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Abstract

Bachman’s Sparrow (Peucaea aestivalis) is a fire-dependent species that has undergone range-wide population declines in
recent decades. We examined genetic diversity in Bachman’s Sparrows to determine whether natural barriers have led to
distinct population units and to assess the effect of anthropogenic habitat loss and fragmentation. Genetic diversity was
examined across the geographic range by genotyping 226 individuals at 18 microsatellite loci and sequencing 48
individuals at mitochondrial and nuclear genes. Multiple analyses consistently demonstrated little genetic structure and
high levels of genetic variation, suggesting that populations are panmictic. Based on these genetic data, separate
management units/subspecies designations or translocations to promote gene flow among fragmented populations do not
appear to be necessary. Panmixia in Bachman’s Sparrow may be a consequence of an historical range expansion and
retraction. Alternatively, high vagility in Bachman’s Sparrow may be an adaptation to the ephemeral, fire-mediated habitat
that this species prefers. In recent times, high vagility also appears to have offset inbreeding and loss of genetic diversity in
highly fragmented habitat.
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Introduction

Genetic structure in wildlife populations is typically assessed

with respect to natural barriers or anthropogenic habitat loss and

fragmentation. Fragmented habitats created by natural barriers,

such as rivers, oceans, deserts and mountain ranges, have

documented major effects on population differentiation [1] and

species-level diversity [2–5]. For example, in the southeastern US,

the Apalachicola, Tombigbee, and Mississippi Rivers are associ-

ated with genetic differentiation in several taxa, ranging from

vertebrates to plants [6–12]. Population differentiation caused by

natural barriers is important to identify because it may produce

distinct lineages that warrant attention to ensure maintenance of

biodiversity.

In addition to natural habitat fragmentation, recent anthropo-

genic habitat fragmentation, degradation and loss also have the

potential to disrupt gene flow among populations [13]. Many

species that were historically distributed across broad geographic

areas have become restricted to increasingly smaller and more

isolated patches, creating habitat islands that may bottleneck

remaining populations and prevent genetic contact among them

[14]. As population size decreases, genetic drift and inbreeding

increase, potentially leading to reduced fitness as a result of loss of

alleles, expression of deleterious recessive alleles, or loss of

heterozygote advantage [13,15,16]. Estimating genetic variation

and inbreeding in habitat fragments is important because it can

help to identify populations that may require management actions

such as translocations to promote gene flow and protect

evolutionary potential.

Although natural and anthropogenic fragmentation can shape

genetic structure of populations, other underlying natural

processes may also influence structure significantly. In particular,

species that specialize in ephemeral or disturbed habitat may have

dispersal strategies or adaptations that are distinct from or absent

in species found in more stable habitats [17]. For instance, species

adapted to fire-mediated habitat may depend on early, and

ephemeral, successional stages, which may require high vagility to

colonize newly burned habitat and abandon habitat that has
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become unsuitable. Fire has a significant effect on gene flow in

several species occupying fire-mediated habitat [17–20]; however,

the effects of fire-mediated landscape change on evolutionary

processes are poorly studied despite their potentially strong

influence [17,18].

In the southeastern US, longleaf pine (Pinus palustris) forests

are a fire-mediated ecosystem with several closely associated plant

and animal species. Population structure in one species, the

Bachman’s Sparrow (Peucaea aestivalis), is potentially complex

because it is influenced by natural and anthropogenic fragmen-

tation as well as ephemeral, fire-mediated habitat preferences. The

sparrow currently consists of three subspecies [21] (Figure 1): P. a.
illinoensis occupies the northern and westernmost areas of

Bachman’s Sparrow range including Texas, Louisiana, Indiana,

Illinois and Missouri; P. a. aestivalis occupies areas east into

Florida, Georgia and South Carolina; and P. a. bachmani occupies

North Carolina and Virginia [21] (Figure 1). In contrast, Sibley

[22] points to morphological differences between individuals on

either side of the Mississippi River, so distinct populations may be

more appropriately delineated by natural barriers: not only is the

Mississippi River itself a major geological barrier, but its vast

adjacent bayous and swamps bisect the longleaf pine habitat

preferred by Bachman’s Sparrow (Figure 2). Despite groupings by

the American Ornithologists’ Union [21] and Sibley [22], no

genetic data exist for population structure in Bachman’s Sparrows,

data that might help to identify genuinely distinct populations that

warrant conservation and management efforts.

In addition to natural barriers, loss (over 95%) and fragmen-

tation of longleaf pine habitat [23] (Figure 2) has caused

population declines and a fragmented distribution in Bachman’s

Sparrows, factors that could restrict gene flow. However, Bach-

man’s Sparrows also move frequently because post-fire plant

growth can eliminate preferred habitat structure within two years

following a fire [24–28]. Accordingly, sparrows may have high

dispersal rates as an adaptation to ephemeral habitat.

