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A B S T R A C T   

Cancer immunotherapy has shown to be a promising method in treating hepatocellular carcinoma (HCC), but 
suboptimal responses in patients are attributed to cellular and molecular heterogeneity. Iron metabolism-related 
genes (IRGs) are important in maintaining immune system homeostasis and have the potential to help develop 
new strategies for HCC treatment. Herein, we constructed and validated the iron-metabolism gene prognostic 
index (IPX) using univariate Cox proportional hazards regression and LASSO Cox regression analysis, successfully 
categorizing HCC patients into two groups with distinct survival risks. Then, we performed single-sample gene 
set enrichment analysis, weighted correlation network analysis, gene ontology enrichment analysis, cellular 
lineage analysis, and SCENIC analysis to reveal the key determinants underlying the ability of this model based 
on bulk and single-cell transcriptomic data. We identified several driver transcription factors specifically acti-
vated in specific malignant cell sub-populations to contribute to the adverse survival outcomes in the IPX-high 
subgroup. Within the tumor microenvironment (TME), T cells displayed significant diversity in their cellular 
characteristics and experienced changes in their developmental paths within distinct clusters identified by IPX. 
Interestingly, the proportion of Treg cells was increased in the high-risk group compared with the low-risk group. 
These results suggest that iron-metabolism could be involved in reshaping the TME, thereby disrupting the cell 
cycle of immune cells. This study utilized IRGs to construct a novel and reliable model, which can be used to 
assess the prognosis of patients with HCC and further clarify the molecular mechanisms of IRGs in HCC at single- 
cell resolution.   

1. Introduction 

Liver cancer ranks as the sixth most prevalent tumor, with around 
900,000 new cases diagnosed globally each year [1]. However, it ranks 

third in terms of mortality, with about 830,000 new deaths each year 
globally [1]. Hepatocellular carcinoma (HCC), constitutes approxi-
mately 90% of all liver cancers and stands as the most common type of 
liver cancer [2]. HCC exhibits high morbidity and mortality since it has 
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complex molecular mechanisms due to tumor heterogeneity [3]. Despite 
the improvements in treatments, HCC remains one of the cancer types 
with the highest rate of tumor-related fatalities, exhibiting only 21% for 
5-year survival rate [4]. For patients in the early stages of HCC, the 
primary treatment choices include surgical and radiological ablations 
coupled with localized chemotherapy. However, there are no remedies 
that can cure advanced HCC, and further therapeutic approaches are 
required to prevent the progression of HCC. As a crucial factor in the 
tumor microenvironment (TME), the immunophenotype has played a 
vital role in influencing the prognosis of patients with HCC. At the same 
time, the high cellular and molecular heterogeneity results in rather 
suboptimal response rates in patients with HCC [5]. Although various 
predictive models can classify individuals into separate risk categories, 
the ability of these models to differentiate the characteristics at the level 
of single cells remains unclear. Therefore, it is crucial to explore the TME 
and analyze the developmental dynamics of tumor cells, which allows us 
to acquire a profound understanding of the diverse immune responses 
against heterogeneous HCC tumor cells. The single-cell sequencing 
methods are state-of-the-art techniques for analyzing the immune 
landscape and heterogeneity of human cancers [6,7]. 

The liver is rich in iron, which is crucial for iron metabolism [8,9]. 
The increase of iron metabolism in liver tissue contributes to the 
development of HCC via various mechanisms, including providing 
growth and metabolic needs, generation of ROS, decreasing p53 protein 
level and its activity, and increasing mesenchymal and metastatic po-
tential [10–15]. The iron metabolism-related genes (IRGs) are signifi-
cantly modified via transcriptional and translational regulation in HCC. 
Clarifying potential changes in iron metabolism is necessary for under-
standing the development and progression of HCC. However, the iron 
metabolism in TME exhibits different effects in different types of tumors. 
Tumors can be categorized as ‘hot’ or ‘cold’ tumors, based on the level of 
infiltrated inflammatory cells and the degree of inflammatory response 
in the TME [16]. Iron often accumulates in hot tumors and supports 
cancer cell progression via influencing the ability of antigen-presenting 
cells (APCs) and T/B lymphocytes in TME [17]. As a representative of 
hot tumors, HCC frequently exhibits elevated levels of inflammation 
associated with tumor progression. This inflammation has been found to 
be linked with unfavorable patient survival rates and adverse thera-
peutic results [18]. Therefore, based on the malignant nature of liver 
cancer and its sensitive inflammatory response, further investigation is 
needed to understand how iron metabolism affects tumor-infiltrating 
lymphocytes, as well as its role in reshaping metabolic pathways 
within the immune microenvironment of HCC. 

In the current study, we developed and validated a stable and reli-
able prognostic scoring model using genes related to iron metabolism. 
Additionally, we concentrated on the cellular and molecular heteroge-
neity of HCC patients with different prognostic scores, and uncovered 
distinct immune features and molecular mechanisms underlying the 
capability of the prognostic scoring model. According to our study, the 
patient prognosis was linked to the makeup of cell composition and 
molecular heterogeneity. We also discovered that specific sub-
populations of malignant cells and Treg cells may account for distinct 
prognoses based on our scoring model. The study offers innovative 
perspectives for molecular mechanisms underlying the distinct clinical 
outcomes at the single-cell level, shedding new light on exploring the 
molecular and phenotype heterogeneity in HCC. 

2. Materials and methods 

2.1. Data collection and process 

The 10 sets of IRG were acquired through Gene Set Enrichment 
Analysis (GSEA) (http://software.broadinstitute.org/gsea/index.jsp) 
[19] (Supplementary Dataset 1). Both expression and clinical data for 
the LIHC dataset, encompassing 369 patients with HCC, were obtained 
from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov). 

