane 1). Co-transfection of FLAG::Mad, Myc::Medea and TkvQD together generated

a strong band shift (lane 8). Addition of antibodies to Myc (lane 10) or FLAG (lane 11) caused a super-shifted band that was not seen upon addition an

IgG antibody control (lane 9). Thus, Mad, Medea, and activated Tkv receptor were capable of generating a band-shift of the FMRFa BMP-RE.
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Next, we tested which sequences within the BMP-RCE are required for pMad/Medea recruitment.

We generated an IRDye-700 tagged wildtype FMRFa BMP-RCE probe comprising a reduced 27 bp

FMRFa BMP-RCE (AGAGGCGCCACAATGTATCCCGTTACA), necessary for appropriate in vivo

expression (Figure 1—figure supplement 1A). We first tested candidate pMad and Medea binding

sites by generating untagged probes with mutant sequence to test their ability to outcompete the

wildtype tagged BMP-RE probe when pre-incubated at 10� or 100� excess. We confirmed that

mutation of the pMad-binding sequence GGCGCC eliminated binding of the activated pMad/

Medea complex (Figure 4A), as previously demonstrated (Berndt et al., 2015). Next, we tested can-

didate Medea-binding sequences by mutating the GTAT sequence (to TTAT) and the sequence

CCCG (to AATT). We found that only mutation of the GTAT sequence reduced binding of the acti-

vated pMad/Medea complex (Figure 4B). This indicated that a 15 bp GGCGCC(N5)GTAT motif

likely represents the pMad/Medea-recruitment motif for the FMRFa BMP-RCE. We further corrobo-

rated these data by comparing the ability of the pMad/Medea complex to bind IRDye-700-tagged

BMP-RE oligonucleotides that were either wildtype or contained GTAT mutations predicted to abro-

gate Medea binding (ACTA or TTAT). Our results demonstrated that pMad/Medea had reduced

binding to the mutant sequences (Figure 4—figure supplement 1).

We wished to define the sequence requirements for this novel 15 bp BMP-Response Element

(BMP-RE). Therefore, we examined band shifts of BMP-activated S2 cell lysates pre-incubated with

tagged wildtype BMP-RE DNA oligonucleotides and a 100� stoichiometric excess of cold mutants in

which a single nucleotide through the 15 bp motif was substitution mutagenized (Figure 4C–E).

Mutagenesis of the entire GGCGCC sequence, or any single nucleotide therein, severely reduced

binding of pMad/Medea, as shown by an inability to reduce the band shift of the tagged BMP-RE

probe (Figure 4C). In addition, mutation of the entire GTAT sequence, or of any nucleotide except

the A, greatly reduced the binding of pMad/Medea, as shown by retention of a strong band shift of

the tagged BMP-RE probe (Figure 4E). By contrast, mutation of any nucleotide within the linker

sequence ACAAT only minimally reduced pMad/Medea binding and the band shift was only mini-

mally retained (Figure 4D). We conclude that a minimal 15 bp element of GGCGCCacaatGTaT is

essential for pMad/Medea recruitment in vitro (with capitalized letters being essential).

It is intriguing that the position 14 A nucleotide in the putative GTAT Medea binding motif is the

only nucleotide not required for pMad/Medea recruitment to this motif in vitro, as a C in this posi-

tion was shown to be important for pMad/Medea recruitment to BMP-AE and BMP-SE motifs

(Pyrowolakis et al., 2004; Weiss et al., 2010). Due to this loss of a key pMad/Medea recruitment

nucleotide, we postulate that this position 14 C > A switch reduces affinity by introducing a nucleo-

tide that fails to contribute to binding, resulting in the observed reduction of pMad/Medea

recruitment.

Hereafter, we term the FMRFa BMP-RE motif as a BMP-Low Affinity Activation motif (BMP-LA).

We wished to determine if the C > A switch that distinguishes the BMP-LA from the BMP-AE/SE

motifs has an impact on BMP-activated pMad/Medea recruitment. To examine this, we tested

whether modifying the BMP-LA Medea site to a BMP-AE-like or BMP-SE-like sequence indeed

increases its ability to bind pMad/Medea. We generated a series of tagged and untagged DNA oli-

gonucleotides comprising 27 bp of the BMP-LA sequence that was either wildtype at the Medea

site, GTAT, or mutated at this site to GACG (BMP-AE-like) or GTCT (BMP-SE-like). By competition

EMSA assays, we tested the relative ability of these untagged DNA oligonucleotides to compete for

pMad/Medea binding when at 1�, 5�, and 10� stoichiometric ratios relative to the tagged wildtype

probe (Figure 4F–G). We found that a wildtype untagged BMP-LA sequence reduced but did not

eliminate the band shift generated by its tagged counterpart by 10�. In contrast, both the AE-like

and the SE-like sequence mutants proved to be much stronger competitors, totally outcompeting

the BMP-LA tagged probe by 5�. Moreover, at equimolar ratios, the untagged wildtype BMP-LA

competitor did not substantially alter the tagged probe band shift; however, both AE-like and SE-

like mutants reduced the band shift. These data indicate that the GTAT sequence displays low affin-

ity pMad/Medea binding activity relative to the characterized BMP-AE and BMP-SE motifs.