Bachman’s Sparrow is listed as a species of conservation

concern both internationally (IUCN) as well as within every state

in which it breeds [29]. Therefore, quantifying genetic structure

and diversity is important for identifying and conserving distinct

genetic lineages as well as understanding the effects of habitat

fragmentation on genetic diversity and gene flow. In addition,

broad-scale genetic assessments could help clarify the influence of

historic disturbance processes (fire) on adaptation to disturbance

stemming from recent habitat fragmentation.

The objectives of this study are to: 1) examine genetic structure

and diversity in a species adapted to natural disturbances caused

by fire; 2) examine Bachman’s Sparrow population differentiation

across its range to evaluate whether current subspecies designa-

tions are valid; and 3) evaluate gene flow among and genetic

diversity within habitat fragments to identify areas of restricted

gene flow and populations with inbreeding and low levels of

genetic diversity. The results of this study should help to ensure

that populations of high genetic value are conserved, that genetic

variation is maintained and inbreeding depression is reduced in

remnant populations, and finally, provide a better understanding

of the effect of ephemeral habitat on gene flow.

Materials and Methods

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. Protocols

were approved by the Institutional Animal Care and Use

Committee of the Louisiana State University AgCenter (Permit

Numbers: AE2011-04 and A2012-05) and Tall Timbers Research

Station (Permit Number: VE-2002-01). Birds were banded and

bled under Federal Bird Banding Permits 07732, 22648 & 24466,

State Permits FFWCC LSSC-05-0205 & 29-wmb-02-143 (Florida)

and LNHP-11-062 & LNHP-12-023 (Louisiana), Wildlife Man-

agement Area Permit WL-Research-2011-03 (Louisiana), and US

Department of Agriculture Forest Service Permit 2610 (Kisatchie

National Forest, Louisiana).

Study Sites and Field Protocols
Sampling in Louisiana was conducted in areas with recent Ebird

records and separated by the Mississippi River, a potentially

important geographic barrier to dispersal. We sampled four sites

on the west and three sites on the east side of the Mississippi River

(Figure 1). Western Louisiana has larger, contiguous longleaf pine

tracts whereas eastern Louisiana has smaller and more fragmented

patches of longleaf pine. Louisiana populations were sampled from

February through June in 2011 (n = 26) and 2012 (n = 88) on

public and private lands. Sampling across the broader geographic

range was conducted using vouchered Louisiana (n = 30), North

Carolina (n = 3), and Florida (n = 1) tissue samples from the

Collection of Genetic Resources at the Louisiana State University

Museum of Natural Science, and in association with long-term

research projects in Florida focused on Bachman’s Sparrows

[26,30], which included blood samples from the Tall Timbers

Research Station (hereafter Tall Timbers; n = 32 sampled in 2011)

and Avon Park Air Force Range (hereafter Avon Park; n = 47

sampled in 2003 and 2004) (Figure 1, Table 1). Individuals

(excluding LSU Museum of Natural Science samples) were

captured with mist nests using conspecific playbacks [31], banded

with a federal band, and bled (,100 ml) via venipuncture of the

brachial vein. Blood samples were stored in 1.0 mL of Queen’s

lysis buffer [32] at 10uC until they could be processed. Hand-held

GPS units with ,10 m precision were used to geographically

reference capture locations.

Molecular Methods
Total DNA was extracted from blood (n = 226) using DNeasy

Blood and Tissue kits (Qiagen, Valencia, CA). Samples were

amplified using polymerase chain reaction (PCR) with an

Eppendorf Mastercycler pro S thermal cycler. Nuclear microsat-

ellite primer pairs (n = 23) developed in other avian species were

tested, and 19 amplified successfully (Table S1). PCRs consisted of

1.0 ml DNA, 1X buffer, 2.0 mM MgCl2, 0.8 mM dNTPs,

0.10 mM each of forward and reverse primers, 0.5 ml of 100%

dimethyl sulfoxide (DMSO), 1 M betaine, 0.03 mM M13 fluores-

cent tag, 2.0 units Taq DNA polymerase (New England BioLabs,

Ipswich, MA), and nanopure water to a final volume of 10 ml.

PCR amplification conditions were 95uC for 30 seconds followed

by 34 cycles of 95uC for 1 minute; 48–60uC (see Table S1) for 1

minute, 72uC for 1 minute and a final extension step of 72uC for 4

minutes. Forward or reverse primers were labeled at the 59 end

with M13 tags (LI-Cor Biosciences) to allow the DNA amplicons

to be detected by infrared laser fluorescence. For each amplified

sample, 0.8 ml of product was resolved by electrophoresis on a 25-

cm, 7% polyacrylamide gel and genotyped on a LI-Cor 4200

Gene ReadIR DNA Analyzer (LI-Cor Biosciences) with 50–

350 bp IRDye 700 and 800 frequency size standards (LI-Cor

Biosciences). In conjunction with the size standards, samples

representing all allele sizes for each locus were added to gels as

additional size markers to ensure consistent genotyping. Allele

sizes were estimated using Saga v. 3.2 (LI-Cor Biosciences) and

verified visually.
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Sequence data were obtained for one mitochondrial locus, the

nicotinamide adenine dinucleotide dehydrogenase subunit 2

(ND2) using primer L5215 from [33] and H6313 from [34], and

one nuclear locus, the transforming growth factor b-2 intron 5

(TGFb2) using primers from [35]. Both genes were sequenced for

15 individuals each from Tall Timbers (north Florida), Avon Park

(south Florida), and eastern and western populations in Louisiana.