The ICGC-LIHC dataset, consisting of 243 patients with HCC, was 
sourced from the International Cancer Genome Consortium (ICGC, htt 
ps://dcc.icgc.org/). Genetic alteration information was sourced from 
UCSC Xena (https://xena.ucsc.edu/). Single-cell transcriptome datasets 
for infiltrating T cells (GSE98638) [7] and HCC samples (GSE149614) 
[20] were retrieved from the GEO database (https://www.ncbi.nlm.nih. 
gov/geo/). 

2.2. Differential gene expression analysis 

Differentially expressed iron metabolism-related genes between pa-
tients who survived < 1 year and > 3 years were identified from the 
TCGA-LIHC using DEGseq in R software with the standard |Log2 FC| >=

0.5 and adjusted P < 0.05 [21]. 

2.3. Classification of HCC clusters 

Using the PAM clustering algorithm, the differentially expressed 
IRGs (DIRGs) were subjected to unsupervised consensus clustering based 
on TCGA-LIHC data. The clustering analyses were performed by 
repeating one thousand iterations, each with a random fraction of DIRGs 
of 0.95. The optimal cluster was selected based on the absence of an 
appreciable increase. 

2.4. Prognostic IPX construction 

For the construction of the scoring model, the mRNA-seq datasets 
from 369 HCC patients in TCGA-LIHC were employed. Initially, uni-
variate Cox proportional hazards regression analysis was performed to 
identify DIRGs with an adjusted P-value below 0.05. These selected 
DIRGs underwent a further 22 stepwise LASSO Cox regression to miti-
gate overfitting [22]. Subsequently, the iron metabolism-related gene 
prognostic index (IPX) was utilized to evaluate the prognostic risk for 
HCC individuals, where a higher score indicates a poorer prognosis. 
Based on the median risk score, patients with HCC were stratified into 
high- or low-risk groups. The predictive performance was evaluated 
using Kaplan-Meier survival analyses, the log-rank test, and the 
time-ROC analyses [23]. Both univariate and multivariate Cox regres-
sion analyses were conducted to ascertain the independence of IPX from 
other clinical parameters. 

2.5. Prognostic IPX validation and construction of the quantitative 
nomogram 

A total of 184 TCGA-LIHC patients were selected as the internal 
testing cohort in a 1:1 ratio by a random manner. Simultaneously, the 
243 ICGC-LIHC patients were obtained as the external testing cohort. We 
computed patient’s risk scores in the validation dataset based on IPX, 
and subsequently divided them into high-risk and low-risk groups using 
the median risk score from the training cohort. Various analyses, 
including Kaplan-Meier survival analyses, time-ROC analyses, and both 
univariate and multivariate Cox regression analyses, were carried out to 
assess the predictive ability. To improve the predictive accuracy of the 
model, we established a nomogram by integrating the score model with 
clinically significant independent prognostic factors. 

2.6. Comprehensive analysis of molecular and immune characteristics 
using bulk sequencing data 

To decipher the mechanism that underlies the model’s ability, we 
performed weighted correlation network analysis (WGCNA) [24] to 
investigate modules strongly linked to the high-risk group, The genes in 
module with high correlation coefficients were considered as suitable 
candidates for further pathway enrichment analysis using “Metascape” 
[24,25]. Several immune gene sets were manually collected to demon-
strate immune infiltration status among HCC patients [26–28]. 
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Moreover. The CIBERSORT algorithm was applied to elucidate dispar-
ities in the distribution of distinct immune cell types within the TME of 
HCC patients. Immune Cell Abundance Identifier (ImmuneCellAI), the 
tumor immune dysfunction and exclusion (TIDE), and The Cancer 
Immunome Atlas (TCIA) were employed to predict the efficacy of 
immunotherapy [29–31]. The information on genetic alterations was 
obtained from UCSC Xena (https://xena.ucsc.edu/), and the quantity 
and quality of gene mutations were analyzed using the Maftools [32]. To 
assess the transcription factor activity of E2Fs family, we performed a 
correlation analysis between E2Fs members and all protein-coding 
genes. The top 50 genes with the strongest correlation with E2Fs 
members were identified as signature genes to assess the transcription 
factor activity using ssGSEA [19]. 

2.7. Comprehensive analysis of molecular and immune characteristics 
using single-cell RNA sequencing data 

The single-cell transcriptome dataset of infiltrating T cells comprises 
4070 T cells from HCC [7]. The coefficients from the scoring model were 
used to calculat the risk score for each single cell. We utilized the median 
score calculated from the scoring model across all individual cells as the 
threshold to define low-score and high-score subpopulations. The 
pseudotime developmental cell trajectory was inferred using the 
Monocle 2 [33]. The DifferentialGeneTest function was performed to 
detect genes that exhibited differential expression across pseudotime 
with adjusted P-value < 0.01. BEAM function in Monocle 2 was used to 
identify branch-dependent genes. 

The single-cell dataset of HCC samples [20] comprises samples from 
normal liver tissue(Normal, n = 1788), primary tumor (PT, n = 14202), 
portal vein tumor thrombus (PVTT, n = 3329) and metastatic lymph 
node (MLN, n = 1463). The human reference (GRCh38) was obtained 
from the official website of 10X Genomics. Subsequently, gene expres-
sion matrices after quality filtration, were generated using the Cell-
Ranger tool (v7.1.0). Next, low-quality cells and doublets were removed 
according to the following standards: (1) doublet Score > 0.25; (2) 
unique molecular identifiers (UMIs) < 200 or UMIs > 8000; (3) the 
number of detected genes < 200 (4) percentage of mitochondrial UMIs 
> 10%. 71915 cells were retained for downstream analysis. We 
employed the Harmony algorithm [34] to integrate cells from different 
patient sources. A consensus list of 2000 highly-variable genes (HVGs) 
was formed across samples. Principal Component Analysis (PCA) was 
utilized to calculate 40 principal components (PCs). Nearest neighbor 
graphs were constructed based on the top 10 PCs using the FindNeigh-
bors function. Subsequently, we identified six major cell types based on 
canonical cell-type markers, including CD3D (TNK cells), IGHG1 (B 
cells), ALB (hepatocyte), CD68 (myeloid), VWF (endothelial), ACTA2 
(fibroblast). To delineate discrete clusters within hepatocytes, a subse-
quent round of clustering was conducted individually to identify 15 
distinct clusters. The methodology employed in this second round of 
clustering mirrored that of the initial round, ensuring consistency in the 
analytical procedures. The risk scoring of hepatocytes, as well as the 
categorization into high and low-risk groups, aligns with the afore-
mentioned methodology applied to the human infiltrating T cells 
processing. 