Conversion of the low affinity FMRFa BMP-RE to a high affinity BMP-
AE sequence results in ectopic neuronal BMP-dependent activity in vivo
Collectively, our genetic and biochemical data indicated that the BMP-LA motif exhibits low affinity

pMad/Medea recruitment. This raised the question as to why the BMP-LA motif is attenuated in this
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Figure 4. The FMRFa BMP-LA is required for pMad/Medea recruitment but at a lower affinity compared to BMP-AE and BMP-SE motifs. We performed

EMSA gels in which we ran IRDye700-tagged FMRFa BMP-RE DNA oligonucleotides (of sequence AGAGGCGCCACAATGTATCCCGTTACA) pre-incu-

bated with lysates from S2 cells transfected with either empty vectors (EV; lane 1) or FLAG::Mad, Myc::Medea and activated BMP-receptor, TkvQD (MMT

lysate; lanes 2–8 or 2–10) (A-B). The MMT lysate generated a band shift indicative of pMad/Medea binding to the tagged probe (lane 2 in A,B). In lanes

Figure 4 continued on next page
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manner, yet conserved across all Drosophila species. To address this, we tested for functional rele-

vance for this motif’s low affinity.

First, we mutated the 445 bp Tv4-enhancer (within the Tv4-nEGFP nuclear-localized reporter) at

the GTAT sequence into ACTA (Tv4mGTAT>ACTA-nEGFP) (sequence shown in Supplementary file 1a),

in order to eliminate Medea recruitment. We found that the Tv4mGTAT>ACTA-nEGFP reporter exhib-

ited a total loss of expression in Tv4-neurons, and no ectopic expression was detected in other neu-

rons (Figure 5A,B). We conclude that the GTAT sequence is essential. Second, we tested the effect

of converting the GTAT motif of BMP-LA to an optimal BMP-AE-like sequence (GTAT > GACG),

within the Tv4-nEGFP reporter (Tv4mGTAT>GACG-nEGFP) (sequence shown in Supplementary file 1a).

This conversion eliminated Tv4-enhancer activity in Tv4-neurons (Figure 5A,C) but led to strong

ectopic reporter activity in other neurons of the VNC (Figure 5D). We noted that all EGFP positive

cells were also anti-pMad immunoreactive (Figure 5D’–D”’), suggesting that we had indeed created

a high affinity BMP-RE that recruits pMad/Medea to generate BMP-responsive Tv4-enhancer activity

in an expanded population of neurons. To confirm this, we tested the wit-dependence of this ectopic

reporter activity, by examining the expression of the mutant BMP-AE-like Tv4-enhancer reporter

(Tv4mGTAT>GACG-nEGFP) in a wit mutant background (Figure 5D,E). As expected, this eliminated all

reporter activity, demonstrating that the low-to-high affinity conversion created a functional BMP-AE

that generated BMP-dependent reporter activity in other BMP-activated neurons of the VNC.

These data show that the low affinity of BMP-LA is essential for the spatially restricted activity of

this cis-element to Tv4-neurons.

Identification of additional functional BMP-responsive BMP-LA motifs
through the genome
Following the identification of the novel BMP-LA motif regulating FMRFa expression in Tv4-neurons,

we examined if this cis-regulatory motif was unique to FMRFa regulation, or functions to confer

BMP-dependence to other cis-regulatory regions. To this end, we identified 178 BMP-LA motifs in

the D. melanogaster genome using the motif discovery tool HOMER (v4.10) (Heinz et al., 2010).

These were filtered for sequence conservation across 24 sequenced Drosophila species using Phast-

Cons scores (Siepel et al., 2005), reducing the list to 128 BMP-LA with an average PhastCons score

over 0.55. Of these 128 BMP-LA, 103 were highly conserved with a score of over 0.9

(Supplementary file 1b).

Figure 4 continued

3–8 (A) or 3–10 (B), we ran MMT lysates pre-incubated with tagged probe and a stoichiometric excess of untagged (cold) DNA oligonucleotides with

either wildtype or mutated sequence (shown below each gel). Loss of a band shift indicates that the untagged probe is capable of binding activated

pMad/Medea. (A) We pre-incubated with untagged (cold) competitors of wildtype (WT) sequence or GGCGCC >TAGTAG mutated sequence (DMad)

in 1�, 10�, 100� excess. At 100� excess, competition by the WT cold probe reduced the band shift (lane 5). In contrast, the mutated cold probe failed

to reduce the band shift at 100� excess (lane 8). (B) We pre-incubated with 10x and 100x excess of cold probes of wildtype (WT) or mutated sequences,

including of G and C nucleotides within candidate Medea-binding sequences GTAT (>TTAT, termed DGTAT), CCCG (>AATT, termed DCCCG), and a

mutant to both of these sequences (Dboth). At 100� excess, the wildtype (lane 4) and DCCCG (lane 10) greatly reduced the band shift to the same

extent; thus, the CCCG sequence does not contribute to pMad/Medea binding. By contrast, the DGTAT (lane 6) and Dboth (lane 8) cold probes only

partially reduced the band shift, indicating that their ability to bind pMad/Medea was compromised. These data suggest that the minimal BMP-RE com-

prises a GGCGCC(N5)GTAT sequence. (C-D) The MMT lysate generated a band shift indicative of pMad/Medea binding to the tagged probe (lane 2).

