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Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A
common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear
approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their
accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the
conditions for successful motion segmentation are yet to be derived.This paper presents a simplified theoretical framework for the
prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion
(structure) is presented and a relatively straightforward criterion for predicting the separability of two different motions in this
framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice
is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer
vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

1. Introduction

Computer vision problems in general involve manipulation
of complicated manifolds. However, due to the mathematical
and computational complexities of finding solutions in those
spaces, a large group of problems are solved via projections
leading to approximate solutions found by solving systems of
linear equations. For example, solutions of important com-
puter vision problems such as optical flow [1], fundamental
matrix [2], and parametric image segmentation ofman-made
objects [3] are commonly found by solving systems of linear
equations. After decades of research in these areas, a rich
collection of methods to both robustly and efficiently solve
those problems is currently available [4, 5].

Substantial efforts are also devoted to solve the motion
segmentation problem [6]. A major shortcoming of those
solutions stems from the fact that structures in visual data
are not precisely defined. The segmentation methods are
typically considered successful when those methods are able
to partition data in a way that by visual inspection, segments
are deemed to be part of an identifiable object. As such, there

is no theory as yet to predict which twomotions are separable
for a given set of data or what would be the minimum
relative velocity that would constitute another motion. This
question has important engineering applications particularly
for designing devices that use visual measurements of speed,
such as visual traffic surveillance systems, as a source of
information.

Generally speaking with any probability distributionwith
infinite tails such as commonly used Gaussian, there will
always be a finite probability of misclassified data no matter
what the separation. The “magic bullet” of a clean threshold
where “it makes sense to declare two structures as separate
and assign points, and on the other side of the threshold
you can’t distinguish” is incompatible with this model. The
concept of separability itself is also not well defined and one
can identify at least two different (but related) notions as
outlined here.

(1) Detectability: existence of two structures (motions) in
a given data is detectable, but the detected structures
are not necessarily distinguishable.
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(2) Separability: structures (motions) can be distin-
guished from each other and the segmentation of data
between different structures can be performed up to
a desired (given) level of reliability.

In engineering applications, the latter notion of sepa-
rability is of significant interest. The characteristics of the
structures are important and those characteristics cannot
be measured unless the structures are well defined. The
misclassification error of separating two models in general
will be governed by fitting errors of the two putative models
as well as the overlap of the distributions. Although the
deciding line is always going to be somewhat arbitrary and
dependent onwhat the engineering problemwill tolerate, this
paper makes an important contribution by quantifying the
probability of misclassification. Our theoretical derivations
also show that the separability problem is very complicated
and development of an elegant solution that could predict
separability in all cases does not appear to be straightforward.
Wehave however been able to showhow theGaussian error of
data relates to error of pairwise estimates ofmodel parameters
and how to quantify the exact overlap of their distributions.
This at least enables us to identify the crossover point which
is a useful guide for defining a structure and ultimately
designing reliable equipment.We explain the use of crossover
point in section 3-B, after we derive the above relationship.

Optical flow calculation has been one of the most studied
problems of computer vision and its calculation [4, 7–10]
and segmentation [11, 12] and the derivation of its confidence
measures (error quantification) [13, 14] have been refined over
several decades. However, the limits of using optical flow
knowledge as a primary source of physical perception are
yet to be established. More importantly, where there are at
least two motions in a local area, it is currently not possible
to predict how much difference between those motions is
required for those motions to be separable.

For instance, as shown in Figure 1, one would need to
know how much relative motion between different objects
in this image would be required to reconstruct the scene
geometry using motion information. In this figure, we have
highlighted three local areas where two are on one column
(having very similar motion) and the other on a different
column. The question here is to ascertain how much differ-
ence in motion between these objects would be required to
distinguish their motions in the given situation.

The issue of finding the limits of detection for near
discontinuities in visual data was first discussed in [15]. The
work focused on range data segmentation and the separability
criteria were only derived for special cases including parallel
or crease structures. The above work was later extended to
study the effect of consistency [16] and finite sample bias
[17] of commonly used estimators on the separability of close
structures. However, those works were also limited to the
special case of parallel discontinuities only. Although the
optical flow segmentation is a dual problem of the range
segmentation discussed in [15], the underlying structures in
motion segmentation are not limited to parallel structures
and our aim here is to develop general analysis that is
independent of the segmentation strategy.

Figure 1: A frame of theMarbled-Block image sequencewhere three
local areas, two on one column having the same motion and one on
a different column with distinctly different motions, are highlighted
by white rectangles. The main question here is to predict the least
amount of relative motion between the two columns that would
make those definitely separable by their motions.

To properly address the separability issue, we first need
to have a precise definition of a structure. Having defined a
structure, we then need to establish the general conditions
for the separability of those structures for cases where nearby
structures exist.

We focus on answering the above question for the two
most similar motions in an image which their motion
estimations are modeled as an instance of the optical flow
problem. In essence, we aim to find a general condition
for segmentation of motion when the two motions are
modeled by optical flow constraints and formulated as a
solution of a linear system of equations. The overall scope is
therefore much broader and includes the ubiquitous problem
of confirming the existence of multiple close solutions in a
system of linear 2D equations in the presence of noise and
outliers.