Then, we employed the WGCNA [24] to construct the co-expression 
network. Utilizing default parameters, we established a signed network 
by integrating genes identified as noise-robust through optimal gene 
filtering for single-cell data (OGFSC) [35]. To group genes with consis-
tent expression profiles into modules, we utilized average linkage hier-
archical clustering, with the topological overlap measure serving as the 
dissimilarity metric. To evaluate and rank the hubness of modular genes 
within each gene module, we utilized modular gene centrality, which 
involves the summation of within-cluster connectivity measures. 

Finally, we evaluated the transcription factor regulation strength in 
the single-cell regulatory network by utilizing pySCENIC with default 
parameters [36]. The choice of DNA-motif analysis was determined 

through RcisTarget [37], while the identification of gene networks was 
achieved using AUCell [36]. Regulon modules were identified utilizing 
the Connection Specificity Index (CSI), and hierarchical clustering with 
Euclidean distance was executed on the CSI matrix to discern distinct 
regulon modules. 

2.8. Clinical samples collection and RT-qPCR analysis 

A total of 12 hepatocellular carcinoma (HCC) specimens, along with 
corresponding adjacent normal tissues, were procured from the First 
Affiliated Hospital of Xiamen University in China. Demographic and 
clinical characteristics of these 12 HCC-diagnosed patients are detailed 
in Table S1. Institutional review board approval was secured for this 
study at the First Affiliated Hospital of Xiamen University. Extraction of 
total RNA from clinical sample tissues adhered to the instructions of 
RNAiso Plus (Cat#9109, TAKARA, Japan). Reverse transcription 
involved the use of extracted total RNAs with an RT reagent Kit with 
gDNA Eraser (Cat# RR047A, TAKARA, Japan), following the provided 
instructions. The RT-qPCR was executed using the SYBR Green Real- 
Time PCR Master Mix (Cat#RR820A, TAKARA, Japan) and the Light-
Cycler480II Real-Time PCR system (Roche, CH), following manufac-
turers’ protocols and utilizing appropriate primer pairs, with 18S rRNA 
employed as a control. 

2.9. Statistical analysis 

All statistical analyses were conducted using R (v4.1.0). Survival 
analysis employed the Kaplan-Meier method and Log-rank test, with the 
exclusion of patients lacking completed follow-up data. Two group 
comparisons utilized the t-test and three or more group comparisons 
utilized the ANOVA test. Independent prognostic factor analysis 
involved both univariate and multivariate Cox regression analysis, with 
the exclusion of patients lacking any characteristics. The prediction 
accuracy of prognostic indicators was assessed using time-dependent 
receiver operating characteristic curves. A threshold of adjusted P- 
value < 0.05 was set for statistical significance. 

3. Result 

3.1. Establishment and validation of the IPX model 

The overall scheme of this study is shown in Fig. 1. Firstly, we 
collected 481 IRGs from the 10 gene sets [19] and performed differential 
gene expression (DGE) analysis to compare these genes from the two 
patient groups with overall survival (OS)< 1 year and OS > 3 years. 
Thus, we identified 37 DIRGs from the TCGA-LIHC dataset (Fig. 2A). 
Then, we categorized HCC patients into three clusters based on these 
DIRGs using unsupervised consensus clustering (Fig. 2B, Supplementary 
Dataset 2). Clusters A, B, and C exhibited different prognoses (Fig. 2C, P 
< 0.001), indicating that DIRGs possessed the ability to distinguish HCC 
patients with different survival prognoses. Furthermore, 25 of 37 genes 
(67.56%) were found to have a correlation with OS (P < 0.05) through 
the implementation of univariate Cox proportional hazards regression 
analysis (Fig. 2D). Finally, we performed LASSO Cox regression to screen 
the ultimate DIRGs for constructing the risk-score models and deter-
mined that the expression of 13 DIRGs correlated with OS in HCC pa-
tients. The modeling score of the IPX was calculated using these 13 
DIRGs, according to the formula: IPX score =

-0.00144*CYP3A5+0.00932*CCNB1+0.11536*ABCB6+0.00982*FLV-
CR1+0.09603*OSBP2+0.00326*G6PD+0.00569*RAP1GAP-
+0.02172*SLC7A11+0.19662*PPAT- 
0.00073*CYP2C9+0.01025*PLOD2+0.00098*IGSF3+0.00177*RRM2. 
In this formula, the gene symbol represents the normalized expression 
level. 