We added untagged (cold) BMP-RE DNA oligonucleotides at 100� stoichiometric excess with mutations in the sequences shown in red. (C) Nucleotide

mutations are shown as red within the pMad-binding site. (D) Nucleotide mutations are shown as red within the linker region. (E) Nucleotide mutations

are shown as red within the Medea-binding site. Examining the ability of each cold competitor to compete with tagged FMRFa BMP-RE, we reveal a

necessary BMP-RE sequence of GGCGGGacaatGTaT, where capitalized nucleotides are found most necessary for pMad/Medea recruitment. (F,G) In

these EMSA, we additionally transfected S2 cell extracts with a 1�, 5�, and 10� stoichiometric excess of untagged competitors (sequences shown in

H). (F) Competition for the tagged BMP-LA by the untagged wildtype (BMP-LA) or the AE-like mutant. A 10� excess (lane 5) of untagged wildtype

BMP-LA reduced but did not eliminate the band shift (lane 5). By contrast, the BMP-AE-like mutant totally out-competed the tagged BMP-LA at a 5�

excess (lane 7 compared to lane 4) and significantly out-competed the tagged BMP-LA even at equimolar ratio (lane 6 compared to lane 3). (G) Compe-

tition for the tagged BMP-LA by the untagged wildtype or the SE-like mutant. The SE-like mutant totally out-competed the tagged BMP-LA at a 5�

excess (lane 15 compared to lane 12) and significantly out-competed the tagged BMP-LA even at equimolar ratio (lane 14 compared to lane 11).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Reduced pMad/Medea recruitment upon GTAT sequence mutation in the FMRFa BMP-RE.
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We selected 24 of the BMP-LA motifs for functional testing in vivo. Of the 24 prioritized motifs,

20 were highly conserved (average PhastCons score >0.9) and chosen in order to optimize the

chance of characterizing functional BMP-RE’s. Additionally, four motifs with lower scores 0.75–0.55

were tested for functionality (Table 1, Supplementary file 1c). We examined reporter activity driven

from these genomic fragments in late third instar larvae (L3). Of the 24 reporters, five showed no

Figure 5. The FMRFa BMP-LA motif has a necessary but low affinity Medea binding site that specifies selective neuronal subtype activity. (A–C)

Conversion of the Medea-binding GTAT site in the wildtype 445 bp Tv4-neuron-specific FMRFa enhancer to a mutant version, ACTA (that reduces

pMad/Medea recruitment; termed Tv4 mGTAT>ACTA–nEGFP), resulted in a complete loss of reporter gene expression in Tv4-neurons (B). Conversion of

the Medea-binding GTAT site in the wildtype 445 bp Tv4-neuron-specific FMRFa enhancer to an optimal BMP-AE-like sequence (GACG; termed Tv4
mGTAT>GACG–nEGFP) also resulted in a total loss of reporter expression in Tv4-neurons (C). Numbers in insets indicate the mean ± SD number of EGFP-

positive Tv4-neurons per VNC, out of the possible six Tv neurons. (D,E) The Tv4mGTAT>GACG–nEGFP reporter generated strong ectopic reporter activity

in VNC midline cells (D) that is lost in the absence of neuronal BMP signaling (E; in wit mutants, witA12/witB11). Full z-projections though the whole VNC

are shown. Numbers in insets indicate the mean ± SD number of EGFP-positive neurons per VNC. (D’–D’’’) Images of the midline ectopic EGFP

expression generated from Tv4mGTAT>GACG–nEGFP. EGFP expression (green) was exclusively expressed in pMad-immunoreactive cells (magenta); all

cells are yellow circled.
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expression in the ventral nerve cord (VNC) (Figure 6—figure supplement 1A), while the remaining

19 reporters exhibited low to high reporter activity in the VNC (Table 1). Of these active reporters,

10 exhibited expression in subsets of pMad-positive cells in the VNC, and also numerous pMad-neg-

ative glia and neurons (Table 1). The remaining nine active reporters were restricted to pMad-nega-

tive glia and neurons (Figure 6—figure supplement 1B). We tested the BMP-responsiveness of the

10 reporters expressed in pMad-positive cells, by placing them in a wit mutant background. Out of

those 10 reporters, seven showed reduced reporter expression (Figure 6B), including two (CM5 and

CM7) with motifs of lower PhastCons score. Three reporters showed no significant change

(Figure 6A, Figure 6—figure supplement 1B). Quantification of reporter expression in the VNC of

controls and their corresponding wit mutants revealed a loss of up to 88% of reporter-expressing

cells in certain genotypes (Figure 6—figure supplement 2B).