Three individuals from Columbus County (North Carolina) were

also sequenced at these genes. PCRs consisted of 1 ml DNA, 1X

buffer, 1.50 mM MgCl2, 0.8 mM of dNTPs, 1.25 mM of each

forward and reverse primers, 2.5 units Taq DNA polymerase (New

England BioLabs, Ipswich, MA), and nanopure water for a final

volume of 25 ml. PCR amplification conditions were as follows:

95uC for 30 seconds followed by 34 cycles of 94uC for 30 seconds,

50uC (ND2)/60uC (TGFb2) for 30 seconds, 72uC for 1 minute,

and a final extension step of 72uC for 7 minutes. PCR products

were sent to Beckman Coulter Laboratories (Danvers, MA) for

Sanger single-pass sequencing. Forward and reverse strands were

aligned for each sample and corrected using Sequencher v. 5.0

(Gene Codes Corp.).

Data Analysis
Population molecular variation. Microsatellite data were

checked for genotyping errors using MICROCHECKER V. 2.2.3 [36].

Hardy-Weinberg Equilibrium (HWE) and linkage disequilibrium

were assessed using GENEPOP V. 4.1.4 [37,38]. The small number

of samples obtained from Lee Memorial Forest (n = 2) and

Madison County, Florida (n = 1) were combined with the nearest

sampling locations (Talisheek Pine Wetlands Preserve and Tall

Timbers, respectively). Exact P-values for HWE were computed

using a complete enumeration method for loci ,4 alleles [39] and

the Monte Carlo Markov Chain (MCMC) method for loci with .

4 alleles [40]. Global deviation from HWE for populations was

calculated using the same parameters listed above. Significance

values were adjusted using a Bonferroni sequential correction for

multiple comparisons [41] to maintain an experiment-wise error

rate of a= 0.05.

Population genetic variation was measured as average observed

and expected heterozygosity, average number of alleles per locus,

and allelic richness with GENETIX V. 4.03 [42] and FSTAT V. 2.9.3

[43]. Initial allelic richness calculations included all populations;

however, small sample sizes from North Carolina and Talisheek

Figure 1. Bachman’s Sparrow distribution including historic range expansion and subspecific ranges. Ranges as described by the AOU
[21] and Dunning [74]. Sampling locations include: Fort Polk WMA (FP), Palustris Experimental Forest (PEF), Kisatchie National Forest (KNF), Dry Prong
WMA (DP), Camp Whispering Pines (WP), Sandy Hollow WMA (SH), Talisheek Pines Wetland Preserve (TNC), Abita Springs (AS), Tall Timbers Research
Station (TTRS), Avon Park Air Force Range (AP), and North Carolina (NC).
doi:10.1371/journal.pone.0105782.g001
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Figure 2. Historic (purple) and current (red) longleaf pine habitat in the southeastern US. GIS data provided by NatureServe and
LandScope America.
doi:10.1371/journal.pone.0105782.g002

Table 1. Study site, geographic location, ownership and managing entity, provenance, and sample size for Bachman’s Sparrow
populations.

Study Site Location Ownership & Managing Bodies
Provenance and Sample Size
(n)

Fort Polk WMA1 Vernon Parish, LA; Calcasieu
Ranger District, KNF2

U.S Army; U.S. Forest Service; LDWF3 Field = 25

Dry Prong Grant Parish, LA; Catahoula
Ranger District, KNF2

U.S. Forest Service Field = 20 LSUMZ4 = 5

Kisatchie National Forest Rapides Parish, LA; Kisatchie
Ranger District, KNF2

U.S. Forest Service Field = 14 LSUMZ4 = 1

Palustris Experimental Forest Rapides Parish, LA; Kisatchie
Ranger District, KNF2

U.S. Forest Service Field = 10 LSUMZ4 = 3

Sandy Hollow WMA1 Tangipahoa Parish, LA Tangipahoa School Board; LDWF Field = 23 LSUMZ4 = 6

Lee Memorial Forest Washington Parish, LA Louisiana State University Agricultural
Center

Field = 2

Camp Whispering Pines Tangipahoa Parish, LA Girl Scouts of the USA Field = 14

Talisheek Pine Wetlands Preserve St. Tammany Parish, LA Money Hill Real Estate Group; TNC5 Field = 5

Abita Springs St. Tammany Parish, LA LSUMZ4 = 15

Florida Madison County, FL LSUMZ4 = 1

North Carolina Brunswick and Columbus County, NC LSUMZ4 = 3

Tall Timbers Land Conservancy and
Research Station

Leon County, FL Tall Timbers Land Conservancy Field = 32

Avon Park Air Force Range Polk and Highlands County, FL U.S. Air Force Field = 47

1Wildlife Management Area.
2Kisatchie National Forest.
3Louisiana Department of Wildlife and Fisheries.
4Louisiana State University Museum of Natural Science.
5The Nature Conservancy.
doi:10.1371/journal.pone.0105782.t001
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Pine Wetlands Preserve, Louisiana, substantially reduced allelic

richness across populations, so these two populations were

dropped and allelic richness was calculated again for the

remaining populations. GENEPOP was used to calculate FIS, the

inbreeding coefficient [44].

