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Abstract
Extracellular exosomes are formed inside the cytoplasm of cells in compartments known as multivesicular 
bodies. Thus, exosomes contain cytoplasmic content. Multivesicular bodies fuse with the plasma membrane 
and release exosomes into the extracellular environment. Comprehensive research suggests that exosomes 
act as both inflammatory intermediaries and critical inducers of oxidative stress to drive progression of 
Alzheimer’s disease. An important role of exosomes in Alzheimer’s disease includes the formation of neu-
rofibrillary tangles and beta-amyloid production, clearance, and accumulation. In addition, exosomes are 
involved in neuroinflammation and oxidative stress, which both act as triggers for beta-amyloid pathogen-
esis and tau hyperphosphorylation. Further, it has been shown that exosomes are strongly associated with 
beta-amyloid clearance. Thus, effective measures for regulating exosome metabolism may be novel drug 
targets for Alzheimer’s disease. 
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Introduction
Alzheimer’s disease (AD) is the most common cause of de-
mentia, and an age-related neurodegenerative disease char-
acterized by progressive memory loss and declining cognitive 
function. Multiple pathogenic hypotheses have been proposed 
including amyloid, extracellular beta-amyloid (Aβ) peptide 
deposition (Lloret et al., 2011; Busche et al., 2016), intracellu-
lar accumulation of hyperphosphorylated tau protein (forma-
tion of neurofibrillary tangles) (Lloret et al., 2011; Busche et 
al., 2016; Panza et al., 2016), cholinergic dysfunction (Picon 
et al., 2010; Cacabelos et al., 2014), neuroinflammation, and 
oxidative stress (Latta et al., 2015; Liu et al., 2015). Although 
several medications are available to treat AD, none of them 
stop or reverse the disease (de la Torre, 2010). Increased 
knowledge on available treatments and the existing pathogen-
esis of AD will be beneficial for reaching the best decisions on 
medications and preventing progression of AD. 

Apart from macromolecular complexes and small molecules, 
a large number of microvesicles are secreted from cells into 
the extracellular space (Vlassov et al., 2012; Beach et al., 2014). 
Microvesicles (also known as circulating microvesicles or mi-
croparticles) are fragments of plasma membrane between 100 
nm and 1,000 nm in diameter. Exosomes are microvesicles se-
creted by all cells. Exosomes first fuse with multivesicular bodies 
(MVBs) and the cell surface, and are subsequently released from 
MVBs into the extracellular space (Laulagnier et al., 2004; Vlass-
ov et al., 2012). MVBs are referred to as late endosomes and 
contain internal vesicles. The most important role of exosomes 
is to act as intercellular communication messengers by deliver-
ing macromolecules between cells (Thery et al., 2002; Beach et 

al., 2014). Substantial evidence suggests that exosomes serve as 
active mediators of neurodegenerative disorders, and transport 
disease particles such as α-synuclein (Chang et al., 2013; Kong 
et al., 2014; Tsunemi et al., 2014; Grey et al., 2015), Aβ, and pri-
ons from their cells of origin to other cells (Kalani et al., 2014; 
Yuyama et al., 2014; Fiandaca et al., 2015; Yuyama et al., 2015). 
This review discusses the role of exosomes in the pathogenesis 
of AD, and addresses the association between exosomes and 
relevant AD pathologies (Aβ, neurofibrillary tangles, oxidative 
stress, and inflammation). Moreover, this review provides a 
proposed general role of exosomes in AD pathogenesis, and dis-
cusses novel therapeutic interventions of exosomes for AD.

Exosomes
Exosomes are microvesicles of 30–100 nm in diameter, and 
small lipid vesicles secreted by all cell types (Kastelowitz and 
Yin, 2014; Sluijter et al., 2014). Internal vesicles formed by the 
inward budding of cellular compartments are known as MVBs 
(Vlassov et al., 2012; Al-Nedawi, 2014). When MVBs fuse 
with the plasma membrane, exosomes are released from these 
internal vesicles. Exosomes exist in blood, saliva, urine, breast 
milk, and other body fluids (Vlassov et al., 2012; Qin and Xu, 
2014). Exosomes not only maintain normal cellular functions 
and cellular viability via housekeeping roles, but also safeguard 
various functions of multicellular organisms (Ohno, 2006). 