Next, we tested whether the activity of the identified wit-responsive fragments was dependent

on the BMP-LA motif within these genomic fragments. We selected four wit-responsive fragments

(CM1, CM2, CM3, and CM7) and one non-wit responsive fragment (CM9; Figure 7A). We intro-

duced nucleotide substitution mutations into the pMad-binding site of the LA

Table 1. Summary table of expression pattern and wit-responsiveness for BMP-LA containing DNA fragments tested in vivo.

The first column indicates the name for each of the cloned BMP-LA containing DNA fragments; these were sorted based on intensity

and pattern of reporter expression. The second column provides information on reporter expression in the VNC, (more plus signs indi-

cate higher intensity), and the final column provides details on expression pattern. The third and fourth columns indicate fragments

that exhibited pMad and reporter co-expression, as well as the ones that were shown to be wit-responsive. Bolded letters indicate the

enhancer fragments that were further tested for wit-responsiveness. The expression pattern was assessed in wandering third instar

larvae.

DNA fragment VNC expression Reporter/pMad stain overlap Wit responsive VNC expression details

CM5 +++ H H neurons and glia

CM1 +++ H H medial and lateral neurons

CM4 +++ H H medial and lateral neurons

CM3 +++ H H medial and lateral neurons

CM2 ++ H H medial and lateral neurons

CM7 + H H sparse

CM6 + H H sparse

CM8 +++ H - medial neurons

CM9 ++ H - lateral neurons

CM10 + H - sparse

CM11 ++ - - neurons and glia

CM12 + - - sparse

CM13 + - - sparse

CM14 + - - sparse

CM15 + - - sparse

CM16 + - - sparse

CM17 + - - low intensity

CM18 + - - low intensity

CM19 + - - low intensity

CM20 - - - none

CM21 - - - none

CM22 - - - none

CM23 - - - none

CM24 - - - none
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Figure 6. Identification of additional wit-responsive genomic fragments containing the BMP-LA motif. We

identified 10 genomic fragment reporters that exhibited expression in subsets of pMad-positive cells in the VNC

and tested their wit-responsiveness. (A) EGFP reporter patterns of three genomic fragments that exhibit no wit-

responsive loss of reporter expression in wit mutants (witA12/witB11) compared to controls (witA12/+) in late third

Figure 6 continued on next page
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(GGCGCC > TGATGA). In all four wit-responsive fragments tested, there was a significant loss of

reporter expressing cells (Figure 7B). Finally, having established the necessity of Medea for BMP-

dependent activity of the FMRFa BMP-RE, we tested the requirement for Medea in reporter expres-

sion these same BMP-dependent CM1, CM2, CM3, and CM7 reporters. In Medea mutant third instar

(L3) larvae, reporter expression was reduced in the same pattern as observed in a wit mutant back-

ground (Figure 7—figure supplement 1).

We conclude that the BMP-LA is utilized by numerous cis-regulatory regions in order to generate

BMP-dependent enhancer activity in neurons.

Discussion
Retrograde BMP signaling, and BMP responsive DNA motifs in target gene enhancers, have been

viewed as functionally equivalent across efferent neuron populations. Therefore, the differential

expression of BMP target genes across efferent neuron populations has been attributed to the activ-

ity of subtype-specific transcription factors (Veverytsa and Allan, 2011; Miguel-Aliaga et al., 2008;

Allan et al., 2005). Here we describe our identification of a low affinity BMP-responsive DNA motif

that appears to instructively contribute to differential specification of BMP target genes across effer-

ent neuron subtypes.

Our previous work had identified a 39 bp BMP responsive cis-element within the Tv4-enhancer of

FMRFa that is absolutely required for Tv4-enhancer activity, and encodes sufficient information for

selective activity in Tv4-neurons (Berndt et al., 2015). Here we reveal that pMad and Medea are

recruited to this cis-element by an essential low affinity motif (the BMP-LA). Converting this motif to

a high affinity BMP-AE motif led to Tv4-enhancer activity in a broader set of efferent neurons, as

would be expected from BMP-AE’s generic responsiveness across many efferent neurons and Dro-

sophila tissues (Vuilleumier et al., 2019; Chayengia et al., 2019). These results provide evidence

that low affinity BMP responsive motifs instructively restrict BMP target genes within

subsets of efferent neuron.

