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ABSTRACT
Russula is a worldwid genus which has a high species diversity . Aiming accurate and rapid
species identification, candidate genes nLSU (28S), ITS, tef-1α, mtSSU, rpb1, and rpb2, were
analysed as potential DNA barcodes. This analysis included 433 sequences from 38 well-circum-
scribed Russula species of eight subgenera. Two vital standards were analysed for success species
identification using DNA barcodes, specifically inter- and intra-specific variations together with
the success rates of PCR amplification and sequencing. Although the gap between inter- and
intra-specific variations was narrow, ITS met the qualification standards for a target DNA barcode.
Overlapping inter- and intra-specific pairwise distances were observed in nLSU, tef-1α, mtSSU, and
rpb2. The success rates of PCR amplification and sequencing in mtSSU and rpb1 were lower than
those of others. Gene combinations were also investigated for resolution of species recognition.
ITS-rpb2 was suggested as the likely target DNA barcode for Russula, owing to the two viatal
standards above. Since nLSU has the lowest minimum of inter-specific variation, and tef-1α has
the highest overlap between intra- and inter-species variations among the candidate genes, they
are disqualified from the selection for DNA barcode of Russula.
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Introduction

The genus Russula Pers. is a group of gilled mush-
rooms with brightly coloured pileus and non-lactic
fragile basidiocarps. It belongs to the family
Russulaceae (Russulales, Agaricomycetes)
(Romagnesi 1985; Sarnari 1998, 2005; Li 2014).
This genus comprises over 780 species which is
the second largest genus among Agaricomycetes.
Russula species are frequently growing in almost all
kinds of forests and is the dominant ectomycorrhi-
zal (ECM) mushrooms, with a geographic range
from the arctic tundra to tropical forests (Singer
1986; Buyck et al. 1996; Kirk et al. 2008; Geml et al.
2009, Wang et al. 2009; Li 2014). Although the
majority of Russula species are edible, a few mem-
bers are poisonous and some are even lethal (Li
et al. 2010a; Chen et al. 2016).

Morphological characters have been regarded
as the main criterions for specific identification
in Russula for a long time in history. The large
number of species, high intra-specific variability,

and inaccurate descriptions in the literature
caused considerable taxonomic inconvenience
and confusions (Romagnesi 1985; Sarnari 1998,
2005; Li 2014). For example, R. virescens (Schaeff.)
Fr. was originally described from Europe, while the
illustrations of “Russula virescens” in some pre-
vious North American field guide books (Metzler
and Metzler 1992, Roody 2003, Miller OK and
Miller HH 2006, Kuo 2007) have been proved to
be R. parvovirescens Buyck, D. Mitch. & Parrent; the
“R. virescens-R. crustosa” group in North America is
suggested to be much more complex than sus-
pected, which contains at least a dozen of Russula
taxa in the eastern US (Buyck et al. 2006; Kuo
2007). Another similar example is “R. vinosa
Lindblad” in several Chinese fungal monographs
(Teng 1963; Tai 1979; Ying et al. 1982, 1987; Wang
et al. 2004) should be another species and named
as R. griseocarnosa X.H. Wang et al. after morpho-
logical and ITS-nLSU phylogenetic analyses (Wang
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et al. 2009). More recently, the molecular analysis
indicated that this “species” has three divergent
lineages: one of them represents to R. griseocar-
nosa and the other two possibly correspond to
unknown taxa (Li et al. 2010b). The genus
Russula is easily separated from other genera in
morphology; however, morphological distinction
at species level within this genus is complicated
and time-consuming. A mechanism for the accu-
rate and rapid identification of Russula species is,
thus, vital and critical for both theoretical and
applied research.

DNA barcoding makes use of a short gene
sequence as a universal and standard genetic
marker for species identification (Hebert et al.
2003; Stockinger et al. 2010). Compared with
molecular phylogenetic analyses, DNA barcoding
aims to identify unknown samples and cryptic
species based on current classifications, rather
than elucidating patterns of phylogenetic rela-
tionships (Kress et al. 2005). The ideal barcode
sequence must be easily amplified and
sequenced, conserved within a species, and vari-
able between species (Taberlet et al. 2007). The
first attempt at DNA barcoding was to target the
mitochondrial gene, cytochrome oxidase I (COI or
COX1), for the identification of specific animals
and protists (Hebert et al. 2003). However, this
gene proved to be too highly conserved and was
not suitable for DNA barcoding in the plant king-
dom (Ning et al. 2008). Two genes, rbcL and
matK, within the chloroplast coding region and
trnH-psbA, within the chloroplast noncoding
region, together with the ITS and ITS2 regions of
ribosomal RNA, were, thus, selected as appropri-
ate DNA barcodes for plants (Hollingsworth et al.
2009; Chen et al. 2010; Li et al. 2011).