Exosomes contain various substances, including small 
RNAs, lipids, and a variety of proteins (Vitek et al., 1994; 
Beach et al., 2014). MicroRNAs (miRNAs) target messenger 
RNAs for degradation and prevent translation. It has been 
shown that exosome-released miRNAs regulate the inflam-
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matory response to external environmental changes. For 
example, exosome-delivered miR-155 increases expression of 
inflammatory genes, while miR-146a decreases their expres-
sion (Gao et al., 2016). The most intriguing role of exosomes 
are as conveyors of proteins and lipids, which affect down-
stream signaling events in recipient cells and influence vari-
ous aspects of cell behavior and physiology, including nerve 
regeneration, and synaptic function and behavior (Arscott et 
al., 2013; Chen et al., 2014). Exosomes may serve as vesicular 
carriers for intercellular communication in neurodegenera-
tive disorders (Schneider and Simons, 2013). Further, they 
play an ominous role in propagation of toxic Aβ pathology 
(enhancing Aβ generation and deposition, and inhibiting 
Aβ clearance), abnormal tau phosphorylation, and trigger-
ing neuroinflammation and oxidative stress by exchange of 
information between neurons and glia in neurodegenerative 
AD conditions (Saman et al., 2014; Yuyama et al., 2014, 2015; 
Fiandaca et al., 2015; Goetzl et al., 2016; Shi et al., 2016). 

Exosomes and Neurodegeneration
Neurodegeneration encompasses a series of diseases due 
to loss of structure and function of nerve cells in the brain. 
Most attention has been focused on Parkinson’s disease (PD), 
Huntington’s disease, and AD (Tonekaboni and Mollamo-
hammadi, 2014; Mouton-Liger et al., 2015). Indeed, a large 
proportion of less popular diseases have been ignored (Kerner, 
2014), such as multiple sclerosis (Orack et al., 2015), epilepsy 
(Aboud et al., 2013; Pottoo et al., 2014), and stroke (Seifert et 
al., 2014; Walberer et al., 2014). Increasing evidence indicates 
that exosomes are involved in neurodegenerative disorders 
as potential carriers of misfolded proteins (Russo et al., 2012; 
Candelario and Steindler, 2014; Kalani et al., 2014).

Two of the most common neurodegenerative diseases are 
AD and PD. The main cause of PD is death of dopaminergic 
cells in the substantia nigra. Emerging studies have shown 
that progression of neurodegeneration in PD may involve 
release of toxic forms of α-synuclein, which are taken up by 
neighboring neurons and trigger dysfunction (Russo et al., 
2012). Several studies have noted that exosomes are involved 
in PD pathogenesis such as acceleration of α-synuclein ag-
gregation (Tsunemi et al., 2014; Grey et al., 2015). Molecular 
biology data support the proposition that lysosomal dys-
function leads to increased α-synuclein release in exosomes, 
and a concomitant increase in α-synuclein transmission to 
recipient cells (Alvarez-Erviti et al., 2011). Additionally, an 
in vitro study suggested involvement of ATP13A2/(PARK9) 
in exosome biogenesis and α-synuclein secretion (Tsunemi 
et al., 2014). While PD-linked human ATP13A2/(PARK9) 
promotes α-synuclein externalization via exosomes (Kong 
et al., 2014). Furthermore, exosomes secreted from activated 
microglia are important mediators of α-synuclein-induced 
neurodegeneration (Chang et al., 2013).