Low affinity motifs serve widespread roles in restricting gene expression in space and time

(Crocker et al., 2015). They function to reduce enhancer activity in order to prevent ectopic expan-

sion of enhancer activity (Wharton et al., 2004; Farley et al., 2015; Jiang and Levine, 1993). They

are also required to generate enhancer activity with the appropriate expression domain; for exam-

ple, Hedgehog regulation of numerous wing imaginal disc and embryonic enhancers requires Ci

transcription factor binding to low affinity motifs; increasing their affinity abolished enhancer activity

(Ramos and Barolo, 2013). Also, clustered low affinity motifs have been shown to improve discrimi-

nation between transcription factors with similar binding preferences, and to locally concentrate

transcription factors to ensure robust target gene expression (Crocker et al., 2015).

How does the BMP-LA confer Tv4-neuron specificity? We propose that the BMP-LA does not sin-

gularly specify Tv4 neuron activity, but rather imposes a requirement for pMad/Medea cooperative

interactions with subtype-specific transcription factors bound to adjacent motifs for combinatorial

activation of FMRFa expression. Four primary lines of evidence inform our conclusion. First, lowering

or ectopically hyperactivating BMP signaling in other neurons failed to trigger ectopic Tv4-enhancer

or FMRFa expression, without also co-misexpressing Tv4-specific transcription factors (Allan et al.,

2003; Allan et al., 2005; Miguel-Aliaga et al., 2004; Eade et al., 2012; Berndt et al., 2015). This

rules out a model whereby BMP-LA’s lower affinity is tuned for a specific level of BMP signaling only

Figure 6 continued

Instar larval VNCs. (B) Nuclear EGFP expression patterns driven from seven genomic fragments containing

conserved BMP-LAs that were down-regulated in wit mutants (witA12/witB11), compared to controls (witA12/+) in

late third Instar larval VNCs. The observed down-regulation ranged from a near-total loss of all neuronal

expression to loss of expression in a subset of neurons. Full z-projections though the whole VNC are shown.

Genotypes: All control lines shown here were heterozygous (w;;CM#/+); wit mutants (w;;CM#,witA12/witB11).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. BMP-LA containing reporter fragments with no reporter and pMad co-expression.

Figure supplement 2. Quantification of reporter expressing cells reveals significant downregulation in wit mutants

or pMad-binding site mutants compared to their respective controls.
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observed in Tv4-neurons. Second, the minimal

BMP-responsive, Tv4-specific cis-element within

the Tv4-enhancer cannot dispense with a highly

conserved sequence 3’ of the BMP-LA. This

sequence likely contains binding sites for other

transcription factors that synergize with pMad/

Medea to specify FMRFa expression in Tv4-neu-

rons. These transcription factor(s) remain uniden-

tified at this time. Third, BMP-LA motifs in other

genomic regions confer BMP-dependent

enhancer activity across other efferent neurons,

suggesting that the BMP-LA imposes a require-

ment for pMad/Medea synergistic interactions

with other transcription factors that combinatori-

ally specifies neuronal subtype expression.

Fourth, converting the BMP-LA to a BMP-AE

resulted in a loss of reporter expression within its

appropriate domain (Tv4-neurons), but an inap-

propriate expansion of BMP-responsive activation

into other efferent neurons. This strongly sug-

gests that the BMP-LA imposes transcription fac-

tor interactions that the BMP-AE is unable to

replicate in Tv4-neurons; yet are unnecessary for

generic BMP-AE activity in other efferent neu-

rons. These specific interactions may occur

between transcriptional regulators that require a

specific pMad/Medea conformation that is

imposed by the BMP-LA sequence. Precedent for

this comes from analysis of Schnurri binding to

pMad and Medea bound at the BMP-SE, which

requires a pMad/Medea conformation that is

imposed by a precise 5nt linker between the Mad

and Medea binding motifs and also a terminal T

at position 15 of the BMP-SE motif (Gao et al.,

2005; Pyrowolakis et al., 2004; Müller et al.,

2003). No such sequence constraints appear to

be required for pMad/Medea activity at the

BMP-AE (Weiss et al., 2010; Chayengia et al.,

2019). Alternatively, but not mutually exclusively,

these specific interactions may occur between

other transcription factors bound to adjacent

DNA motifs and a pMad/Medea conformation

imposed by the BMP-LA sequence. Precedent for

such a model comes from evidence that conver-

sion of a low affinity Pax6 site in the chicken DC5

enhancer to a high-affinity site disrupted the for-

mation of an activation competent Sox2-Pax6

complex, and decreased enhancer activity

(Kamachi et al., 2001; Uchikawa et al., 2003).

Similarly, single nucleotide differences in NF-kB

binding sequences determine cofactor specificity

for NF-kB dimers (Leung et al., 2004; Pan et al.,

2010). A similar instructive role for low affinity

motifs in generating exquisitely subtype-specific

neuronal gene expression has been proposed in

Drosophila (Jafari and Alenius, 2015;

Berndt, Othonos, et al. eLife 2020;9:e59650. DOI: https://doi.org/10.7554/eLife.59650 15 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.59650


González et al., 2019). The exclusive expression

of odorant receptor genes in specific olfactory

sensory neurons is encoded by arrays of low

affinity binding sites for multiple transcription

factors. The authors propose that these low

affinity motifs provide the necessary environ-

ment for the weak and somewhat promiscuous

binding for numerous transcription factors that

ultimately establishes the cooperative interac-

tions that stabilizes target gene activation in a

single neuronal subset.