Consequently, we calculated the IPX score for each patient, and 
classified the patients into high- and low-risk groups based on the 
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median risk score of the training cohort. The prognosis of patients in the 
high-risk groups was considerably worse compared to those in the low- 
risk groups, as indicated by the area under the ROC curve (AUC) value of 
0.828, 0.760, and 0.739 for 1-year, 3-year, and 5-year OS, respectively 
(Fig. 3A, all P-value < 0.001). The IPX model demonstrated the ability to 
predict long-term prognosis in liver cancer patients with relatively high 
accuracy. In addition, univariate Cox regression and multivariate Cox 
regression analysis revealed that BMI, TNM stage, and IPX were inde-
pendent prognostic factors for OS prediction (Table 1). The internal 
testing cohort (Fig. 3B) and the external testing cohort (Fig. 3C) were 
further applied to verify the reliability of IPX. The two subgroups 
exhibited significantly different prognoses and their AUC values for 1- 
year, 3-year, and 5-year OS were 0.807, 0.817, and 0.774 in the inter-
nal testing cohort (Fig. 3B, all P-value < 0.001), and 0.734, 0.743, and 
0.743 in the external testing cohort (Fig. 3C, all P-value < 0.001), 
respectively. In addition, IPX also showed as an independent prognostic 
factor for survival prognosis in both validation cohorts (Table 1), 
demonstrating the reliability and stability of the IPX model. Moreover, 
we conducted DGE analysis on 13 DIRGs using TCGA and ICGC datasets, 
and found significant statistical differences in six genes. In cancer tissue, 
the mRNA levels of ABCB6, CCNB1, RRM2, FLVCR1, and G6PD 
exhibited a notable increase compared to normal tissues (Fig. 4A-E, G-K) 
while CYP2C9 showed the opposite trend (Fig. 4F, L). Further, we used 
The Human Protein Atlas (https://www.proteinatlas.org/) to confirm 
the protein expression level, and found five of these genes showed a 
consistent trend except gene ABCB6 which was lack of immunohisto-
chemical result (Fig. 4M-Q). Meanwhile, we employed RT-qPCR analysis 
to compare differences in gene expression levels between 12 tumors and 
adjacent tissues from HCC samples. The results confirmed the changes of 
gene expression in six genes described above (Fig. 4R-W). 

3.2. Building and validating a nomogram to predict prognosis 

To offer an adaptable clinical approach for evaluating the risk of 
patients, we created a nomogram (combined model) using independent 
prognostic factors including TNM stage and IPX, for predicting the 1- 
year, 3-year, and 5-year OS based on the TCGA dataset (Supplemen-
tary Fig. 1A). The calibration curve demonstrated a strong correlation 

between the predicted survival probabilities for 1, 3, and 5 years and the 
actual survival probability (Supplementary Fig. 1B). Additionally, the 
nomogram had a C-index value of 0.746 (0.709–0.784), which was 
higher than that from only IPX (0.727, [0.681–0.773]) or only TNM 
stage (0.664, [0.589–0.739]) (Table 2). The prognosis of patients in the 
high-risk subgroup was considerably worse compared with those in the 
low-risk subgroup, as indicated by the AUCs for 1-year, 3-year, and 5- 
year OS rates, which were 0.83, 0.73, and 0.71, respectively (Fig. 3D). 
In addition, the two subgroups exhibited significantly different prog-
nosis and the AUCs for 1-year, 3-year, and 5-year OS were 0.82, 0.86, 
and 0.78 in the internal testing cohort (Fig. 3E, all P-value < 0.001), and 
0.85, 0.78, and 0.78 in the external testing cohort (Fig. 3F, all P-value 
< 0.001), respectively. Therefore, the AUCs of the nomogram indicated 
consistent and robust discriminative power, and the Kaplan-Meier 
analysis revealed that patients in the high-risk subgroup had a consid-
erably worse prognosis compared with those in the low-risk subgroup. 

To assess the performance of the combined model in comparison to 
other gene signatures, we systematically reviewed 37 previously pub-
lished gene signatures and conducted a thorough comparative analysis 
with IPX. Notably, IPX exhibited superior performance, demonstrating 
the highest efficacy among these published gene signatures (Supple-
mentary Fig. 2). It ranked as the top one in the 1-year AUC and displayed 
relatively higher AUC values at 3 years compared with other methods. 
Concordantly, the C index of IPX-based nomogram ranked highest 
among recently published nomograms. Comprehensive details 
regarding previously published gene models for HCC prognosis are 
summarized in Supplementary Dataset 3. 

3.3. Heterogeneity of genetic phenotype of IPX-defined subgroups based 
on bulk transcriptomic data 

To clarify the molecular mechanisms underlying the predictive 
scoring model’s ability, we applied WGCNA to identify modules asso-
ciated with IPX and observed nine IPX-related modules with excluded 
gray module (Supplementary Fig. 3A). Genes in the blue module dis-
played a robust positive correlation with the high-risk group and showed 
enrichment in the cell cycle signaling pathway (Supplementary Fig. 3B) 
and the E2Fs family (Supplementary Fig. 3C). To validate our 

Fig. 1. The schematic workflow of the study.  
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hypothesis, we conducted additional enrichment analysis using GSVA 
with the Hallmark database as the reference (https://www.gsea-msigdb. 
org/gsea/msigdb/collections.jsp). Consistently, we identified the cell 
cycle pathway and E2Fs pathway as two of the top five enriched path-
ways (Supplementary Fig. 3D). Besides, the molecular mechanisms were 
validated in the ICGA dataset (Supplementary Fig. 4). Moreover, the 
E2Fs activities were notably elevated in the IPX-high group compared 
with those in the IPX-low group, as demonstrated in both the TCGA 
dataset (Supplementary Fig. 5A) and the ICGC dataset (Supplementary 
Fig. 5B). Therefore, the poor survival rate of the IPX-high group may be 
attributed to the activation of cell cycle and E2Fs pathways in malignant 
cells. Ferritin proteins have been reported to be involved in maintaining 
the cell cycle and genomic stability since imbalances in iron metabolism 
can lead to genomic instability and generation of DNA repair defects, 
which favors carcinogenesis [13,15]. Moreover. TP53 mutation also 
mediates metabolic alteration to promote tumor progression [11]. We 
conducted a more in-depth examination of genomic alterations to 
pinpoint genetic regulators and displayed the top 20 genes having the 
highest mutation frequencies in individuals diagnosed with HCC in 
Supplementary Fig. 6A. Notably, TP53 mutations were considerably 
more common in IPX-high group (40%) than IPX-low group (15%, 
Supplementary Fig. 6B). 