The rest of this paper is organized as follows. The motion
separability problem is formulated in Section 2. A solution
for the prediction problem is presented in Section 3 followed
by the results of usability experiments using both synthetic
and real data presented in Section 4. Section 5 concludes the
paper.

2. Problem Formulation: Motion Separability

The current trend in optical flow estimation is to use non-
parametric representations. Those methods (e.g., [4, 7–10])
often use either variational or discrete optimization methods
to find solutions that show a degree of smoothness across
motion boundaries by imposing certain regularization terms.
These approaches involve tuning a large number of param-
eters that their optimum values depend on the structure of
a scene. The analysis of a variety of optical flow estimation
techniques has however shown that “only a small number of
key choices produce statistically significant improvements” in



The Scientific World Journal 3

the overall accuracy of those methods [9]. More importantly,
the above analysis has also shown that applying amedianfilter
to intermediate flow values produces the most significant
improvement.This implies that the appropriate separation of
differentmotions is a key ingredient of the estimation process.

Since our aim here is to quantify the separability of
two motions, we need to disentangle the optical flow esti-
mation from the scene dependant implications of smooth-
ness imposed implicitly by the nonparametric methods. To
achieve this aim, we start the motion separability analysis
by modeling the optical flow problem in its classical form
presented in [18] without imposing an arbitrary smoothness
across the motion boundaries.The local optical flow, without
smoothness imposition, is modeled as a solution of a linear
system:

𝐴] = 𝑏 + 𝜖 (1)

in which 𝐴 is a matrix with two columns, each containing
the spatial derivatives (𝐼

𝑥
and 𝐼
𝑦
) in directions of the velocity

] components (𝑢, V), 𝑏 is a vector of associated temporal
derivatives, and 𝜖 represents the noise [18]. In this set up, if
there are two motions, the above system of equations must
be separable into two systems of linear equations and the
separability would be a function of the difference of those
motions. Intuitively, if the difference is very small, compared
to the accuracy of estimation, the variations would be similar
to noise and theywould not be separable.Otherwise, it should
be possible to separate those sets of equations.

Our aim here is to find the sufficient condition for the
separability of two motions and as such, we use the most
parsimonious motion model, constant flow, as it represents
the least accurate (most inseparable) scenario. Models with
more parameters (e.g., affine) are expected to produce better
estimates of motions and therefore their separability condi-
tion is covered by the above model separability condition.

For a local area containing multiple motions, the system
of (1) would contain a number of coherent subsystems which
would appear as different clusters of cointersecting lines in
the (𝑢, V)plane (see Figure 2(a)). To formulate the separability
problem, without loss of generality, we can assume that there
are only two motions in the area. The extent of the area is
not fixed and the ones considered are the closest motions and
therefore the hardest to distinguish from each other. If there
are more motions, they are by definition further apart and
would not affect the outcome. In this setting, the effect of
other possible motions would be similar to gross outliers and
are not expected to have a major impact on the separability
issue as optical flow calculation methods are typically robust
to the influences of outliers [7].

The motion separability problem, in its abstract form, is
now represented by the problem of predicting the separability
of two clusters of cointersecting lines based on two factors:
the “distance” (the relative motion) between those clusters
and the extent of the spread of constraint lines in each
cluster (measurement noise). In its dual space, as shown in
Figure 2(b), this problem is equivalent to the separability of
two linear structures in a cloud of 2D points. To the best of

our knowledge, currently there is no theory to predict the
separability of those line clusters generally.

A common approach to tackle the above problem, in its
dual form, is to use the Hough transform [19, 20]. In this
approach, theHough domain is first uniformly quantized into
number of cells and each cell maintains a count of passing
lines. The center of the cell with the largest number of counts
is an estimate of the underlying structure parameters. To
detect multiple structures, a threshold is specified and cells
with counts exceeding a threshold are considered as putative
structures. This approach has a major drawback stemming
from the fact that the probability density function of the
structure parameters has to be estimated using a discrete
histogram as shown in Figure 2(f). As the figure shows, the
interpretation of the histogram for the detection of different
motions would heavily depend on the values of manually set
thresholds.

To address this issue, Dahyot [20] has proposed a form
of statistical kernel modeling for the Hough transform to
estimate a continuous histogram. The proposed approach
needs two pieces of information: the shape of a suitable kernel
and the appropriate bandwidth. The overall approach is able
to accurately estimate the parameters by locating the peaks
of the histograms in cases where the structures are distinct.
However, the choices of kernel shape and bandwidth have
significant impact on the spread of the final pdf which is the
key information for the separability analysis. As such, kernel
density estimation appears not to be an appropriate tool for
separability prediction.

To overcome the above problems, we propose to use
a discrete part of the parameter space spanned by the
exhaustive sampling of possible intersections as partly shown
in Figure 2(e). To devise the separability condition for the
optic flow problem, we derive the probability distribution
of those samples as well as providing a precise definition
for a structure (motion) in the space of those samples. The
combination of these two pieces of information enables us to
quantify the least amount of relative motion that would be
separable for a given set of data. We will then show that those
derivations are useful for predicting separability in practical
situations.