Our results add to growing evidence that

BMP-dependent gene regulation can be pro-

foundly altered by subtle nucleotide substitu-

tions within the 4-nucleotide Medea-recruitment

site of these response elements; a BMP-depen-

dent activator (GNCV), a BMP-dependent

repressor (GNCT), and a low affinity activator

that generates restricted activation (GTAT). The

sequence similarity yet diverse functional output

of these three BMP-REs reveals the diversity of

responses that can be generated from subtle

sequence deviations from a core BMP-RE motif. This raises a challenge for computational

approaches for BMP-RE motif discovery; a specific high affinity motif will not capture all functional

motif instances, but a degenerate motif built from multiple BMP-RE motifs would increase back-

ground noise to unacceptably high rates. Moreover, our discovery here of a novel motif with predic-

tive value only increases the promise that more BMP-REs with predictive value will be discovered.

However, as demonstrated by numerous studies, accounting for low affinity sites has proven to be

beneficial in identifying functional enhancers (Zandvakili et al., 2018; Gurdziel et al., 2015). There-

fore, it remains important to identify novel BMP-responsive motifs with demonstrated predictive

value in BMP-RE discovery. Regardless, considerable degeneracy has been found in the sequences

of BMP-REs (Ross and Hill, 2008) and it is important to acknowledge that in silico BMP-RE discovery

will always under-represent functional BMP-REs in any system.

We started this study by sub-mapping a minimal BMP-responsive, Tv4-specific cis-element to a

short 27 bp region that contains the canonical GGCGCC pMad-binding site, but no canonical

Medea-binding site. After dismissing the expected model that this motif would mediate Brk default

repression and BMP-dependent de-repression, we defined a minimal 15 bp GGCGCC(N5)GTAT

bipartite motif required for pMad/Medea recruitment. The low affinity of this motif arises from the

C > A nucleotide switch at position 14; removing the C nucleotide required for pMad/Medea recruit-

ment to BMP-AE and BMP-SE (Pyrowolakis et al., 2004; Weiss et al., 2010), for an A nucleotide

that plays no role in recruitment (Figure 4E). Interestingly, this loss of recruitment activity at motif

position 14 leads to increased nucleotide stringency at positions 2, 5, 12, and 13 for pMad/Medea

recruitment (Figure 4E), which are either unnecessary or less necessary for recruitment to BMP-AE

and BMP-SE (Gao et al., 2005; Pyrowolakis et al., 2004; Weiss et al., 2010). Thus, transversion of

one core nucleotide requires compensatory pMad/Medea recruitment activity from other nucleoti-

des within the overall 15 bp motif. This could be viewed as exerting an evolutionary pressure on

these remaining nucleotides to not exhibit degeneracy across Drosophila species, which may provide

an explanation for why the BMP-LA is so highly conserved. By contrast, other low affinity cis-ele-

ments exhibit considerable degeneracy, with the hypothesis being that a high affinity, optimal motif

would be highly constrained in nucleotide composition, but there could be a variety of nucleotide

substitutions that would result in lower affinity motif (Crocker et al., 2015; Ramos and Barolo,

2013; Crocker et al., 2016; Farley et al., 2016).

Overall, our results show that differential BMP-dependent gene expression in neuronal subtypes

is not only conferred by the integration of pMad/Medea into a combinatorial transcription factor

code. In addition, sequence variation of the BMP-RE that is bound by pMad/Medea provides addi-

tional critical information required to selectively trans-activate gene expression in specific neuronal

Figure 7. The GGCGCC pMad-binding site is

necessary for reporter expression in vivo. We

introduced specific mutations into the pMad-binding

site of the BMP-LA motif (GGCGCC >TGATGA) of four

wit-responsive fragments (CM1, CM2, CM3, and CM7)

and one non-wit responsive fragment (CM9) to verify

whether reporter activity was dependent on pMad

binding. (A) CM9 showed no significant loss of reporter

expression in the CM9Dmad mutant compared to the

control. (B) All four wit-responsive fragments exhibited

a significant loss of reporter expressing cells; however,

this loss was less pronounced than the loss in wit

mutants, apart from CM3. Full z-projections though the

whole VNC are shown. Genotypes: All control and

pMad-binding site mutant lines examined here were

heterozygous (w;;CM#/+).

The online version of this article includes the following

figure supplement(s) for figure 7:

Figure supplement 1. Medea is necessary for BMP-

dependent activity of four wit-responsive BMP-LAs.
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subtypes. Further work is required to identify transcription factors that bind the highly conserved

sequences that flank the BMP-LA motif in the FMRFa Tv4-enhancer, or interact directly with the

BMP-LA motif itself. Once such factors are identified, we will be able to directly assess the contribu-

tion of pMad/Medea affinity and specific transcription factors to the BMP-LA in order to form sub-

type-specific, activation-competent complexes.