DNA barcoding of fungi has only recently been per-
formed. Despite a successful attempt in the genus
Penicillum (Seifert et al. 2007) and class Oomycetes
(Martin 2000; Martin and Tooley 2003; Robideau et al.
2011, Long et al. 2014), the COI gene failed to qualify as a
universal fungal target due to unequal intron numbers,
an absence of primer commonality, and difficulties in
primer design and sequence alignment (Geiser et al.
2007; Gilmore et al. 2009; Vialle et al. 2009). The β-
tubulin gene could be used as a suitable DNA barcode
for the genera, Aspergillus (Geiser et al. 2007; Varga et al.
2011), Penicillum (Samson et al. 2004), and Tuber

(Zampieri et al. 2009), but was not suitable for
Parmeliaceae and Sordariomycetes (Thell et al. 2004;
Tang et al. 2007). The gene for transcription elongation
factor 1-alpha (tef-1α) was suggested as a DNA barcode
for the genus Fusarium (Geiser et al. 2004), which, along
with the second largest RNA polymerase II subunit
(rpb2), could precisely distinguish the species of genera
Hypocera (Jaklitsch et al. 2006) and Neonectria (Zhao
et al. 2011a; b, Zeng et al. 2012). Among the ribosomal
RNA genes that are commonly used in molecular phy-
logenetic analyses, the 18S and 28S rDNA subunits show
a high primer commonality; while they were chosen as
the DNA barcode for Glomeromycota (Schüßler et al.
2001; Schüßler and Walker 2010), they are not appro-
priate for specific identification because of their low
mutation rates (Krüger et al. 2009).

The ITS1-5.8S-ITS2 (ITS) region of ribosomal RNA is the
most widely analysed for fungal species identification,
e.g. Amanita and Cortinarius of marco-fungi (Zhang
et al. 2004, 2010; Frøslev et al. 2007), Chrysomyxa and
Melampsora of smut fungi (Vialle et al. 2009), Trichoderma
(Druzhinina et al. 2005), Lichenized fungi of Ascomycota
(Kelly et al. 2011), and Mucorales of Mucoromycotina
(Schwarz et al. 2006). ITS has been suggested to be the
universal DNA barcode marker for fungi (Schoch et al.
2012); however, there are multiple paralogous or non-
orthologous copies that lead to ITS sequence polymorph-
ism (O’Donnell and Cigelnik 1997; Smith et al. 2007;
Kovács et al. 2011; Lindner and Banik 2011). It is, thus,
necessary to select DNA barcode substitutions to achieve
multi-locus fungal identification (Roe et al. 2010).

Several gene makers have been analysed in molecu-
lar studies of Russula, some of which are phylogenetic
analyses, e.g. nLSU (28S) analysed by Miller et al. (2001)
and Shimono et al. (2004), ITS byMiller and Buyck (2002),
Li (2014), Zhang (2014), Guo et al. (2014) and Liu et al.
(2017), ITS and nLSU by Eberhardt (2002) and Shimono
et al. (2014), ITS, nLSU, and rpb2 by Buyck et al. (2008),
ITS, nLSU, rpb1 and rpb2 by Looney et al. (2016), and
nLSU, mtSSU, tef-1α, rpb1 and rpb2 by Buyck and
Hofstetter (2018). For species delimitation of Russula,
more analyses focused in ITS region (Wang and Sun
2004; Yin et al. 2008; Hampe et al. 2013, Adamčík et al.
2016a; 2016b; Looney 2014). There are relatively fewer
researches in which multiple genes were analysed, e.g.
ITS, mtSSU, nLSU and rpb2 in Li et al. (2010b), ITS, nLSU
and rpb2 in Park et al. (2013), ITS and nLSU in Park et al.
(2014), ITS, rpb2, atp6, cox3 and chsi in Cao et al. (2013)
and ITS, mtSSU and rpb2 in Caboň et al. (2017). In the
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present study, six genes, namely nLSU (28S), ITS, tef-1α,
mtSSU, rpb1, and rpb2, which have beenwidely analysed
in molecular phylogeny, were selected as candidate
biomarkers. The efficiency of species identification and
the feasibility of these genes to act as DNA barcodes for
the genus Russula were evaluated.