3.4. Application of IPX model in malignant cells based on single-cell 
transcriptomic data 

To uncover the underlying mechanisms of malignant cells behind the 
IPX model, we performed single-cell integration on hepatocellular car-
cinoma tissues obtained from distinct anatomical locations of 10 pa-
tients, including normal liver tissue, primary tumor (PT), portal vein 
tumor thrombus (PVTT) patients, metastatic lymph node (MLN). We 
then identified six major cell types (Fig. 5B) with canonical markers 
(Fig. 5A), including TNK cells, B cells, hepatocytes, myeloid, endothe-
lial, and fibroblast. Then, the hepatocytes were divided into 15 clusters 
(Fig. 5C). Interestingly, we observed a notable enrichment of C4 and C5 
in cancer tissues, while they were absent in normal tissues (Fig. 5D). We 
identified 20782 hepatocytes and applied the IPX model to assign a risk 
score to each hepatic cell. We found higher risk scores were positively 
correlated with HCC stages (Fig. 5E) and HCC metastasis progression 
(Fig. 5F). Besides, we found C4 and C5 exhibited the highest risk scores 
among hepatocyte clusters (Fig. 5G). The result suggested that C4 and 
C5 may constitute pivotal malignant cell subpopulations underlying the 
capability of the IPX model. To investigate the potential genes network 
of C4 and C5, we conducted a WGCNA analysis. Surprisingly, the red 
module was positively correlated with C4 and C5 (Figure 5H). The genes 
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Fig. 2. Prognostic DIRGs could classify patients with HCC into three clusters with distinct prognostic outcomes. (A) Volcano plot showing DIRGs based on TCGA 
training cohort. (B) Heatmap showing similarity matrix of patients in TCGA training cohort derived from unsupervised consensus clustering. (C) Kaplan-Meier plot 
showing survival difference within three clusters. (D) Forest plot showing prognostic DIRGs associated with OS. 

Z. Zhu et al.                                                                                                                                                                                                                                      

https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp


Computational and Structural Biotechnology Journal 23 (2024) 929–941

934

Fig. 3. Performance of the predictive score model (A-C) and the nomogram (D-F). (A, D) Kaplan-Meier survival curves for comparison of the overall survival rates 
between patients in the low-risk group and the high-risk group for the training cohort (upper), The 1,3,5-year ROC curve of predictive score model for the training 
cohort (lower, all P-value < 0.001). (B, E) Comparison of the overall survival rates between patients in the low-risk group and the high-risk group for internal testing 
cohort (upper), The 1,3,5-year ROC curve of predictive score model for internal testing cohort (lower, all P-value < 0.001). (C, F) Comparison of the overall survival 
rates between patients in the low-risk group and the high-risk group for external testing cohort (upper), The 1,3,5-year ROC curve of predictive score model the 
external testing cohort (lower, all P-value < 0.001). 
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Table 1 
Univariate and multivariate analysis the association between clinicopathological variables and overall survival.  

Characters Training cohort Internal testing cohort External testing cohort  

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis  

HR 95%CI P HR 95%CI P HR 95%CI P HR 95%CI P HR 95%CI P HR 95%CI P 

Age 1.012 
(0.989- 
1.035) 

0.322   1.003 
(0.971- 
1.036) 

0.848 1.897 
(1.045- 
3.443) 

0.035 1.001 
(0.971- 
1.032) 

0.027 0.387 
(0.203- 
0.737) 

0.004 

Gender 0.624 
(0.356- 
1.093) 

0.099   0.531 
(0.232- 
1.215) 

0.134   0.497 
(0.267- 
0.923) 

0.929   

Grade 1.232 
(0.836- 
1.817) 

0.292   1.166 
(0.675- 
2.014) 

0.583       

TNM stage 1.865 
(1.293- 
2.690) 

< 0.001 1.547 
(1.028- 
2.328) 

0.036 2.021 
(1.225- 
3.335) 

0.006   2.026 
(1.407- 
2.917) 

< 0.001   

Vascular 
invision 

1.377 
(0.773- 
2.451) 

0.277   1.745 
(0.775- 
3.927) 

0.179       

BMI 1.045 
(1.012- 
1.078) 

0.006 1.044 
(1.011- 
1.078) 

0.008 1.056 
(1.016- 
1.097) 

0.006 1.897 
(1.045- 
3.443) 

0.035     

Prior malignancy        1.754 
(0.775- 
3.971) 

0.178 1.883 
(1.302- 
2.722) 

< 0.001 

IPX 3.332 
(2.166- 
5.125) 

< 0.001 3.125 
(1.995- 
4.896) 

< 0.001 4.620 
(2.220- 
9.613) 

< 0.001 1.897 
(1.045- 
3.443) 

0.035 6.086 
(3.015- 
12.281) 

< 0.001 4.754 
(2.328- 
9.706) 

< 0.001  

Fig. 4. mRNA and protein expression levels of individual genes in DIRGs in different datasets. The expression differences of 6 of the 13 DIRGs were statistically 
significant, and the expression trends were consistent in the TCGA dataset (A-F), ICGC dataset (G-L), The Human Protein Atlas (M-Q), and 12 HCC clinical samples 
(using RT-qPCR) (R-W). 
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belonging to the red module was enriched in chromosome segregation, 
nuclear division, and mitotic nuclear division (Supplementary Figure 7). 
We then analyzed the interaction strength of genes in the red module 
and found the interaction strength of the NUF2, CKS1B, HMGB2, CENPF, 

and CDC20 ranked as the top five genes (Fig. 5I). We further explored 
the association between the genes in the red module with C4 and C5, and 
genes such as NUF2, and CKS1B were significantly associated with C4 
and C5, respectively (Fig. 5J, Fig. 5K). 

To explore the potential driver transcription factors for C4 and C5, 
we conducted a thorough comparison of the atlas-wide concordance in 
regulon specificity score (RSS) scores for each regulon pair using the 
Connection Specificity Index (CSI) using SCENIC [38]. Notably, these 
TFs are structured into 7 primary modules (Fig. 5L). Interestingly, the 
module7 occupies C4 and C5 region with several representative regu-
lators, such as FOXM1, E2F1, E2F7 (Supplementary Figure 8, Fig. 5L), 
but other modules have minimal impact on C4 and C5 (Supplementary 

Table 2 
The C-index of Signature, Stage and Combined model.  