3. Separability Prediction

An important aspect of replacing clusters of lines with all
their intersection points (using existing parameter space
discretization) is that the process changes the nature of the
problem from finding the solution of an overdetermined
system of linear equations (with multiple solutions) to a
much simpler position estimation problem with multiple
clusters. In the position estimation problem, the prediction of
separability is fairly straight forward and the only information
it requires is the definition of a cluster and the distributions
of data points (line intersections).

Our practical intuition for solving this problem comes
from our experiments with a variety of gray scale and color
images commonly used for optical flow evaluations [21, 22].
We observed that in all of these images, the ratio of spatial
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Figure 2: (a) Geometric representation of a 2D system of linear equations with two solutions. (b)The dual representation of the same system
of linear equations in parameter space. In absence of an exact definition for a data structure, the underlying structures of these two figures
can be visually interpreted in many different ways. (c) and (d) An interpretation of the above figures visualized based on linear models and
added Gaussian noise. (e) Intersections of all the lines shown in (a) and (c) where blue and red markers represent the intersections of blue
and red lines with themselves. (f) Histogram of putative solutions in the Hough space.

derivatives of image intensity function (ratios of 𝐼
𝑥
and 𝐼
𝑦
for

different pixels), to a large degree, is uniformly distributed
over a fairly broad range of values. To provide some evidence,
examples of the distribution of the ratios of the spatial
derivatives of different image sequences in the Middlebury
dataset are shown in Figure 3.

Although there might be small patches in some specific
images in which the texture has a dominant direction (e.g.
parallel strips), overall the commonly experienced textures
have derivatives in all directions and very little can be
generalized about the ratio of those derivatives. In fact,
from an information point of view, assuming a uniform
distribution is the least restrictive assumption one can make
about the characteristics of those textures.

To establish the separability condition for linear struc-
tures (e.g., motions modeled by optical flow), we first
replace all lines with their pairwise intersection points and
then derive the probability distribution of those points by
assuming that the ratio of spatial derivatives is uniformly
distributed. The system of (1) is then replaced by a cluster of
𝑁 = (

𝑛

2
) points and the problem of finding the best solution

to the above system based on a measure of goodness (e.g.,
least squares) is transformed to an instance of a well-known
position estimation problem.

3.1. Error Distribution. To derive the distribution of the inter-
sections points (for an equation system with one solution),
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Figure 3: Normalized histogram of 𝑎 = 𝐼
𝑥
/𝐼
𝑦
for a number of image sequences commonly used in optical flow evaluations including; (a)

RubberWhale (Middlebury), (b) Grove2 (Middlebury), (c) Marbled Block [22].

we denote the true velocity by V̂, the distance between a
point and the true velocity by 𝑟, and the probability density
function by 𝑓(𝑟). This distance represents the error in the
direction that the motion separability is examined in. If one
of the components of the twomotions is separable, then those
motionswill also be separable. In our derivations, we perform
the calculations for an arbitrary direction and the rationale is
that the separability is always tested in a particular direction.
For instance, if the optical flow calculation is used to monitor
highway traffic, the separability of horizontal velocities of
different vehicles is of interest to the system designer. The
differences of velocities in other directions (e.g., vertical
in this case) are of no significance. The design parameter
for this system is the scale of measurement noise for one
vehicle in that particular direction and it depends on many
factors including the quality of cameras, vehicles textures,
and visibility conditions. The above design parameter (scale
of measurement noise) captures the overall effect of those
factors.

It is important to note that for the sake of simplicity,
we model the flow calculation and its errors in the clas-
sical regression framework rather than the more accurate
geometric modeling framework [23, 24]. This simplification
is justified because the regression model for optical flow

calculations is almost as accurate as the geometric model as
long as the optical flow constraints are not parallel (or near
parallel) to the vertical axis [5]. Although values of the ratio of
spatial partial derivatives of image intensity function (ratios
of 𝐼
𝑥
and 𝐼
𝑦
for different pixels) are between plus and minus

infinity, values between plus and minus one span half the
velocity space. In this half space, the lines are away from
the vertical direction and the classical regression modeling is
accurate. We conduct our calculations for the above interval
and later extend those to the whole velocity space.

To develop a solution to the above separability problem,
we first introduce and prove a proposition regarding the
distribution of pairwise samples. We then use the result to
define structure and devise a separability criterion. Suppose
that (𝑎

1
, 𝑏
1
),. . .,(𝑎

𝑛
, 𝑏
𝑛
) are independent identically distributed

random observations drawn from the model

V = 𝑎
𝑖
𝑢 + 𝑏
𝑖
+ 𝑒
𝑖
, (2)

where

(i) 𝑒 is normally distributed with zero mean and known
variance 𝜎

2 (although noise of different optical flow
constraints is likely to be correlated, this assumption
simplifies the modeling (of an otherwise intractable
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problem) while its computational bias is shown to be
relatively small [9, 25]. Our definition of a structure,
provided later, is inherently robust to influence of
large perturbations and would not include samples
that might have been generated by degenerate con-
straints.Our experimentswith both synthetic and real
images have also shown that this assumption does not
generate significant bias in the final results);

(ii) 𝑎 is uniformly distributed.