For ND2, a 1038 base pair sequence was obtained for 47

individuals, and for TGFb2 a 570 base pair sequence was obtained

for 43 individuals. Some TGFb2 sequences were heterozygous,

therefore, prior to analyzing sequence data for molecular

variation, Bayesian computational inference of TGFb2 gametic

phase was performed using the PHASE module in DNASP V.

5.10.1 [45]. Calculations were carried out over 1,000 iterations, 10

thinning intervals, and 1,000 burn-in iterations with a model that

accounted for recombination. All advanced options used the

program’s default settings. Nucleotide diversity (p), number of

haplotypes, and haplotype diversity [46] were calculated for each

population using DNASP. Estimates of sequence divergence among

populations were also calculated using DNASP, which included the

number of net nucleotide substitutions per site among populations

(Da) and the average number of nucleotide substitutions per site

among populations (Dxy).

Analyses of population genetic structure. Genetic differ-

entiation among the five regions was calculated in GENEPOP with

microsatellite data using global FST (h) as well as pairwise FST [44]

and RST (r) [47]. Patterns of population structure were analyzed

for all microsatellite data using multiple methods to provide less

biased assessments of population structure [48]. We used: (1) a

Bayesian clustering approach in STRUCTURE V. 2.3.2 [49]; (2) a

spatial analysis of molecular variance using GENELAND V. 4.0 [50];

and, (3) a multivariate analysis using factorial correspondence

analysis (FCA) in GENETIX V. 4.05.

STRUCTURE assesses whether sampled genotypes are substruc-

tured into multiple (K.1) clusters or constitute a single population

(K = 1). We implemented STRUCTURE with and without the

LocPrior clustering algorithm, which accounts for sampling

locations and assumes that assignment probability varies among

locations. The LocPrior method is appropriate for detecting weak

genetic structure [51]. Twenty runs were conducted for values of

K ranging from 1–11. Each run had a burn-in of 150,000 followed

by 150,000 iterations [52]. Plots of MCMC chains were checked

to ensure convergence. The admixture model was used because it

assumes that all individuals originated from the admixture of K
parental populations [49] and that allele frequencies were

correlated [53]. Using the output from STRUCTURE, the best

estimate of the number of clusters (K) was determined using log-

likelihood ratios from STRUCTURE following Evanno et al. [54].

This approach identifies the most likely K based on changes in the

log probability for successive values of K. The most likely K
suggested by initial runs was reassessed in STRUCTURE for an

additional 25 runs. Averaged results were then calculated to

produce a parameter (r) that estimates the information on ancestry

provided by sampling location in the LocPrior model. Values of

r#1 indicate that the inclusion of sampling locations is informa-

tive, whereas values of r..1 imply that location data is

uninformative [51].

Genetic structure as calculated by GENELAND was implemented

in R (V. 3.0). GENELAND detects population subdivision and barriers

to gene flow using a spatially explicit model that incorporates

geographic barriers and boundaries among populations into the

analysis of genetic structure [55]. Spatial coordinates are coupled

with genetic data to optimize the delineation of subpopulations

assuming that more distant populations are more genetically

differentiated. Unlike the approach used in STRUCTURE, all

clustering solutions are not equally probable in GENELAND. Instead,

spatial distributions are used to infer the number of subpopula-

tions, K. Initial runs allowed K to vary under the following

conditions; 10,000 stored iterations of the Markov chain,

maximum rate of Poisson process set at the default value of 100,

minimum population number set to a minimum of 1 and a

maximum of 11, and the number of thinnings set to 10. The

uncertainty of the coordinates was set to zero because GPS

coordinates were available for each sample. A Correlated Allele

Frequency model, a true Spatial model and a false Null Allele

model were used in the analysis. Five independent runs of these

three parameters were run for each potential K.

FCA was run in GENETIX to assess population structure among

sampling locations using scores derived from two axes. Isolation by

distance (IBD) was tested with IBDWS V. 3.23, which examines

the correlation between genetic [56] and geographical distances

for each pairwise combination. The correlation between genetic

and geographic distances was calculated using a reduced major

axis regression (RMA) with 10,000 randomizations [57]. Unlike

ordinary least-squares regression, RMA optimizes a ‘‘best-fit’’ line

by reducing error for both variables simultaneously [57,58].

Genetic structure in mitochondrial and nuclear DNA sequence

data was examined by calculating estimates of global and pairwise

FST using an analysis of molecular variance (AMOVA) imple-

mented in ARLEQUIN V. 3.11 [59] using 10,000 randomizations of

the data. The significance level was set at p#0.05 for all tests.