Biomarker C-index 95%CI Lower 95%CI Higher P-value 

Signature 0.726819 0.680894 0.772744 3.67E-22 
Stage 0.664469 0.589597 0.73934 1.67E-05 
Combined model 0.746342 0.708523 0.784161 4.65E-12  

Fig. 5. Detailed characterization of malignant cells based on single-cell RNA sequencing data. (A) UMAP visualization of signature genes that were used to annotat 
major cell types. (B) UMAP visualization of integrated 6 major cell types. (C) UMAP visualization of hepatocytes that were clustered into 15 sub-clusters. (D) Stacked 
barplot showing the proportion of hepatocytes cell types in each site. (E) Violin plot showing the risk scores of hepatocytes across different HCC stages. (F) Violin plot 
showing the risk scores of hepatocytes across different sites. (G) Violin plot showing the risk scores of hepatocytes across different hepatocyte sub-clusters. (H) 
Module–trait relationships in all hepatocyte sub-clusters. (I) Relatedness network of genes in the red module. (J) The red module membership and gene significance 
for the C4 sub-cluster. (K) The red module membership and gene significance for the C5 sub-cluster. (L) Heatmap showing the regulon modules using regulon 
connection specificity index (CSI) matrix with representative regulators. (M) Rank plot showing the transcription factors of C4 (Left) and C5 (Right) sub-cluster based 
on regulon specificity score (RSS). 
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Fig. 6. Discriminating T-cell populations based on single-cell RNA sequencing data. (A) Stacked barplot showing the proportion of CD4+ T cells between the high- 
score and low-score populations. (B) The trajectory of CD8+ T cells inferred by Monocle2. (C) Pseudotime analysis showed six CD8+ T subpopulations on each branch. 
(D) Pseudotime analysis showed high-score and low-score CD8+ T cells on each branch. (E) Stacked barplot showing the proportion of CD8+ T cells between the high- 
score and low-score populations. (F) The trajectory of CD4+ T cells inferred by Monocle2. (G) Pseudotime analysis showed six CD4+ T subpopulations on each 
branch. (H) Pseudotime analysis showed high-score and low-score CD4+ T cells on each branch. (I) Pseudotime plot showing distinct developmental trajectories of 
CD4+ T cell and CD8+ T cell for high-score and low-score populations. (J) Heatmap for the dynamic top genes along pseudotime for high-score and low-score 
populations for CD4+ and CD8+ T cells. 
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Figure 8). We further identified cell cluster-specific transcription factors 
across all 15 clusters (Supplementary Figure 9). We identified E2F2, 
E2F7, FOXM1, TFDP1 were the most specific regulons for C4 and C5 
(Fig. 5M). FOXM1, E2F7, E2F2, and TFDP1 genes are known for their 
involvement in cell cycle control and are crucial for normal cell division 
[39–41]. Additionally, they have been implicated in cancer progression 
[39,40]. These results suggested that FOXM1, E2F7, E2F2, and TFDP1 
genes were the driver transcription factors in C4 and C5, thereby 
contributing to the adverse survival outcomes observed in the IPX-high 
group. 

3.5. The TME heterogeneity of IPX-defined subgroups based on bulk 
transcriptomic data 

To explore variances of immune microenvironments between the 
IPX-high and IPX-low groups, we utilized the CIBERSORT algorithm to 
estimate the proportions of immune cells using RNA expression data 
from both the TCGA and ICGC datasets. The proportion of Treg cells 
exhibited significantly higher in the IPX-high group compared with that 
of the IPX-low group in both the TCGA cohort (Supplementary 
Figure 10 A) and ICGC cohort (Supplementary Figure 10B). To confirm 
our hypothesis, we employed ssGSEA to compute the scores for various 
immune cell types and observed a higher abundance of Tregs in the IPX- 
high group compared with the IPX-low group in both the TCGA (Sup-
plementary Figure 10 C) and ICGC cohorts (Supplementary Figure 10D). 
The abundance of Tregs reflects the immunosuppressive status of the 
TME [42–44]. We further evaluated the immunosuppressive status of 
patients with HCC using several well-known signatures [26–28]. Indeed, 
we found that the IPX signature was significantly positively associated 
with TGFβ extracellular matrix pathway, T cell inhibitors, and Treg 
transcriptional signature (Supplementary Figure 11). Therefore, these 
findings suggested a possible mechanistic connection between the 
diverse immune infiltration and IPX scores observed in HCC patients. 
Specifically, the IPX-high group appeared to display a more pronounced 
immune escape phenotype, possibly due to the elevation of activated 
Tregs. 

In addition, we utilized ImmuneCellAI to forecast the response to ICB 
therapy and revealed a notable enrichment of ’no response’ in the IPX- 
high group (Supplementary Figure 12 A). This observation was consis-
tently corroborated by the TIDE algorithm [30] (Supplementary 
Figure 12B). On the other hand, a patient’s Immune Prognostic Score 
(IPS) can be derived in an unbiased manner using machine learning by 
considering the four major categories of genes that determine immu-
nogenicity including effector cells, immunosuppressive cells, MHC 
molecules, and immunomodulators. A higher IPS score indicates higher 
level of immunogenicity [45]. The IPS scores of HCC patients in the high 
IPX group were significantly lower for ctla4_neg_pd1_neg, ctla4_-
neg_pd1_pos, ctla4_pos_pd1_neg, and ctla4_pos_pd1_pos categories 
(Supplementary Figure 12 C). The high IPX group was associated with a 
reduced likelihood of benefiting from ICI therapy. Therefore, individuals 
with higher IPX scores could potentially benefit less from immuno-
therapy when compared with those belonging to the IPX-low group. 