Exosomes and Amyloid Pathology
Senile plaques produced by accumulation of Aβ are a classical 
hallmark of AD. Aβ originates from sequential cleavage of 
amyloid precursor protein (APP) (Tam et al., 2014; Agostin-

ho et al., 2015). Cleavage by β-secretase within the luminal/
extracellular domain leads to generation of β-carboxyl-ter-
minal fragments (CTFs) (Cai et al., 2012; Ortega et al., 2013). 
Following β-secretase cleavage, γ-secretase processes APP at 
the carboxyl-terminus to produce Aβ. CTFs of APP can ac-
cumulate in MVBs and be released from the cell in exosomes 
(Sharples et al., 2008). Exosomes also contain CTFs and β- 
and γ-secretases (Sharples et al., 2008), indicating a wider role 
in APP metabolism.

Formation and clearance of Aβ are associated with endo-
somal compartments as Aβ and CTFs are secreted from exo-
somes (Rajendran et al., 2006). Cleavage of APP by β-secre-
tase occurs in early endosomes (Rajendran et al., 2006). 
Exosome-associated Aβ levels increased more significantly 
in the cerebrospinal fluid of younger cynomolgus monkeys 
and APP transgenic mice compared with older animals 
(Yuyama et al., 2015). Additional evidence has confirmed that 
exosomes promote Aβ aggregation and accelerate amyloid 
plaque formation (Dinkins et al., 2014). Meanwhile, in vivo 
exosome reduction contributes to lower amyloid plaque load 
in the 5xFAD mouse model, a mouse line that expresses five 
mutations of familial AD (Dinkins et al., 2014).

Recent evidence revealed that infusion of neuronal exosomes 
into the brain of APP transgenic mice decreased Aβ generation 
and deposition, which was not observed with glial exosomes 
(Yuyama et al., 2015). This finding highlights the role of neu-
ronal exosomes in Aβ clearance (Yuyama et al., 2015), and 
suggests that diminished secretion of neuronal exosomes may 
relate to Aβ accumulation, and ultimately, development of 
AD pathology (Figure 1). Indeed, it appears that improving 
Aβ clearance by exosome administration may provide a novel 
therapeutic intervention for AD (Yuyama et al., 2014).

Exosomes and Neurofibrillary Tangles 
Neurofibrillary tangles are aggregates of hyperphosphorylated 
tau protein (Gendreau and Hall, 2013). Definitive diagnosis 
of AD requires postmortem identification of amyloid plaques 
and neurofibrillary tangles. Several studies suggest that tau 
can be secreted from neurons via exosomes, and exosome-re-
lated tau may be an important contributor to spreading neu-
rofibrillary lesions (Vingtdeux et al., 2012; Saman et al., 2014). 

Exosomes as a novel way of interneuronal communication, 
participate in spreading pathological proteins (such as APP 
fragments, phosphorylated tau, or α-synuclein) across the 
nervous system (Chivet et al., 2012, 2013). There is signifi-
cant correlation between multiple genes of AD and proteins 
recruited to exosomes by tau overexpression (Saman et al., 
2014). A clinical study showed that exosome levels of total 
tau (pT181-tau and pS396-tau) were significantly higher in 
AD patients than case-controls, both 1–10 years before and 
at AD diagnosis, suggesting that pS396-tau and pT181-tau 
levels in extracts of neutrally-derived blood exosomes predict 
AD development before clinical onset (Fiandaca et al., 2015). 
In addition, exosome-associated tau phosphorylated at Thr-
181 (AT270) is present in human cerebrospinal fluid samples, 
suggesting that phosphorylated tau induced by exosome se-
cretion may contribute to abnormal tau processing (Saman et 
al., 2012).
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Figure 1 Schematic diagram of the 
emerging role of exosomes in beta-
amyloid peptide pathology.
Exosomes are formed inside multive-
sicular bodies in cells. Exosomes are 
released into the extracellular environ-
ment when multivesicular bodies fuse 
with the plasma membrane. Beta-amy-
loid (Aβ) can be secreted from cells by 
association with exosomes. Aβ secreted 
from exosomes in the extracellular space 
contributes to Aβ plaque formation, 
which in turn triggers neuroinflamma-
tion and oxidative stress.