To investigate phylogeographic structuring, relationships

among mitochondrial and nuclear DNA haplotypes were

constructed using statistical parsimony [60,61] in TCS v. 1.13

[62]. Haplotype networks were used to provide a better

representation of phylogenetic relationships where sequences are

very similar and the strength of the historical inferences increase as

genetic variation decreases [63]. The program assumes that a

single polymorphic site with a single variant allele was derived

through a single mutation. The probability of parsimony [64] is

calculated for pairwise differences until the probability exceeds the

default value of 0.95. The mutational differences determined

before 0.95 is reached provide an estimate of the maximum

number of mutational connections between pairs of sequences

justified by the parsimony criterion. MEGA V. 5 [65] was also used

to construct neighbor joining trees to visualize the evolutionary

relatedness among sampled populations. An unrooted neighbor

joining tree was constructed after running 2000 replications of the

bootstrap method to test for phylogeny. The Maximum Compos-

ite Likelihood substitution model included transitions and trans-

versions with the nucleotide substitution rate set at the default of

uniform rates. The mitochondrial and nuclear sequences had no

missing nucleotide bases, so the gaps/missing data option was set

for complete deletion. All three codon positions were used to build

the tree, and after the tree was constructed, nodes with less than

50% support were condensed due to the uncertainty of the

branching order.

Bottlenecks and Population Connectivity. Evidence for

recent population bottlenecks was evaluated with BOTTLENECK v.

1.2.02 [66,67]. During bottlenecks, rare alleles are lost more

quickly than heterozygosity, which should lead to heterozygosity

excess [68]. Two estimates of expected heterozygosity were

compared based on (1) allele frequencies (He) assuming HWE

and (2) the number of alleles and sample size (Heq) assuming

mutation-drift equilibrium. Both estimates should be similar at

equilibrium, but Heq will decrease faster than He if a population

experiences a bottleneck. On the other hand, population

expansion would be expected if He decreased faster than Heq.

Estimates of heterozygosity were calculated using a two-phase

model that requires two parameters: (1) the percentage of

Genetic Structure in Bachman’s Sparrow
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mutations that follow a strict stepwise mutational process, and; (2)

the variance in size of multistep mutations [67]. Recent research

on mutational dynamics in avian microsatellites suggest ,60% to

80% of mutations involve a single-step change [69,70]. For this

reason, we set the stepwise mutation rate at 70%, used a more

conservative value (30%) for multistep mutations, and then ran the

analysis using 10,000 iterations. We used the Wilcoxon signed-

rank test to assess whether observed heterozygosity exceeded that

expected at mutation-drift equilibrium because the test is robust

for small sample size (,30) and a small number of loci (,20) [66].

To examine whether gene flow may be caused by first

generation (F0) immigrants from unsampled populations, we used

the Bayesian assignment procedure of Rannala and Mountain

[71], as implemented in GENECLASS v. 2.0 [72]. This procedure

uses the Lh/Lmax likelihood test statistic to identify migrants with

an alpha level of 0.01 [71].

Results

Population molecular variation
Bachman’s Sparrows (n = 226) from 11 different sampling sites

were genotyped at 19 microsatellite loci (Table S1). One locus

(Zole F11) was dropped because results suggested the presence of

null alleles and consistent deviations from HWE across popula-

tions. After Bonferroni correction, significant deviations from

HWE (p,0.05) were found for three loci: Am 08, Am 18 and Am

20; however, the deviations were not consistent across populations,

so these loci were kept for subsequent analysis. Linkage

disequilibrium was observed for Aca 01 and Aca 17, and Asm09

and Zole E11, but the associations were not present in all

populations, suggesting the loci were not linked. Individual loci

were polymorphic with 2–60 alleles per locus. Average allelic

richness was 8.16 (Table 2). Average expected heterozygosity was

similar among populations, and in all but North Carolina, the

average observed heterozygosity was slightly lower than average

expected heterozygosity (Table 2). The inbreeding coefficient FIS

ranged from 20.0130 to 0.0678 and was positive in all but the

North Carolina population (Table 2).

DNA sequence analysis produced 19 haplotypes at ND2 and 27

haplotypes at TGFb2 after data were phased (Figure 3a & b).

Overall sequence diversity within populations was low with

nucleotide diversity (p) ranging from 0.0015 to 0.0026 for ND2

and 0.0044 to 0.0076 for TGFb2 (Table 3). Sequence divergence

between regional populations was also low for both genes

(Table 4). Despite low nucleotide diversity, both loci had multiple

haplotypes within individual populations and high haplotype

diversity that ranged from 0.692 to 1.000 for ND2 and 0.925 to

1.00 for TGFb2 (Table 3).