Materials and methods

Materials

A total of 398 sequences of ITS, nLSU (28S), tef-1α,
mtSSU, rpb1 and rpb2genes from59 Russula specimens,
which represented 27 species, were newly produced
from this study. Another 28 sequences of 15 species
were retrieved from GenBank (see Table 1 for accession
numbers). The total 38 Russula species were involved.
All of the sampling species can be recognised in mor-
phology and six-gene phylogenetic analyses. For those
Chinese specimens under European and North
American names, stable morphological resemblance
and over 99% ITS sequence identities were regarded
as criteria when other genes of other continents were
not available.Members of each subgenus in Romagnesi
(1985) were representatively sampled.

DNA extraction, PCR amplification, and sequencing

DNA extraction was performed, as per the procedure
described by Li et al. (2012). The six candidate genes
were amplified and sequenced using the following pri-
mer pairs: ITS1/ITS5 (ITS, White et al. 1990), LROR/LR5
(nLSU, Moncalvo et al. 2000, 2002), EF1-983F/EF1-1567R
(tef-1α, Morehouse et al. 2003), MS1/MS2 (mtSSU, White
et al. 1990), RPB1-Ac/RPB1-Cr (rpb1, Stiller and Hall 1997;
Matheny et al. 2002), and bRPB2-6F/fRPB2-7cR (rpb2, Liu
et al. 1999; Matheny 2005). PCR was performed in a
Techne Prime Thermal Cycler (Cole-Parmer,
Staffordshire, UK) using a 50 μL reaction volume com-
posed of 25 μL Biomed 2× Taq Plus PCR MasterMix
(Biomed, Beijing, China), 21 μL ddH2O, 1.5 μL of each
primer (10μmol/L), and 1μLDNA template. PCR reaction
conditions followed those of Li et al. (2012) for ITS and
nLSU, Stenglein et al. (2010) for tef-1α and mtSSU, and
Matheny (2005) for rpb1 and rpb2. PCR products were
purified and sequenced by the Biomed Biotech
Company (Beijing) using the ABI 3130 DNA sequencer
and ABI BigDye 3.1 Terminator Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA, USA).

Comparison of intra- and inter-specific divergence

Sequences were aligned using Mafft 7.311 (Katoh
and Standley 2013), and the aligned sequences
were manually adjusted in Bioedit 7.0 (Hall 1999).
Similarity matrices were calculated using the
MegAlign program in DNAStar v7.1 (Lasergene,
WI, USA) and the resulting output was analysed
and visualised in TaxonGap 2.4.1 (Slabbinck et al.
2008). The intra- and inter-specific pairwise dis-
tances were analysed in MEGA 7.0.26 with
Kimura’s two-parameter (K2P) model (Kumar et al.
2016) and SpeciesIdentifier 1.8 in TaxonDNA
(Meier et al. 2006). The DNA barcode gap between
the frequency distributions of intra- and inter-spe-
cific pairwise distances was calculated using
Microsoft Office Excel 2013. The incongruence
length difference (ILD) test was carried out to
calculate the probability values (p-values) in parti-
tion homogeneity tests using PAUP 4.0 Beta 10
(Swofford 2004). The p-value criterion (p ≥ 0.01)
proposed in Farris et al. (1995) and Cunningham
(1997) was followed to test the feasibility that two
genes were congruent so they can be analysed
together as a combination. Maximum likelihood
(ML) phylogenetic analyses of the six genes were
carried out using RAxML 8 (Stamatakis 2014) to
estimate the intra- and inter-specific genetic
distances.

Success rates of sequence acquisition

The success rates of PCR amplification and sequen-
cing were calculated and evaluated. In electrophor-
esis running gel, a single and clear band that fit for
the length of target gene can be regarded as the
criterion of successful PCR amplification. A chroma-
togram which has high but not mixed peaks was
regarded as the standard of successful sequencing.
A success rate of PCR amplification and sequencing is
the product of two respective rates.

Results

The overall analysis involved a total of 426 sequences
from 38 Russula species, targeting six candidate
genes, namely nLSU, ITS, tef-1α, mtSSU, rpb1, and
rpb2 (Table 1). The sequences were shortened to
meet standard DNA barcode requirements.