Materials and methods

Fly genetics
Strains used: MedC246 (McCabe et al., 2004); Med13 (Hudson et al., 1998); MedDf (Df(3R)ED6361)

(Ryder et al., 2007); witA12 and witB11 (Aberle et al., 2002); brkXA (Campbell and Tomlinson,

1999); shn1 ( Grieder et al., 1995). Mutants were kept over CyO, Act-GFP TM3, Ser, Act-GFP

(Reichhart and Ferrandon, 1998), CyO, twiGAL4, UAS-2xEGFP, or TM3, Sb, Ser, twiGAL4, UAS-

2xEGFP (Halfon, 2002). w1118 was used as the control genotype. Flies were maintained at 25˚C, 70%

humidity.

Reporter transgene construction
TvWT-EYFP, BMP-RE-EYFP, HD-RE-EYFP were generated previously (Berndt et al., 2015). Drosoph-

ila transformations were performed by Rainbow Transgenic Flies, Inc (Camarillo, CA). Empty pThun-

derbird EGFP vector was generated from Tv-nEYFP and from sequence within pHstinger

(Berndt et al., 2015; Barolo et al., 2000). Tv4-nEYFP was digested with AscI and SpeI. The multiple

cloning site (MCS), HSP70 promoter, EGFP coding sequence, Tra nuclear localization signal, and

SV40-polyA sequences from pHstinger (Barolo et al., 2000) were liberated with AscI and SpeI and

ligated into the cut Tv-nEYFP backbone. The Tv4-enhancer was PCR-amplified from Oregon-R with

XbaI and EcoRI adaptors, restriction digested and ligated into XbaI/EcoRI digested empty Tv4-

nEYFP. SOE PCR generated nucleotide substitution and deletion mutants were inserted similarly.

Summary of all mutations and concatemerization sequences in Supplementary file 1a. pMad-bind-

ing site mutagenesis was performed by Q5 Site-Directed Mutagenesis Kit (New England

Biolabs, Ipswich, MA), using primers designed to introduce specific base pair substitutions to the

Mad binding site (GCCGGC > tgatga), according to manufacturer‘s protocols. All constructs were

verified by sequencing before the generation of transgenic fly lines. Fly transformations were per-

formed by Rainbow Transgenic Flies, Inc (Camarillo, CA). All transgenic reporters were integrated

into attP2 (Groth et al., 2004).

Immunochemistry
Immunochemistry was performed as previously described (Eade and Allan, 2009; Berndt et al.,

2015). Primary antibodies: Rabbit a-FMRFa C-terminal peptide (1:1000, a gift from S. Thor)

Baumgardt et al., 2007; Mouse a-Eya (1:100; MAb clone 10H6 DSHB; Iowa University, IA); Rabbit

a-pMad (1:100, 41D10, Cell Signaling Technology, Danvers, MA), Chicken a-GFP antibody (1:1000,

ab13970, Abcam, Ontario, Canada). Donkey anti-Rabbit and anti-Mouse conjugated to DyLight 488,

Cy3, Cy5 (1:100, Jackson ImmunoResearch, West Grove, PA).

Image and statistical analysis
Sample size and measurements are given as supplementary files for each accompanying figure. Anal-

ysis of the reporter constructs was performed on heterozygous reporter lines. Images were acquired

with an Olympus FV1000 or a Zeiss Axio Imager VIS LSM880 confocal microscope with settings that

avoided pixel intensity saturation. Representative images of Tv neurons being compared in figures

were linear contrast enhanced together in Adobe Photoshop CS5 (Adobe Systems, San Jose, CA).

All statistical analyses and graphing were performed using Prism 5 or Prism 8.0.1 (GraphPad Soft-

ware, San Diego, CA). Normality of sample distribution was determined with Shapiro-Wilk normality

tests. All multiple comparisons were done with One-Way ANOVA and a Tukey post-hoc test, or Stu-

dent’s two-tailed t-test when only two groups were compared. Mann-Whitney U-test was used when

the samples were not normally distributed. Differences between groups were considered statistically

significant when p<0.05. Data are presented as either Mean ± Standard Deviation (SD).
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Quantification of reporter expression
Quantification of native EGFP reporter expression (without anti-GFP immunoreactivity enhancement)

in late L3 larval VNCs was performed, in the context of anti-pMad immunoreactivity (to mark nuclei

with active BMP-signaling). In all cases, five or more VNC were dissected and imaged for each geno-

type. All compared tissues were processed with the same reagents, imaged, and analyzed in identi-

cal ways. To quantitate reporter activity, we used Bitplane:Imaris v9.2 software (in Spots Mode) to

identify reporter-positive nuclei in the VNC (excluding the brain lobes). When comparing control and

pMad-binding site mutant genomic fragment reporters, we additionally assessed EGFP positive

nuclei that were co-marked by pMad immunoreactivity (by mean intensity thresholding). Imaris set-

tings were established independently for each set of reporters, in order to provide optimal ‘spot’

marking of a verifiable reporter and pMad co-immunoreactive nuclei, with minimal background fluo-

rescence spot marking. Each image was further subtracted, manually, for spots that erroneously

labeled background fluorescence.