Analyses of population genetic structure
Global FST was 0.012 (60.002) for microsatellite data,

indicating slight genetic structure. Small but significant differences

in pairwise FST were detected for approximately half of the

sampled populations, with values ranging from 0.0001 to 0.0574

(Table 5). RST ranged from 20.0003 to 0.1893 (Table 5). Pairwise

FST and RST indicated that genetic differentiation was lowest

between Fort Polk Wildlife Management Area and both Kisatchie

National Forest and Palustris Experimental Forest, whereas

samples collected from North Carolina and Camp Whispering

Pines were the most genetically differentiated (Table 5). Camp

Whispering Pines was divergent from most populations with the

highest significant pairwise FST and RST estimates for 10 and 8

population pairs, respectively (Table 5).

AMOVA results suggested that no population structure existed

for either nuclear (p = 0.92660.021) or mitochondrial sequences

(p = 0.25060.096; Table 6). Nearly all the genetic diversity in

sequence data was attributed to within-population variation:

95.07% from mitochondrial (ND2) haplotypes and 103.41% from

nuclear (TGFb2) haplotypes (Table 6). Values .100% can occur

when there is no genetic structure and the estimated parameter is

zero [73].

STRUCTURE in combination with the method of Evanno et al.

[54] suggested two population clusters. K = 2 had the highest

mean LnP(K) (217338.8) and delta K value (11.7) without the

LocPrior algorithm. With the LocPrior algorith, K = 3 had the

highest mean LnP(K) (217312.5 versus 217346.8 for K = 2;

Figure 4), but K = 2 retained the highest delta K value (1.9 versus

1.4 for K = 3). Of the two population clusters, one included two of

the four eastern Louisiana sites and the sites in Florida and North

Carolina (Figure 5). The second cluster consisted of the remaining

populations in eastern Louisiana (Figure 5). All remaining

populations appeared to be a mixture of the two clusters

(Figure 5). The average value of r for 25 runs of K = 2 was 0.73,

indicating that location and genotype data were more informative

in inferring ancestry than genotype data alone. STRUCTURE

HARVESTER results are based on changes in the average likelihood

score (DK) where estimates for K = 1 cannot be calculated.

GENELAND and FCA results suggested a single population. FCA

analysis explained only 2.80% of the variation among individuals

and produced no discernible separation among geographic areas

(Figure 6). GENELAND results suggested a single population with no

barriers to gene flow as given by a map of posterior probability

(not shown). Finally, the isolation-by-distance analysis showed no

significant relationship between geographic distance and genetic

distance (Figure 7; r2 = 0.006, intercept = 20.04160.008,

p = 0.226) and there was no relationship between geographic

distance and genetic distance matrices based on the Mantel test

(r = 0.076, p = 0.314).

Sequence data suggested that several populations had unique

haplotypes (Figures 3a & b). ND2 sequences consisted of 19

haplotypes (GenBank accession numbers KJ880978–KJ880996),

with 15 (83%) of the haplotypes unique to particular regional

populations (Figure 3a; KJ880978, KJ880979, KJ880982–

KJ880984, KJ880986–KJ880988, KJ880990–KJ880996). The

most common haplotype overall (KJ880989) was shared by

42.5% of the 47 individuals sampled. The highest frequency of a

single, unique haplotype (KJ880986) occurred in south Florida,

and was present in three (6.4%) of the 47 individuals. Similar

structure was found with nuclear sequence data (TGFb2;

Figure 3b). There were 27 haplotypes (GenBank accession

numbers KM056981–057007), including 11 (40.7%) unique to

particular populations (KM056989–KM056991, KM056997,

KM056999, KM057001–KM057003, KM057005–KM057007).

The most common haplotype was shared by 30.2% of the 43

individuals sampled (KM056982). Despite the presence of private

haplotypes, there was no clear geographical pattern in their

distribution. The parsimony tree for both ND2 and TGFb2 was

star-like (Figures 3a & b). Neighbor joining trees using ND2

sequence data produced a tree with no clear geographic pattern.

The neighbor joining tree built with TGFb2 sequence data

produced a single unresolved polytomy. Polytomies can suggest

multiple, simultaneous speciation events, but in this case the tree is

probably caused by reduced resolution created by the low number

of polymorphic sites. Both neighbor joining trees suggested little, if

any, genetic differentiation among the sampled populations.
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Figure 3. Unrooted parsimony haplotype networks for five regional populations of Bachman’s Sparrow. A) mitochondrial ND2
sequence data, and; B) nuclear TGFb2 sequence data. Areas of circles are proportional to the number of individuals with that haplotype and
haplotype number is listed next to circles. A haplotype found in a single individual is given as a size reference in the legend. Small black circles
indicate a missing haplotype (one that either was not recovered during sampling or is extinct).
doi:10.1371/journal.pone.0105782.g003
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Bottlenecks and Population Connectivity
Excess heterozygosity indicative of population bottlenecks was

observed in four populations: Fort Polk (p = 0.037), North

Carolina (p = 0.025), Talisheek Pine Wetlands Preserve

(p = 0.049), and Camp Whispering Pines (p = 0.030), but small

samples for Talisheek Pine Wetlands Preserve and North Carolina

could produce false positives. False positives can also be observed

in populations experiencing high rates of migration (Pope et al.