Exosomes as Mediators of Neuroinflammation 
Associated with AD
Inflammation represents a response induced by injury or 
destruction of tissues, which enables removal, dilution, or 
isolation of both injurious substances and injured tissue. 
Neuroinflammation is inflammation of nervous tissue, and 
is a pathological and physiological process in response to a 
variety of events (Cai et al., 2013a, 2014), including microbial 
infections (Cox et al., 2013), chemical substances (de Rivero 
Vaccari et al., 2016), tissue necrosis from ischemia and an-
oxia (Maddahi and Edvinsson, 2010), traumatic brain injury 
(Lozano et al., 2015; de Rivero Vaccari et al., 2016), toxic 
metabolites (Butterworth, 2011; McMillin et al., 2014), and 
autoimmunity (Liu et al., 2014; Morales et al., 2014). It is well 
known that inflammation can be classified as either acute 
or chronic. As a common inflammatory process, acute neu-
roinflammation occurs immediately following injury to the 
central nervous system. It is characterized by the release of 
inflammatory molecules, glial cell activation, endothelial cell 
activation, platelet deposition, and tissue edema. Meanwhile, 
chronic neuroinflammation is of longer duration, with main-
tained glial cell activation and recruitment of other immune 
cells in the brain (Millington et al., 2014; Phillips et al., 2014). 
Neuroinflammation is regarded as chronic inflammation of 
the central nervous system. Mounting evidence shows that 
AD is associated with chronic inflammatory responses, with 
sustained presence of inflammatory cytokines from activated 
microglia and astrocytes, free radicals, and oxidative stress 
(Kaur et al., 2015; Latta et al., 2015; Zhang and Jiang, 2015). 

Exosomes are emerging as important inflammatory media-
tors because of their role as cargo of inflammatory molecules, 
and thereby induce neuroinflammation by exchange of infor-
mation between neurons and glia (Gupta and Pulliam, 2014; 
Kore and Abraham, 2014; Rajendran et al., 2014; Fernan-
dez-Messina et al., 2015; de Rivero Vaccari et al., 2016). Aβ is 
effectively packaged into exosomes and spread from one cell 

to another, initiating an inflammatory cascade (Gupta and 
Pulliam, 2014). In addition to releasing inflammatory factors, 
exosomes secreted by dead brain cells can influence bystander 
cells by the transfer of inflammatory mediators in response to 
pathogenic stimuli (Prado et al., 2010; Sun et al., 2010; Gupta 
and Pulliam, 2014). Extracellular exosomes release Aβ and 
accelerate amyloid plaque formation, which are important 
causes of neuroinflammation (Engel, 2014). Considering their 
ability to mediate intercellular communication between cells 
(Record, 2014; Salido-Guadarrama et al., 2014; Zhang and 
Grizzle, 2014), exosomes represent one of the key players in 
transporting neurotoxic inflammatory agents and spreading 
progression of inflammation in brain cells. Oversecretion 
of exosomes is harmful and can strengthen progression of 
inflammation in the extracellular microenvironment. None-
theless, despite abundant evidence demonstrating a role for 
exosomes in regulating the inflammatory response, the exact 
mechanisms remain unclear. Therefore, improved under-
standing of the role of exosomes in inflammation at different 
stages of AD will benefit prevention and treatment of AD.