Proposition 1. Under assumptions (i) and (ii), the estimation
error 𝑟 (difference between the estimated value V and the real
value V̂) has the following distribution:

𝑓
𝑟
(𝑟) =

𝜎

2√2𝜋𝑟2
(1 − 𝑒

−2𝑟
2
/𝜎
2

) . (3)

Proof. Using (2), the coordinates of the intersection of lines 𝑖
and 𝑗 are

V
𝑘
= 𝑏
𝑖
+ 𝑒
𝑖
+ 𝑎
𝑖

𝑏
𝑗
− 𝑏
𝑖

𝑎
𝑖
− 𝑎
𝑗

+ 𝑎
𝑖

𝑒
𝑗
− 𝑒
𝑖

𝑎
𝑖
− 𝑎
𝑗

, (4)

and the estimation error for the 𝑘th point (which is the
intersection of 𝑖 and 𝑗 lines) can be written as

𝑟
𝑘
= V
𝑘
− V̂ = 𝑒

𝑗

1

1 − (𝑎
𝑗
/𝑎
𝑖
)

+ 𝑒
𝑖

1

1 − (𝑎
𝑗
/𝑎
𝑖
)

. (5)

It is important to note that values of 𝑎
𝑖
denote the slope of

linear equations and values between ±1 represent constraints
that cover half the space between V = 𝑢 and V = −𝑢. Since the
estimation error is not a function of the chosen coordinate
system, the distribution of error should also be the same in
the other half of space. We use this fact and simplify the
derivations by first finding the distributionwhere 𝑎∼U(−1, 1).
The estimation error distribution for other values of 𝑎 will be
identical.

To derive the distribution of the 𝑟, we denote

𝛼
𝑘
=

1

1 − (𝑎
𝑗
/𝑎
𝑖
)

,

𝛽
𝑘
= 1 −

𝑎
𝑖

𝑎
𝑗

(6)

and first find the distribution of 𝛽. The distribution of 𝛼 is
then calculated as the inverse of 𝛽.

If the probability density function of a random variable𝑋

is denoted by 𝑓
𝑋
(𝑥), the probability density function of 𝑌 =

𝑔(𝑋) is as follows [26]:

𝑓
𝑌
(𝑦) =



𝑑

𝑑𝑦
(𝑔
−1

(𝑦))



𝑓
𝑋
(𝑔
−1

(𝑦)) . (7)

Using the above equation, the relationship between dis-
tributions of 𝛼 and 𝛽 can now be written as

𝑓
𝛼
(𝛼) =

1

𝛼2
𝑓
𝛽
(
1

𝛼
) . (8)

And since 𝑎 is assumed to have uniform distribution 𝑎∼

U(−1, 1) (i.e., half the space), the probability density function
of 𝛽 can be calculated as

𝑓
𝛽
(𝛽) =

{{{

{{{

{

1

4
if 0 ≤ 𝛽 ≤ 2,

1

4(1 − 𝛽)
2

If{ 𝛽 < 0

𝛽 > 2.

(9)

Substituting in (8),we have

𝑓
𝛼
(𝛼) =

{{{{

{{{{

{

1

4𝛼2
if 𝛼 ≥

1

2
,

1

4(𝛼 − 1)
2

if 𝛼 <
1

2
.

(10)

To calculate the pdf of different terms in (5), we note
that the probability density function of the product of two
independent random variables 𝑋 and 𝑌 (𝑍 = 𝑋𝑌) is as
follows [26]:

𝑓
𝑍
(𝑧) = ∫

∞

−∞

1

|𝑥|
𝑓
𝑋
(𝑥) 𝑓
𝑌
(
𝑧

𝑥
) 𝑑𝑥. (11)

Rewriting (5), we have

𝑟
𝑘
= 𝑒
𝑖
𝛼
𝑖
+ 𝑒
𝑗
(1 − 𝛼

𝑖
) , (12)

and the probability density function of 𝜌 = 𝑒𝛼 can be written
by using (11), as

𝑓
𝜌
(𝜌) = ∫

∞

−∞

1

|𝛼|

1

√2𝜋𝜎2

×𝑒
−𝜌
2
/2𝛼
2
𝜎
2

𝑓
𝛼
(𝛼) 𝑑𝛼.

(13)

Substituting (10) in (13), we have

𝑓
𝜌
(𝜌) = ∫

1/2

−∞

1

|𝛼|

1

4(𝛼 − 1)
2

1

√2𝜋𝜎2
𝑒
−𝜌
2
/2𝛼
2
𝜎
2

𝑑𝛼

+ ∫

∞

1/2

1

𝛼

1

4(𝛼)
2

1

√2𝜋𝜎2
𝑒
−𝜌
2
/2𝛼
2
𝜎
2

𝑑𝛼.