2000), which may be relevant here. Using GENECLASS, we detected

15 first generation (F0) migrants that were assigned to areas other

than their sampling location (Table 7); however, GENECLASS does

not perform well when population differentiation is slight, so these

migrants may simply reflect individuals with rare alleles or

individuals from unsampled populations.

Discussion

We examined genetic structure and diversity in Bachman’s

Sparrow to assess the potential effects of large natural barriers,

such as the Mississippi River, and recent habitat loss and

fragmentation. Most of our analyses showed high genetic diversity

(Table 2), little to no inbreeding (Table 2), and weak genetic

population structure (Tables 4, 5 & 6, Figures 3 & 6) for both

microsatellite and sequence data. Our results suggest a single,

panmictic population with considerable gene flow among

subpopulations. The virtual absence of genetic structure across

such a large area was contrary to predictions based on existing

subspecific designations, the patchy distribution of longleaf pine

savannahs in which Bachman’s Sparrow primarily occur, and the

widely presumed low dispersal rates of non-migratory Bachman’s

Sparrow populations [74].

Our sampling areas overlapped broadly with the distribution of

non-migratory populations in the southern half of the species’

range [74]. These putatively sedentary populations might be

expected to show genetic structure over large spatial scales as do

sedentary southern populations of House Wren (Troglodytes
aedon), which have lower genetic diversity and less population

structure than northern populations with seasonal north-south

migrations [75]. However, our results are more consistent with

migratory passerines that have high levels of gene flow even

among distantly located populations [76]. For example, genetic

differentiation is both small and non-significant among fragmented

populations of Brewer’s Sparrow (Spizella breweri) [77], Reed

Buntings (Emberiza schoeniculus) [78], and Cerulean Warblers

(Setophaga cerulea) [79], species that have either north-south or

east-west patterns of seasonal migration.

In Bachman’s Sparrow, low differentiation and weak population

structure (Tables 4, 5 & 6, Figures 3 & 6), and no evidence of

isolation-by-distance (Figure 7) suggest significant connectivity

among populations across the sparrow’s range, at least historically.

For example, pairwise FST values were low and non-significant for

the most distant populations sampled on Fort Polk, Louisiana and

North Carolina (,1,500 km), located at the western and eastern

extremes of the range (Table 5). Non-significance may be

attributed to low sample size in the North Carolina population

(Table 1), but similarly low pairwise FST values were observed

Figure 4. Mean of estimated ln probability of data using LocPrior in STRUCTURE for K = 1–11. Using STRUCTURE HARVESTER, the most likely K = 2.
doi:10.1371/journal.pone.0105782.g004

Figure 5. STRUCTURE plot with LocPrior for K = 2 populations. Each column represents an individual, each color denotes a population cluster.
Population abbreviations are as follows: Abita Springs (AS), Avon Park (AP), Dry Prong (DP), Fort Polk WMA (FP), Kisatchie National Forest (KNF), North
Carolina (NC), Palustris Experimental Forest (PEF), Sandy Hollow WMA (SH), Tall Timbers Research Station (TTRS), Talisheek Pine Wetlands Preserve
(TNC), Camp Whispering Pines (WP).
doi:10.1371/journal.pone.0105782.g005
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between Fort Polk and Avon Park, which have large sample sizes

and are separated by similar distances (,1,200 km; Table 5).

Overall, differentiation among many sampling locations was

significant, but FST values were generally low (Table 5). In

Louisiana, low pairwise FST values (Table 5) and the absence of

population differentiation in multiple analyses (Figures 3 & 6) of

populations east and west of the Mississippi River also suggest the

absence of genetic structure. The break in habitat created by the

Mississippi River and habitat fragmentation does not appear to

hamper dispersal.

The only evidence we found for any genetic structure in

Bachman’s Sparrows appeared in our STRUCTURE analyses where

two populations (Sandy Hollow WMA and Camp Whispering

Pines; Figure 5) located closer to the center of the species’ range in

southeastern Louisiana, clustered separately from the other

populations. In this part of the range, considerable sparrow

habitat has been lost or degraded by human land-use changes or

fire suppression, which has significantly reduced or completely

eliminated contiguous forest cover. The higher level of differen-

tiation observed for these populations may indicate that small,

isolated fragments of habitat have detrimental effects on gene flow.

However, the inference of two population clusters could also be

explained by the reduced precision of STRUCTURE and STRUCTURE

HARVESTER when FST values are low [80].

Dispersal, which may account for low levels of genetic

differentiation, has not been extensively studied in Bachman’s

Sparrows, but there are indications that the sparrows are able to

travel large distances. First, northern populations are migratory

and move south from North Carolina, Kentucky, and Arkansas to

southern Florida and westward into the Gulf States [74]. Second,

Bachman’s Sparrows greatly expanded their range north into

Pennsylvania and Illinois during the early 1900s (see below)

[24,81,82]. Bachman’s Sparrows have also been observed using

clearcuts and utility right-of-ways [74], suggesting that this species

has greater mobility than assumed in some studies [83,84]. Finally,

individuals have been observed establishing new territories or re-

establishing and defending previously held territories immediately

following fire [20,30,85,86] (personal field observation).