Gel shift assay
FLAG::Mad, Myc::Medea, and/or TkvQD cDNA sequences were derived from previously described

vectors (Gao et al., 2005) and subcloned into a pAc5.1/V5-His vector backbone (Thermo Fisher,

Waltham, MA). Drosophila S2 cells were transfected at a density of 1.5 � 106 S2 cells per mL in a six

well dish in 2 mL of media. A total of 2.4 ug of plasmid was used per well with each plasmid consti-

tuting 0.8 ug of the total. Total plasmid mass was kept constant by co-transfecting empty pAc5.1

when only one or two protein coding plasmids were used for an experimental condition. Transfec-

tions were performed with the XtremeGENE HD transfection kit according to the manufacturer’s rec-

ommended protocol (Roche, Ontario, Canada). 48 hr after transfection, cells were harvested and

lysed for gel shift assay. Cells were harvested in 15 mL tubes then pelleted by centrifugation (700 g

at room temperature for 3 min). The pellets were re-suspended in PBS, transferred to 1.5 mL tubes,

and centrifugation repeated as before. Cells were then resuspended in 90 mL ice-cold lysis buffer

and the lysis reaction incubated on ice for 15 min. S2 cell lysis buffer contained 100 mM Tris HCl pH

7.6, 0.5% Tween-20, 1 mM DTT, and 1� Roche cOmplete ULTRA EDTA-free Protease inhibitor cock-

tail. The lysate was cleared by centrifugation at 16.2 � 103 g for 15 min at 4˚C. The supernatant was

aliquoted into new pre-chilled tubes in 30 uL volumes, snap-frozen in liquid nitrogen, and stored at

�80˚C until use. Oligonucleotides were synthesized and labeled with IRDye 700 by Integrated DNA

Technologies (IDT, Indiana). DNA and protein binding was performed by incubating 20 mg of lysate

protein with 1 mL of 50 nM IRDye 700-labeled probe in 20 mL of reaction buffer containing 25 mM

Tris pH7.5, 35 mM KCl, 80 mM NaCl, 3.5 mM DTT, 5 mM MgCl2, 0.25% Tween 20, 1 mg poly dIdC,

10% glycerol, and 1� Roche cOmplete ULTRA EDTA-free Protease inhibitor cocktail for 30 min at

room temperature. If super shifts were performed, then 1 mg of mouse anti-MYC (clone 9E10,

Sigma), mouse anti-FLAG (clone M2, Sigma), or mouse IgG (Sigma) was added and incubated for an

additional 30 min at room temperature. The DNA-protein complexes were resolved on a 4% non-

denaturing polyacrylamide gel for 1.5 hr at 70 V in 1� TGE buffer. After electrophoresis, the gel was

imaged immediately by a Licor Odyssey Imager system (Lincoln, NE).

Computational detection of BMP-LA instances
HOMER v4.10 software suite (Heinz et al., 2010) was used to scan the reference dm6 Drosophila

genome for the BMP-LA (GGCGCC(N5)GTAT) motif. Base-specific PhastCons scores (Siepel et al.,

2005) against 27-insect species were obtained from the UCSC genome browser (https://genome.

ucsc.edu/) to annotate each motif instance with evolutionary conservation scores

(Supplementary file 1b).
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according to the August 2014 (BDGP Release 6 + ISO1 MT/dm6) Assembly. The first column indi-

cates the assigned name for the BMP-LA as used throughout the manuscript or its location based on

the nearest gene. Out of these 128 motifs, we found that 68% (87/128) is located within an intron or

untranslated region (UTR), while the remaining 32% (41/128) are intergenic relative to the nearest

gene. Blue BMP-LAs indicate those tested but not found to be BMP-dependent. Bolded red letters

indicate the BMP-LA motifs in genomic fragments found to be BMP-dependent in third instar larva

VNC. *Average evolutionary conservation score of a motif calculated based on the base-by-base

conservation of each position in the motif. (c) Summary of BMP-LA containing genomic fragments

tested for in vivo reporter activity. We prioritized 24 enhancers to test in vivo based on their proxim-

ity to genes expressed (4th column) in the third instar larvae VNC. Reporters were sorted based on

the distance of the BMP-LA enhancer to the nearest CNS-expressed gene transcription start site

(TSS). Bolded letters indicate the BMP-LA containing genomic fragments found to be wit-dependent

in the VNC of third instar larvae. *Average evolutionary conservation score of a motif calculated on

the base-by-base conservation of each position in the motif.
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