(14)

The integrand of the second integral is continuous in its
domain and the integration result is as follows:

∫

∞

1/2

1

𝛼

1

4(𝛼)
2

1

√2𝜋𝜎2
𝑒
−𝜌
2
/2𝛼
2
𝜎
2

𝑑𝛼

=
𝜎

4√2𝜋𝜌2
(1 − 𝑒

−2𝜌
2
/𝜎
2

) .

(15)

The first integral however has a discontinuity at zero and
is generally intractable. Nonetheless, we have found a neat
approximation to solve this integration problem. To outline
our solution, we first denote the integrand by

𝑔 (𝛼, 𝜌) =
1

|𝛼|

1

4(𝛼 − 1)
2

1

√2𝜋𝜎2
𝑒
−𝜌
2
/2𝛼
2
𝜎
2

(16)
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and note that the Dirac delta function can be written as

𝛿 (𝑥) = lim
𝜖→0
+

1

2√𝜋𝜖
𝑒
−𝑥
2
/4𝜖

. (17)

Combining (17) and (16), we have

lim
𝛼→0

𝑔 (𝛼, 𝜌) =
1

√2𝜎
𝛿(

√2𝜌

𝜎
) . (18)

We also note that, as it is shown in Figure 4, 𝑔(𝛼, 𝜌) is
almost zero everywhere except around the origin. Inspired
by this and (18), we approximate this two-dimensional
discontinuity by a multiplication of two delta functions in
every dimension. We later show that this is a very accurate
approximation in terms of the total sum of probabilities.
Consequently, we assume

𝑔 (𝛼, 𝜌) ≈

{{

{{

{

1

√2𝜎
𝛿(

√2𝜌

𝜎
)𝛿 (𝛼) if 𝛼 → 0, 𝜌 → 0,

0 O.W.

(19)

and the result of the first integral in (14) can now be calculated
as

∫

1/2

−∞

𝑔 (𝛼, 𝜌) 𝑑𝛼 =

∫

1/2

−∞

1

√2𝜎
𝛿(

√2𝜌

𝜎
)

𝛿 (𝛼) 𝑑𝛼 =
1

√2𝜎
𝛿(

√2𝜌

𝜎
) .

(20)

To show that the above approximation is accurate in
terms of the total probabilities, we first note that the sum
of probabilities associated with the second integral in (14),
which was calculated exactly, is 1/2 since

∫

∞

−∞

𝜎

4√2𝜋𝜌2
(1 − 𝑒

−2𝜌
2
/𝜎
2

) 𝑑𝜌 =
1

2
. (21)

Therefore, the sum of probabilities associated with the
first integral in (14) must also be 1/2. Importantly, the above
approximation satisfies this requirement as shown below:

∫

∞

−∞

1

√2𝜎
𝛿(

√2𝜌

𝜎
)𝑑𝜌 =

1

2
. (22)

Having calculated both integrals of (14), the probability
density function of 𝜌 = 𝑒𝛼 can be written as

𝑓
𝜌
(𝜌) =

1

√2𝜎
𝛿(

√2𝜌

𝜎
) +

𝜎

4√2𝜋𝜌2
(1 − 𝑒

−2𝜌
2
/𝜎
2

) . (23)

To find the distribution of all residuals (12), using the law
of total probability, we write

𝑓
𝜌
(𝜌) =

1

2
𝑓
𝜌
(𝜌 | 𝛼 >

1

2
) +

1

2
𝑓
𝜌
(𝜌 | 𝛼 >

1

2
) , (24)
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Figure 4: The shape of the integrand of the first integral in (14) for
𝜎
2

= 1.

and by defining 𝜌
1
and 𝜌
2
to be

𝜌 =

{{

{{

{

𝜌
1

if 𝛼 >
1

2
,

𝜌
2

if 𝛼 <
1

2
,

(25)

we can rewrite (24) as

𝑓
𝜌
(𝜌) =

1

2
𝑓
𝜌
1

(𝜌
1
) +

1

2
𝑓
𝜌
2

(𝜌
2
) (26)

and comparing this with (14), we have

𝑓
𝜌
1

(𝜌
1
) =

𝜎

2√2𝜋𝜌
2

1

(1 − 𝑒
−(2𝜌
2

1
/𝜎
2
)

)

𝑓
𝜌
2

(𝜌
2
) =

2

√2𝜎
𝛿(

√2𝜌
2

𝜎
) .

(27)

To derive the pdf of estimation errors 𝑟 given by (12),
using the law of total probability, we can write

𝑓
𝑟
(𝑟) = 𝑓

𝑟
(𝑒
𝑖
𝛼
𝑖
+ 𝑒
𝑗
(1 − 𝛼

𝑖
))

=
1

2
𝑓
𝑟
(𝑒
𝑖
𝛼
𝑖
+ 𝑒
𝑗
(1 − 𝛼

𝑖
) | 𝛼
𝑖
>

1

2
)

+
1

2
𝑓
𝑟
(𝑒
𝑖
𝛼
𝑖
+ 𝑒
𝑗
(1 − 𝛼

𝑖
) | 𝛼
𝑖
>

1

2
) .