3.6. Application of IPX model in infiltrating T cells based on single-cell 
transcriptomic data 

To confirm our observation of TME dynamics from the deconvolu-
tion of bulk RNA-seq data, we applied the IPX scoring model to single- 
cell transcriptomic data of infiltrating T cells in HCC patients from the 
previous study (GSE98638) [7]. The 4070 T cells from the single-cell 
dataset were classified into high-score (n = 2103) and low-score 
(n = 1967) subgroups based on our scoring model. We observed 
obvious differences in the composition of CD4+ T cells and CD8+ T cells 
between the two subgroups (Figs. 6A, 6E). The low-score subgroup 
exhibited higher proportions of naive CD4+ (C06_CD4 − CCR7) and 
CD8+ T cells (C01_CD8 − LEF1) compared with the high-score subgroup. 

In contrast, the high-score subgroup displayed elevated proportions of 
exhausted CD8+ T cells (CC04_CD8 − LAYN), exhausted CD4+ T cells 
(C10_CD4 − CXCL13), and tumor-infiltrating Tregs (C08_CD4 − CTLA4) 
compared to the low-score subgroup. In addition, we noticed a signifi-
cant increase in the expression of exhaustion marker genes in the 
high-score subgroup compared with those in the low-score subgroup 
(Supplementary Figure 13). 

Then, we performed a pseudotime analysis to examine the potential 
transitions and differentiation trajectories among CD4+ T cells and 
CD8+ T cells. CD4+ T cells exhibited three major fate branches (Fig. 6B). 
We found that tumor-infiltrating Tregs (C08_CD4 − CTLA4) exhibited 
depletion in the initial state and constituted most of the fate 3 branch, 
indicating that the fate 3 branch represented the differentiation trajec-
tory of Treg phenotype (Fig. 6C). Interestingly, the proportion of high 
IPX-score cells increased from an initial 42% in the initial state to 63% in 
the end fate 3 branch (Fig. 6D). On the other hand, CD8+ T cells 
exhibited two major fate branches (Fig. 6F) and the exhaustion- 
associated CD8+ T cells (CC04_CD8 − LAYN) constituted the predomi-
nant portion (accounting for 93%) of the fate 2 branch (Fig. 6G), sug-
gesting that the fate 2 branch represented the differentiation trajectory 
of exhausted phenotype. Interestingly, the fate 2 branch was dominated 
by high IPX-score cells, constituting up to 90% of the sub-population 
(Fig. 6H). These results suggested that Treg and exhausted CD8+ T 
cells might contribute to the unfavorable survival outcomes identified in 
the IPX-high group. We also conducted pseudotime analyses using 
Monocle for a deeper investigation into the developmental trajectories 
of low-score and high-score cells. This analysis enabled us to elucidate 
the dynamic evolution of cell states and immune cell transitions in both 
subgroups of CD4+ and CD8+ T cells [46]. Interestingly, high-score and 
low-score clusters displayed distinct developmental paths and distribu-
tions of cell types in both CD4+ and CD8+ T cells (Fig. 6I). In the 
low-score subgroup, the naïve CD4+ T cells (C06_CD4-CCR7) were 
predominantly found at the initial stage of the pseudotime trajectory 
while the cytotoxic CD4+ T cells (C11_CD4-GNLY) mostly localized at a 
distal branch. In contrast, these two cell types showed substantial 
overlap and primarily occupied intermediate states within the 
high-score subgroup. In low-score subgroup, the effector CD8+ T cells 
(C02_CD8-CX3CR1) mostly resided along one trajectory path and over-
lapped extensively with naive CD8+ T cells (C01_CD8 − LEF1 cluster), 
but the exhausted CD8+ T cells (C04_CD8-LAYN) mainly localized at 
another distal branch. Unlike the low-score subgroup, the effector CD8+

T cells (C02_CD8-CX3CR1) and exhausted CD8+ T cells 
(C04_CD8-LAYN) bifurcated into two branches in the high-score 
subgroup. 

Further, we delved into the transcriptional alterations across the 
pseudotime trajectory and pinpointed genes that underwent significant 
changes along the differentiation processes. We found the top 50 
differentially expressed genes (DEGs) were associated with cell cycle 
and immune inflammation (Fig. 6J). We performed branch-dependent 
DGE analysis and found that distinct DEGs were associated with cell 
cycle and immune inflammation in both CD4+ T cells and CD8+ T cells 
(Supplementary Figure 14). T cells in the high-score subgroup highly 
expressed genes enriched in pathways related to the cell cycle, including 
transitions in the mitotic cell cycle phases, nuclear division, and mitotic 
nuclear division (Fig. 7A). In contrast, the top up-regulated genes in the 
low-score subgroup were notably enriched in several critical biological 
processes, including the regulation of T cell activation, cell-cell adhesion 
involving leukocytes, and immune responses mediated by leukocytes 
(Fig. 7B). We further performed ssGSEA to investigate the different 
pathway activities between two cell subpopulations. We found that the 
gene set scores were notably elevated in the high-score subgroup 
compared to the low-score cluster for categories such as "Cell cycle," 
"Treg," and "T exhaustion" (Fig. 7C). Conversely, the gene set score for 
"Positive regulation of cell activation" was higher in the low-score sub-
group compared with that in the high-score subgroup (Fig. 7C). There-
fore, our results indicated that cell-cycle perturbation and TME 
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reprogramming appeared to influence immunosuppressive features 
exhibited by T cells in the high-score subpopulation. Consistently, we 
investigated the iron metabolic score across human cancers using the 
ssGSEA algorithm and found that iron metabolism scores were signifi-
cantly elevated in cancer than those in the normal group among various 
tumor types (n = 13), including BLCA, UCEC, HNSC, PRAD, COAD, 
LUSC, LIHC, BRCA, KICH, THCA, LUAD, CHOL and ESCA 

(Supplementary Figure 15), expanding the broad application value of 
the score model. 