MYCOLOGY 63



Ta
bl
e
1.

Sp
ec
im
en
s
an
d
se
qu

en
ce
s
in

th
is
st
ud

y.
Ta
xo
n
na
m
e

H
er
ba
riu

m
LS
U

IT
S

te
f-
1α

m
tS
SU

rp
b1

rp
b
2

Su
bg

en
us

Lo
ca
tio

n

Ru
ss
ul
a
ac
rif
ol
ia

H
M
AS

26
77
74

KX
44
13
51

KX
44
11
04

M
F8
93
43
6

KX
44
15
98

KX
44
18
45

KX
44
20
92

Co
m
pa
ct
ae

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
ac
rif
ol
ia

PC
54
3/
BB

08
.6
62

KU
23
75
35

N
A

KU
23
79
65

KU
23
73
81

KU
23
76
84

KU
23
78
21

Co
m
pa
ct
ae

Eu
ro
pe

Ru
ss
ul
a
am

ar
a

G
EN

T
FH

12
-2
13

KT
93
38
59

KT
93
39
98

N
A

N
A

KT
95
73
70

N
A

In
cr
us
ta
tu
la

Eu
ro
pe

Ru
ss
ul
a
am

ar
a

PC
53
2/
BB

07
.7
82

KU
23
75
24

N
A

KU
23
79
54

KU
23
73
70

KU
23
76
74

N
A

In
cr
us
ta
tu
la

Eu
ro
pe

Ru
ss
ul
a
am

oe
ni
pe
s

H
M
AS

26
30
65

KX
44
13
19

N
A

M
F8
93
40
4

KX
44
15
66

KX
44
18
13

KX
44
20
60

Po
ly
ch
ro
m
id
ia

Ch
in
a
Yu

nn
an

Ku
nm

in
g
Q
io
ng

zh
us
i

Ru
ss
ul
a
am

oe
ni
pe
s

H
M
AS

26
30
67

M
G
49
32
14

N
A

M
G
49
51
19

M
G
51
83
76

M
G
49
50
99

N
A

Po
ly
ch
ro
m
id
ia

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
am

oe
no
le
ns

H
M
AS

25
26
22

KX
44
12
82

KX
44
10
35

M
F8
93
36
7

KX
44
15
29

KX
44
17
76

KX
44
20
23

In
gr
at
ae

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
am

oe
no
le
ns

H
M
AS

26
44
97

KX
44
13
25

KX
44
10
78

M
F8
93
41
0

KX
44
15
72

KX
44
18
19

KX
44
20
66

In
gr
at
ae

Ch
in
a
Jil
in

Lo
ng

jin
g
Ti
an
fu
oz
hi
sh
an

Ru
ss
ul
a
au
re
a

H
M
AS

25
09
32

KX
44
12
61

N
A

M
F8
93
34
6

N
A

KX
44
17
55

KX
44
20
02

Co
cc
in
ul
a

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

H
ua
ng

so
ng

pu
Ru
ss
ul
a
au
re
a

H
M
AS

26
23
77

M
G
49
32
15

N
A

M
G
49
51
20

M
G
51
83
77

M
G
49
51
01

M
G
49
51
09

Co
cc
in
ul
a

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
au
re
a

PC
54
7/
BB

07
.2
11

KU
23
75
39

N
A

KU
23
79
69

KU
23
73
85

KU
23
76
88

N
A

Co
cc
in
ul
a

Eu
ro
pe

Ru
ss
ul
a
br
ev
ip
es

H
M
AS

25
25
96

KX
44
12
77

KX
44
10
30

M
F8
93
36
2

KX
44
15
24

KX
44
17
71

KX
44
20
18

Br
ev
ip
es

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Xi
zh
ux
ia
n

Ru
ss
ul
a
br
ev
ip
es

H
M
AS

25
26
11

KX
44
12
80

KX
44
10
33

M
F8
93
36
5

KX
44
15
27

KX
44
17
74

KX
44
20
21

Br
ev
ip
es

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
ca
rn
ei
pe
s

H
M
AS

25
26
82

KX
44
12
86

KX
44
10
39

M
F8
93
37
1

N
A

KX
44
17
80

KX
44
20
27

Ru
ss
ul
a

Ch
in