(28)

Equation (10) shows that 𝛼 and (1 − 𝛼) have the same
distribution and (1 − 𝛼) is greater than 1/2, when 𝛼 <

1/2. Using definition (25), the above equation can then be
rewritten as

𝑓
𝑟
(𝑟) =

1

2
𝑓
𝑟
(𝜌
1
+ 𝜌
2
) +

1

2
𝑓
𝑟
(𝜌
2
+ 𝜌
1
) = 𝑓 (𝜌

1
+ 𝜌
2
) . (29)

We note that since 𝜌 values are independent and identi-
cally distributed (iid) random variables, 𝜌

1
and 𝜌
2
can also be

considered iid random variables. Therefore, the distribution
of the 𝑟 is the convolution of the two distributions given by
(27):

𝑓
𝑟
(𝑟) = 𝑓

𝜌
1

∗ 𝑓
𝜌
2

=
2

√2𝜎
𝛿(

√2𝑟

𝜎
) ∗

𝜎

2√2𝜋𝑟2
(1 − 𝑒

−2𝑟
2
/𝜎
2

) ,

(30)

𝑓
𝑟
(𝑟) =

𝜎

2√2𝜋𝑟2
(1 − 𝑒

−2𝑟
2
/𝜎
2

) . (31)

This concludes the proof.



8 The Scientific World Journal

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

r

f
(r
)

f(r) simulation
f(r) theory

Figure 5: Comparison of theoretically derived (30) and numerically
simulated error pdf for 𝜎

𝑒
= 0.1.

The numerically simulated overall errors and the shape
of the above theoretical distribution are plotted in Figure 5.
This figure shows the high accuracy of the above derivation
in predicting the shape of errors distribution.

Using Proposition 1, we can model optical flow calcula-
tion as (2), where 𝑎

𝑖
= −𝐼
𝑥
𝑖

/𝐼
𝑦
𝑖

is the slope, 𝑏
𝑖
= −𝐼
𝑡
𝑖

/𝐼
𝑦
𝑖

is the
vertical intercept of the 𝑖th linear equation, and V, 𝑢 are the
image velocities.Thus, the estimation error of velocity can be
calculated as (31).

3.2. Definition of a Structure. Definition of a structure is a
cornerstone of any data segmentation solution. In classical
statistics, the definition of a structure is simpler than com-
puter vision domain as the data is assumed to have only one
structure and the structure always has the majority of data
[27]. In that context, a structure in data space is defined as a
majority of data satisfying |𝑟| < 𝑇𝜎 in which 𝑟 is a measure
of the goodness for a data point, 𝑇 is a constant (normally
set between 2 to 3 based on the desired significance level of
the Gaussian distribution), and 𝜎 is an estimate of the scale of
measurement noise.

The above represents a circular definition as the 𝑟 in the
data space is measured using some attributes of the structure
that are being defined. To bypass this issue, as shown in
Figure 6(a), the estimation and segmentation are commonly
conducted using random or guided sampling [6] and a good
(in a statistical sense) sample is used in place of the true
model. As it was mentioned earlier, this complicates the
analysis of separability as the segmentation results would
depend on the method by which the problem is solved. For
instance, in the Hough Space segmentation, the definition of
a structure and accuracy of segmentation outcomes would
depend on the used histogram bandwidth for which the
appropriate value is not known a priori.

To address the above issue our analysis, as shown in
Figure 6(b), is conducted in the space of all pairwise samples.
Our earlier derivation of the probability distribution of those
samples enables the development a precise definition for a
structure in this space. This definition is the key to solving
the separability problem. To develop a unique (noncircular)

definition, we use two basic principles that broadly define a
cluster in any space.

The first principle guiding our definition is that a struc-
ture should be represented by the largest possible set of
samples to include all the attributes of the modeled quantity.
Also, any putative structure must include more than half of
the overall samples to ensure the uniqueness of the definition
for a given set of samples.

The second principle guiding our definition is that the
probability of a given amount of error for a structure in
the sample space should be less than the probability of the
measurement noise for the same error value. This means
that any data should always be more probable given the true
model than any other model (sample).

To demonstrate the application of the above principles
for defining a structure, we first find the crossover points
by equating the derived error pdf (31) with the Gaussian
function representing the measurement noise distribution.
The result shows that error probabilities of samples up to
2.1 times the measurement noise scale is smaller than the
measurement noise probabilities (𝑓(𝑟) < 𝑓(𝑒)) for all
measurement noise scales. This fact, for the case of 𝜎

𝑒
=

1, is demonstrated by plotting those functions in Figure 7.
Furthermore, the sample size of the above group (with |𝑟| <

2.1𝜎
𝑒
) is significantly larger than half. Exact values of the

sample size and its variance up to crossover points are
calculated here:

𝜎
2

𝑟
= ∫

2.1𝜎
𝑒

−2.1𝜎
𝑒

𝑟
2

𝑓
𝑟
(𝑟) ⋅ 𝑑𝑟 = 0.6𝜎

2

𝑒
, (32)

sample size = ∫

2.1𝜎
𝑒

−2.1𝜎
𝑒

𝑓
𝑟
(𝑟) ⋅ 𝑑𝑟 ≈ 81%. (33)

The above calculations show that a very large majority (above
80%) of samples provide a precise representation of the
underlying structure. Also, this definition is in-line to its
traditional counterpart in the data space as we have (from
(32)): |𝑟| < (2.1/√0.6)𝜎

𝑟
or simply |𝑟| < 2.7𝜎

𝑟
.