4. Discussion 

Most HCC staging systems are based on tumor mutation burden and 
disease staging, with stratification based on prognosis [47]. However, 
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Fig. 7. Enrichment analysis showed distinct biological processes between high-score and low-score clusters. (A) Biological pathways that are associated with 
significantly branch-dependent genes for high-score. (B) Biological pathways that are associated with significantly branch-dependent genes for low-score. (C) Single 
sample gene set enrichment analysis results for comparing the expression of the dynamic genes during branch evolution for the “Cell cycle” term, the “Positive 
regulation of cell activation” term, the “Treg” term, and the “T exhaustion” term. * P-value < 0.05, ** P-value < 0.01, *** P-value < 0.001 and **** P- 
value < 0.0001. 
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due to the complexity of liver cancer’s response to immunotherapy, it is 
difficult to explain the adverse biological characteristics that affect 
treatment and survival responses. The iron metabolism in the tumor site 
is different from the adjacent site in HCC, and IRGs contribute signifi-
cantly to the progression of HCC [48]. For the proliferation and repli-
cation of DNA, HCC necessitates a substantial concentration of iron [49]. 
On the other hand, high levels of cellular iron would alter the T cell 
infiltrating microenvironment, then promote the proliferation, invasion, 
and migration of tumors [50]. Thus, IRGs could potentially serve as a 
promising target for the treatment of HCC. 

In the current study, we developed and verified a prognostic scoring 
model by utilizing IRGs that have a crucial function in malignant cells 
and the TME. The scoring model effectively categorized HCC patients 
into distinct risk groups since the prognosis for patients in the high-risk 
group was significantly poorer in comparison to those in the low-risk 
group. Then, a nomogram was constructed by combining the scoring 
model and clinicopathological risk feature, offering a comprehensive 
model suitable for clinical implementation. Several previous studies 
have built prognostic signatures using IRGs [51,52], but there has been 
limited exploration of the impact of cellular heterogeneity and micro-
environment variations on the prognostic gene models in HCC. Our 
study analyzed differences in cell populations at different tumor stages 
and different tumor sites, and found that cellular and molecular het-
erogeneity can influence patient prognosis. We found several represen-
tative regulators were specifically activated in specific malignant cell 
subpopulations to contribute to the adverse survival outcomes in the 
IPX-high subgroup. In addition, we observed that cell-cycle perturbation 
and TME reprogramming appeared to influence the immunosuppressive 
features of T cells in the IPX-high subgroup. Previous predictive models 
for metabolic reprogramming of HCC have identified genes that are 
consistent with the predictions of this study, such as FLVCR1 [51,52]. 
And it has been validated that knockout of FLVCR1 could modulate the 
proliferation, migration, and invasion of HCC [53]. The further func-
tional study is needed to investigate whether IRGs can influence tumor 
progression and immune cell infiltration in mouse models. It has been 
confirmed that ferroptosis has opened up an emerging strategy for 
anti-tumor treatment in systemic tumor therapy, radiation therapy, and 
immunotherapy [20]. Multiple studies have confirmed that targeting 
SLC7A11 can reverse drug resistance during the treatment of malignant 
tumors. Data from PharmSnap shows that one anti-xCT antibody drug 
(Agilvax) targeting SLC7A11 is currently in preclinical use for cancer 
treatment. At present, SLC7A11 has been widely endowed with 
chemotherapy resistance for various types of cancer [54]. Therefore, 
these modeling genes are expected to become special therapeutic targets 
in HCC treatments. 

We further attempted to uncover key determinants behind the ability 
of this model to identify high-risk populations. The single-cell RNA-seq 
analysis showed that several driver transcription factors activated in 
special malignant subsets belonging to E2Fs family, such as E2F7, E2F2, 
and TFDP1. It is reasonable that the E2F family was identified in a high– 
risk subgroup since E2Fs are a prevalent and crucial group of tran-
scriptional regulators to control cell cycle and genomic integrity, and 
cope with replication pressure and DNA damage. Moreover, the dysre-
gulated functions of E2Fs were associated with unfavorable prognoses in 
human cancers [55]. The bulk RNA-seq analysis revealed that poor 
prognosis may be attributed to dysregulation of the cell cycle and E2Fs 
pathway that was induced by TP53 mutations. Besides, iron overload in 
HCC cells was likely to generate ROS that promotes genomic instability 
and generation of DNA repair defects, especially the TP53 mutation and 
p53 acetylation [56,57], resulting in the abnormal expression of E2Fs 
that induce malignant transformation [58]. 

On the other hand, the TME consists of various cellular and non- 
cellular elements that play vital roles in fostering or preventing tumor 
growth. Intertumoral immune cell heterogeneity may also be a key 
determinant for the distinct clinical outcomes. In the HCC microenvi-
ronment, iron is usually enriched and released from macrophages and 

neutrophils, which can support tumor progression via multiple iron- 
dependent pathways [59]. The cellular function of iron metabolism is 
complex and even conflicts in the microenvironment. For instance, 
Agoro et. al. stated that an iron-rich diet in mouse models promotes the 
expression of M2 markers and inhibits the M1 phenotype in the liver 
[60]. In contrast, Handa et. al. reported an opposite conclusion that cell 
iron loading triggers the expression of M1 markers but reduces M2 po-
larization in macrophages [61]. To unveil the key determinants in the 
microenvironment of our scoring model, we deconvoluted bulk tran-
scriptomes using CIBERSORT and found that the Treg abundance of the 
high-risk subgroup increased notably than that of the low-risk subgroup 
in both the TCGA and ICGC datasets. We extended the scoring model to 
single-cell transcriptomes and confirmed that Treg cells exhibited a 
higher ratio in the high-score cluster than in the low-score cluster. And 
cell cycle showed higher enrichment in high-score cluster, providing an 
explanation that IRGs may induce cell-cycle perturbation to influence 
the function and composition of immune cells in TME. The construction 
and calibration of this predictive model were based on multiple sets of 
different datasets, providing a relatively reliable predictability. Unfor-
tunately, this predictive model lacks experimental validation and evi-
dence from multi-omics studies on the same set of samples. Thus, more 
functional experiments and multi-omics studies from the same group of 
individuals should be carried out in the future. 
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