High vagility as an adaptation to ephemeral habitat is consistent

with the lack of genetic structure observed in our study. Bachman’s

Sparrow habitat suitability is closely linked to ground-cover

conditions, and individuals typically abandon areas that have

not been burned every 2–3 years [24–28]. Historically, longleaf

pine forests burned frequently with fire-return intervals averaging

,3 years [25], and fires certainly occurred at much larger scales

than current prescribed fires. Fires likely produced large gaps

among unburned fragments [25] leading to a matrix of suitable,

recently burned habitat and unsuitable, overgrown habitat, a

habitat matrix that has probably existed on the landscape for a

long time. The estimated generation length for Bachman’s

Sparrows [87] is usually greater than the average fire-return

intervals recorded historically, so high dispersal rates may be an

adaptation that enables individuals to colonize ephemeral habitat

Figure 6. Factorial correspondence analysis of 226 Bachman’s
Sparrow individuals from eleven study populations. Population
abbreviations are as follows: Abita Springs (AS), Avon Park (AP), Dry
Prong (DP), Fort Polk WMA (FP), Kisatchie National Forest (KNF), North
Carolina (NC), Palustris Experimental Forest (PEF), Sandy Hollow WMA
(SH), Tall Timbers Research Station (TTRS), Talisheek Pine Wetlands
Preserve (TNC), Camp Whispering Pines (WP).
doi:10.1371/journal.pone.0105782.g006

Figure 7. Isolation by distance between pairwise genetic versus pairwise geographical distances. Analyses used a reduced major axis
regression (r2 = 0.006, intercept = 20.04160.008, p = 0.226) calculated from a Mantel test (r = 0.076, p = 0.314).
doi:10.1371/journal.pone.0105782.g007
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[26]. Indeed, similar instances of apparent genetic connectivity

and weak genetic structure have been observed in other avian

species associated with longleaf pine forests (e.g. Red-cockaded

Woodpeckers, Picoides borealis) [88–90] as well as avian species in

Australia that are adapted to landscapes frequently fragmented by

fire (e.g. Mallee Emu-wren, Stipiturus mallee) [20]. These

empirical results are also supported by several modeling studies,

which have suggested that higher dispersal capability should be

maintained in species occupying landscapes that have frequent

temporal and spatial changes whereas species found in less

disturbed and more contiguous habitat should have less pro-

nounced dispersal capability [91,92].

Although high vagility as an adaptation to ephemeral habitat

may explain weak population structure on a local scale, it is still

surprising to see weak population structure among distant

populations with different subspecific designations: Bachman’s

Sparrows probably do not need to travel thousands of km to find

suitable habitat. Accordingly, weak population structure between

distant populations may be the product of range expansion and

retraction. During the early 1900s, Bachman’s Sparrow moved

northward and occupied suitable habitat on abandoned farms and

fallow pastures from Pennsylvania to Illinois, which mimicked the

savannah-like understory of southern pine forests [24,81,82]. The

range retracted as agricultural practices changed and farmlands

became more urbanized [24,81,82,93]. During range expansion,

individuals from distinct populations may have bred together,

homogenizing genetic variation. If offspring of mixed genetic

descent returned south or genetically distinct individuals returned

to a population other than their population of origin, any

population structure that existed in the past may have been

eliminated. Current populations might exhibit low differentiation

because genetic drift, selection, and mutation have not had

sufficient time to produce differences among populations [20]. An

examination of Bachman’s Sparrow historic genetic variation prior

to the range expansion and more extensive sampling across

Bachman’s Sparrow populations should provide insight on this

possibility.

Implications for Conservation
Low genetic differentiation among Bachman’s Sparrow popu-

lations suggests that neither natural barriers nor anthropogenic

fragmentation has caused population differentiation, loss of genetic

diversity, or inbreeding. The current lack of differentiation across

the species’ geographic range means that recognition of distinctive

subspecies may not be necessary for management purposes.

However, an examination of historical genetic variation may be

necessary to confirm this conclusion because any genetic structure

that was formerly present may have been weakened by range

expansion and contraction. Furthermore, distinct populations

identified by plumage differences as described in Sibley (2000) and

the AOU [21] may be linked to genes that we did not assess. More

comprehensive genome-scale studies will be needed to assess this

possibility. Given high levels of diversity, low levels of inbreeding,

and apparent panmixia, translocations to provide gene flow

among populations and counteract the negative effects of genetic

drift and inbreeding depression do not appear to be necessary.

Although our results imply that habitat fragmentation and loss had

little effect on the erosion of genetic diversity of Bachman’s

Sparrow populations, it is still important to consider the effects that

isolation may have on the management of this species. High

vagility may be an adaptation to ephemeral habitat, but Bach-

man’s Sparrow populations nevertheless require sizeable blocks of

suitable habitat to persist over the long term.

Supporting Information

Table S1 Characteristics of 23 microsatellite loci
screened in Bachman’s Sparrows.

(DOCX)
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