A structure in sample space is then formally defined as
a cluster of at least half the samples where all of its samples
satisfy |𝑟| < 2.1𝜎

𝑒
. It is important to note that the above

definition includes a large number of samples (more than
half of the 2combinations of all samples which is significantly
larger than the number of observations) and by definition is
robust to influence of outliers [16, 17]. Also, the definition is
independent of the distribution of samples and only depends
on the scale of measurement noise (a design parameter) in
the data space.

3.3. Segmentation Feasibility. Having derived the probability
density function of error samples and provided a precise
definition of a structure in the sample space, we can now
examine the feasibility of the segmentation of the system of
linear equations representing optical flows in two coherent
systems by a simple cluster analysis. The separability of two
systems of linear equations with close solutions can now
be examined by considering the separability of the sample
distributions. We note that two structures, as defined earlier,
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Figure 6: (a) The block diagram of a typical parametric segmentation solution. (b) The block diagram for the proposed analysis of the
segmentation problem.
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are separable if the distance between their means is at least
2.1(𝜎
1
+ 𝜎
2
), where 𝜎

1
and 𝜎

2
are the standard deviations of

their associated measurement noise, respectively.
This statement is simply explained by looking at its con-

tradiction. If we assume that the means of the distributions
are already known, it would still not be possible to segment
the data cleanly unless the two distributions have no overlap.
This implies that the distance between twomeans has to be at
least equal to sum of the extent of those distributions. This
presents a sufficient condition for the separability which is
able to predict the motion separability using only the amount

Figure 8: A frame of synthetic image sequence.

of relative motion and the scale of noise in the measurement
data. It is important to note here that the condition explicitly
assumes that there are two distinct motions and in contrast
to [18] (and subsequent works that followed this), the flow is
not assumed to be varying smoothly.

4. Applications

To examine the usability of proposed theory for motion sepa-
rability prediction, results of several experiments on standard
video sequences for optical flow analysis are discussed. First,
a set of controlled experiments using synthetically generated
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Figure 9:Demonstration of the usefulness of the theoretical separability predictions of twomotions having different values of relativemotions
and noise scales.The distributions of residuals for the combined patches shown in Figure 8 for V
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= 1 and different noise scales including
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Figure 11: (a) A sample frame of the Urban2 image sequence. (b) and (c)Theoretical (dashed) and measured (solid) pdf of 𝑟 for two different
patches on two different objects highlighted by white rectangles on the sample frame. (d) and (e) Joint pdf of 𝑟 values for two patches: (d) of
two different objects and (e) of the same object.

texture were conducted to simulate the separability of similar
motions. Both the amount of relative motion and scale of
measurement noise were changed in those simulations and
the effect of those on the separability of existingmotions were
analyzed. Then, the application of the proposed theory for
prediction of different motions in various video sequences
(e.g., from Middlebury) with multiple motions were exam-
ined. The result shows that the proposed criterion is capable
of predicting the separability of the motion of different
objects.

Calculation of image derivatives is an important aspect of
optical flow calculation and there are different ways to ensure
that image derivatives are not affected by noise and aliasing
[28]. Our experiments however showed that although using

multiresolution or relatively sophisticated image interpo-
lation techniques (similar to ones used in [9]) improves
the appearance of final results, the conclusions remained
unchanged. Consequently, and for the sake of simplicity,
spatial and temporal derivatives in our experiments were all
calculated using convolution with Gaussian filters with the
standard deviation of 1 to 2 pixels in all directions.

4.1. Simulations. The usability of the proposed theory for
motion separability predictions is examined here using a
sinusoidal synthetic image sequence [5]. The texture of
the image sequence is generated by the superposition of
two sinusoidal moving plane waves. The central square of
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Figure 12: (a) A sample frame of theMequon image sequence. (b) and (c)Theoretical (dashed) andmeasured (solid) pdf of 𝑟 for two different
patches on two different objects highlighted by white rectangles on the sample frame. (d) and (e) Joint pdf of 𝑟 values for two patches: (d) of
two different objects and (e) of the same object.

the image is stationary, while the surrounding pixels are
manipulated to exhibit different constant velocities. Figure 8
demonstrates a sample frame of the image sequence and
highlights (by white rectangles) locations of two patches of
size 20 × 20 on both moving and stationary parts. In this
simulation, the scale of noise for both patches is the same and
therefore the separability condition is (V

1
− V
2
) > 2 × 2.1𝜎

𝑒
.

To simulate the effect of noise on the separability pre-
dictions, the optical flow constraints for the previously
mentioned areas were perturbed by additive Gaussian noise.