a
Si
ch
ua
n
D
aw

o
Ta
in
in
gy
uk
e

Ru
ss
ul
a
ca
rn
ei
pe
s

H
M
AS

26
81
87

KX
44
13
63

KX
44
11
16

M
F8
93
44
8

N
A

KX
44
18
57

KX
44
21
04

Ru
ss
ul
a

Ch
in
a
Si
ch
ua
n
D
aw

o
Ta
in
in
gy
uk
e

Ru
ss
ul
a
ch
an
gb
ai
en
sis

H
M
AS

26
23
55

KX
44
13
04

KX
44
10
57

M
F8
93
38
9

KX
44
15
51

KX
44
17
98

KX
44
20
45

G
en
ui
na

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
ch
an
gb
ai
en
sis

H
M
AS

26
77
36

M
G
49
32
16

M
G
49
32
02

M
G
49
51
21

M
G
51
83
78

M
G
49
51
06

N
A

G
en
ui
na

Ch
in
a
N
ei
m
en
gg

u
Ya
ke
sh
iN

an
m
u

Ru
ss
ul
a
co
m
pa
ct
a

TE
N
N
06
71
33

BP
L2
27

KT
93
38
10

KT
93
39
52

N
A

N
A

N
A

KT
93
38
81

M
al
od
or
ae

N
or
th

Am
er
ic
a

Ru
ss
ul
a
co
m
pa
ct
a

TE
N
N
06
73
03

BP
L2
42

KT
93
38
19

KT
93
39
60

N
A

N
A

KT
95
73
30

KT
93
38
90

M
al
od
or
ae

N
or
th

Am
er
ic
a

Ru
ss
ul
a
cr
us
to
sa

TE
N
N
06
74
18

BP
L2
65

KT
93
38
26

KT
93
39
66

N
A

N
A

KT
95
73
38

KT
93
38
98

M
al
od
or
ae

N
or
th

Am
er
ic
a

Ru
ss
ul
a
cr
us
to
sa

TE
N
N
07
01
80

BP
L2
51

KT
93
38
22

KT
93
39
63

N
A

N
A

KT
95
73
34

KT
93
38
94

M
al
od
or
ae

N
or
th

Am
er
ic
a

Ru
ss
ul
a
de
co
lo
ra
ns

G
EN

T
FH

12
-1
96

KT
93
38
53

KT
93
39
92

N
A

N
A

KT
95
73
64

KT
93
39
24

Te
ne
llu
la

Eu
ro
pe

Ru
ss
ul
a
de
co
lo
ra
ns

PC
54
9/
BB

07
.3
22

KU
23
75
41

N
A

KU
23
79
71

KU
23
73
87

KU
23
77
35

N
A

Te
ne
llu
la

Eu
ro
pe

Ru
ss
ul
a
ex
al
bi
ca
ns

H
M
AS

26
87
74

M
G
49
32
19

M
G
49
32
05

N
A

N
A

N
A

M
G
49
51
10

Ru
ss
ul
a

Si
ch
ua
n
Jiu

zh
ai
go

u
Zh

an
gz
ha

Ru
ss
ul
a
ex
al
bi
ca
ns

H
M
AS

26
97
13

KX
44
14
08

KX
44
11
61

M
F8
93
49
3

N
A

N
A

KX
44
21
49

Ru
ss
ul
a

Si
ch
ua
n
Jiu

zh
ai
go

u
Zh

an
gz
ha

Ru
ss
ul
a
fe
lle
a

G
EN

T
FH

12
-1
85

KT
93
38
50

KT
93
39
89

N
A

N
A

KT
95
73
61

KT
93
39
21

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
fe
lle
a

PC
44
4/
BB

07
.2
81

KU
23
75
07

N
A

KU
23
79
36

KU
23
73
52

KU
23
76
56

KU
23
77
93

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
fir
m
ul
a

H
M
AS

27
10
96

M
G
49
32
20

N
A

M
G
49
51
24

M
G
51
83
81

N
A

M
G
49
51
11

Ru
ss
ul
a

Ch
in
a
Si
ch
ua
n
Ya
jia
ng

Ka
zi
la
sh
an

Ru
ss
ul
a
fir
m
ul
a

H
M
AS

27
11
40

KX
44
14
59

N
A

M
F8
93
54
4

KX
44
17
06

KX
44
19
53

KX
44
22
00

Ru
ss
ul
a

Ch
in
a
Si
ch
ua
n
Ya
jia
ng

Ka
zi
la
sh
an

Ru
ss
ul
a
fo
et
en
s

H
M
AS

27
11
73

KX
44
14
70

KX
44
12
23

M
F8
93
55
5

KX
44
17
17

KX
44
19
64

KX