Oxidative Stress: A Direct Mediator of 
Exosome Release in AD? 
Extensive research has shown that oxidative stress is strongly 
linked to AD pathogenesis (Cai et al., 2011, 2013b; Ferreira 
et al., 2015). An important feature of AD is an active and 
self-perpetuating cycle of chronic neuroinflammation and 
oxidative stress that may contribute to irreversible neuronal 
dysfunction and cell death (Cai, 2014). Oxidative stress is 
proposed to contribute to Aβ generation and formation of 
neurofibrillary tangles (Santos et al., 2014; Kanamaru et al., 
2015; Kamat et al., 2016). Many results show that neuroin-
flammation-induced oxidative stress increases Aβ generation 
by enhancing β- and γ-secretase activity (Cai et al., 2011; 
Bonda et al., 2014; Chang et al., 2014). In addition, intracel-
lular Aβ accumulation promotes significant oxidative and 

Oxidative stress 

inflammation
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inflammatory mechanisms that generate a vicious cycle of 
Aβ generation and oxidation, each accelerating the other 
(Luque-Contreras et al., 2014; Persson et al., 2014). 

Many studies have noted that exosome release from MVBs 
are induced and accelerated by oxidative stress (Soderberg et 
al., 2007; Eldh et al., 2010; Zhou et al., 2013; Tsanova et al., 
2014). Previous studies have indicated that exosome release 
from MVBs is associated with the pathogenesis of many dis-
eases involved in oxidative stress (Tsanova et al., 2014), such 
as multiple sclerosis and dysmyelinating syndromes (Pusic et 
al., 2014), cancer (Goldkorn et al., 2013; Meseure et al., 2014), 
cerebral ischemia disease (DeGracia et al., 2008; Fröhlich et 
al., 2014), as well as cardiovascular disease (Fleury et al., 2014; 
Yamaguchi et al., 2015). However, many questions have not 
been answered: what is the exact role of exosome release me-
diated by oxidative damage in AD pathogenesis? Is release of 
exosomes from MVBs a cause or consequence of oxidative 
stress in AD? What is the relationship between oxidative-me-
diated release of exosomes and AD pathology? 

Exosomes: A Novel Therapeutic Strategy for 
AD?
AD is a progressive brain disorder and the most common 
form of dementia. To date, there is still no cure for AD that 
can reverse or halt its progress, although there are medications 
that can help improve symptoms in some cases. Exosomes 
are extracellular vesicles that transport different molecules 
between cells. They are formed and stored inside MVBs un-
til they are released to the extracellular environment. It is 
apparent that the brain microenvironment correlates with 
neurodegeneration, and brain intercellular communication 
induced by exosomes is necessary for this to occur. In the past 
decade, exosomes have been shown to be efficient carriers of 
genetic information, which can be transferred between cells to 
regulate gene expression and function of recipient cells (Fer-
nandez-Messina et al., 2015). Hence, they may be an important 
means of regulating the neurodegenerative process underlying 
AD, and improve the brain microenvironment by affecting the 
intercellular communication induced by exosomes. 

Exosomes can cross the blood-brain barrier and therefore 
be used as delivery vehicles of drugs and genetic elements for 
treatment of neurological disorders. Several studies have sug-
gested that exosomes derived from multipluripotent mesen-
chymal stromal cells play a neuroprotective role by promoting 
functional recovery (Xin et al., 2014), neurovascular plasticity 
(Xin et al., 2013a, b; Zhang et al., 2015), and repairing injured 
tissue in traumatic brain injury and neurodegenerative disor-
ders. Thus, it may be possible to use mesenchymal stromal cell 
exosomes in therapies for AD (Katsuda et al., 2015). Further-
more, intracerebrally administered exosomes can act as potent 
Aβ scavengers by binding to Aβ through enriched glycans on 
glycosphingolipids on the exosome surface, suggesting a role 
for exosomes in Aβ clearance in the central nervous system 
(Yuyama et al., 2014). Improving Aβ clearance by exosome ad-
ministration provides a novel therapeutic intervention for AD.  

Ambiguous knowledge of the underlying mechanisms 
responsible for causing AD and its progression is the major 
impediment to therapeutic advances. The potential role of 

exosomes in neurological disorders and knowledge of their 
biology show promising leads that are close to clinical trans-
lation. Regulating the status and state of exosomes may be a 
‘Trojan-horse’ approach to deliver drugs into the brain and 
treat neurodegenerative and other disorders.
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