In the first simulation, the normalized histogram of all
samples for both patches containing twomotions for different
scales of added noise is shown in Figures 9(a)–9(c). Using
the above separability condition (V

1
− V
2
) > 4.2𝜎

𝑒
, we would

predict that when 𝜎
𝑒
is less than 0.24, the above motions

are separable. To show the validity of this prediction, the
normalized histograms for values less, at, and above 0.24 are
shown. Those figures show that for 𝜎

𝑒
< 0.24, two motions

are clearly separable.
In the second simulation, the result of changing the

relative velocity for a given amount of noise (𝜎
𝑒

= 0.1) is
examined. The normalized histogram for velocities less than,
at, and greater than the predicted values are also shown in
Figures 9(d)–9(f). These figures again show that as long as
(V
1
− V
2
) > 0.42 then the two motions are separable.

4.2. Real Image Experiments. As for real data usability, at
the beginning, we raised the question of how to predict the
least amount of required relative motion between different



The Scientific World Journal 13

(a)

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

r

f
(r
)

(b)

−6 −5 −4 −3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

r

f
(r
)

(c)

−5 −4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

r

f
(r
)

(d)

−5 −4 −3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

1

r

f
(r
)

(e)

Figure 13: (a) A sample frame of the Grove2 image sequence. (b) and (c)Theoretical (dashed) and measured (solid) pdf of 𝑟 for two different
patches on two different objects highlighted by white rectangles on the sample frame. (d) and (e) Joint pdf of 𝑟 values for two patches: (d) of
two different objects and (e) of the same object.

objects in the Marbled Block sequence (shown in Figure 1)
that wouldmake those separable.The proposed theory is now
able to predict the separability of different objects using their
motion information. Considering that the scale of noise for
calculation of local optical flow in this sequence is measured
to be around 0.35 pixels/frame, the proposed separability
condition, (V

1
− V
2
) > 2.1(𝜎

1
+𝜎
2
), predicts that if the relative

motion is greater than 2.1 × 2 × 0.35 = 1.5, those motions
are separable. In Figure 1 the relative motion between the two
highlighted areas that are located on two different columns is
around V

1
−V
2
= 2.1−0.5 = 1.6 and therefore we expect those

to be separable. Both the theoretical and actual distributions
of the flow samples for the combined data are shown in
Figure 10(a). In contrast, themaximum relativemotion of the
areas on one column is around V

1
− V
2

= 2.1 − 1.8 = 0.3

and since it is less than the above separability threshold, those
motions are expected to be inseparable. Again, the theoretical
and actual distributions of the flow samples for the combined
data of the two highlighted areas on a single column are
shown in Figure 10(b).

To demonstrate the application of the proposed separabil-
ity prediction criterion, the separability of different moving
objects in a number of image sequences that are commonly
used for motion analysis including four from theMiddlebury
[21] (called Urban2, Mequon, Grove2 and RubberWhale)
benchmarks was examined. In all of those sequences, three
patches on two different moving objects were chosen and
those are highlighted in part (a) of Figures 11, 12, 13, and 14.
Patches that are on one object and have very similar motions
are not expected to be separable. However, the other patch
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Figure 14: (a) A sample frame of the RubberWhale image sequence. (b) and (c) Theoretical (dashed) and measured (solid) pdf of 𝑟 for two
different patches on two different objects highlighted by white rectangles on the sample frame. (d) and (e) Joint pdf of 𝑟 values for two patches:
(d) of two different objects and (e) of the same object.

which is on a different object and has sufficiently different
motion is expected to be separable from either of those
patches. For each image sequence, both the measured and
analytical error probability distributions for two different
patches of two different objects (shown in parts (b) and (c)
of Figures 11–14) as well as distributions of the joint patches
of the same and different objects (shown in parts (d) and
(e) of Figures 11–14) were plotted. Those plots show that
the analytically derived probability for different patches is
close to their real values. The numerical results of the above
experiments in terms of relative motion between different
patches, average scale of noise for the image sequence, and the
separability verdict of pairs of patches are provided in Table 1.

The validity of the above predictions provides evidence
that the proposed theory is able to correctly predict the
separability of motion for real world applications.

Table 1: Numerical results of real image experiments and separabil-
ity predictions between different patches.

Sequence V
1
− V
2

V
1
− V
3

𝜎
𝑒

1  2 1  3

RubberWhale 0.8 0.2 0.15 ✓ ×

Mequon 3.5 0.4 0.8 ✓ ×

Urban2 1.1 0.1 0.41 ✓ ×

Grove2 1.5 0.2 0.26 ✓ ×

(✓ indicates separability, × otherwise).

5. Conclusion

Anew theoretical framework to predict the feasibility of opti-
cal flow segmentation is presented. The framework enables
the theoretical derivation of the optical flow estimation error
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probability density function as well as a precise definition
for a visual structure based on its motion. The combination
of these two elements is used to develop a segmentation
feasibility criterion that can predict the separability of mul-
tiple motions. Applications of the theoretical results for
the prediction of the separability of multiple motions were
examined using both synthetic and real image sequences.The
result illustrates that the proposed criterion is able to correctly
predict the separability in those cases.
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