44
22
11

In
gr
at
ae

Ch
in
a
Si
ch
ua
n
Li
ta
ng

Cu
ng

e
Ru
ss
ul
a
fo
et
en
s

H
M
AS

27
12
30

KX
44
14
76

KX
44
12
29

M
F8
93
56
1

KX
44
17
23

KX
44
19
70

KX
44
22
17

In
gr
at
ae

Ch
in
a
Si
ch
ua
n
Li
ta
ng

Cu
ng

e
Ru
ss
ul
a
fo
nt
qu
er
i

H
M
AS

26
06
32

M
G
49
32
17

M
G
49
32
03

M
G
49
51
22

M
G
51
83
79

M
G
49
50
98

N
A

Te
ne
llu
la

Ch
in
a
H
ei
lo
ng

jia
ng

Su
ife
nh

e
Fo
re
st

Pa
rk

Ru
ss
ul
a
fo
nt
qu
er
i

H
M
AS

26
23
98

M
G
49
32
18

M
G
49
32
04

M
G
49
51
23

M
G
51
83
80

M
G
49
50
97

N
A

Te
ne
llu
la

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
fo
nt
qu
er
i

H
M
AS

26
77
44

KX
44
13
43

KX
44
10
96

N
A

KX
44
15
90

KX
44
18
37

KX
44
20
84

Te
ne
llu
la

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
fr
ag
ili
s

G
EN

T
FH

12
-1
97

N
A

KT
93
39
93

N
A

N
A

KT
95
73
65

KT
93
39
25

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
fr
ag
ili
s

PC
44
3/
BB

07
.7
91

N
A

N
A

N
A

KU
23
73
51

KU
23
76
55

KU
23
77
92

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
gl
ob
isp

or
a

H
M
AS

26
92
39

KX
44
13
83

KX
44
11
36

M
F8
93
46
8

KX
44
16
30

KX
44
18
77

KX
44
21
24

In
sid

io
su
la

Ch
in
a
Si
ch
ua
n
Ab

a
S2
09

Ro
ad

Ru
ss
ul
a
gl
ob
isp

or
a

PC
43
6/
BB

07
.2
43

KU
23
74
99

N
A

KU
23
79
29

KU
23
73
44

N
A

KU
23
77
85

In
sid

io
su
la

Eu
ro
pe

Ru
ss
ul
a
gr
ac
ill
im
a

G
EN

T
FH

12
-2
64

KR
36
42
26

KR
36
40
94

N
A

N
A

KR
36
44
72

KR
36
43
42

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
gr
ac
ill
im
a

H
M
AS

26
23
40

M
G
49
32
21

M
G
49
32
06

M
G
49
51
25

M
G
51
83
82

N
A

M
G
49
51
12

Ru
ss
ul
a

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
gr
ac
ill
im
a

PC
44
1/
BB

07
.7
85

KU
23
75
04

N
A

KU
23
79
34

KU
23
73
49

KU
23
76
53

KU
23
77
90

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
gr
ac
ill
im
a

PC
58
4/
BB

07
.7
86

KU
23
75
68

N
A

KU
23
79
96

KU
23
74
16

KU
23
77
12

KU
23
78
54

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
in
sig

ni
s

H
M
AS

26
77
32

M
G
49
32
22

M
G
49
32
07

M
G
49
51
26

M
G
51
83
83

N
A

N
A

In
gr
at
ae

Ch
in
a
N
ei
m
en
gg

u
Za
la
nt
un

Xi
us
hu

i
Ru
ss
ul
a
in
sig

ni
s

H
M
AS

26
77
40

KX
44
13
41

KX
44
10
94

M
F8
93
42
6

KX
44
15
88

KX
44
18
35

KX
44
20
82

In
gr
at
ae

Ch
in
a
N
ei
m
en
gg

u
Ya
ke
sh
iN

an
m
u

Ru
ss
ul
a
in
sig

ni
s

H
M
AS

26
77
51

KX
44
13
46

KX
44
10
99

M
F8
93
43
1

KX
44
15
93

KX
44
18
40

KX
44
20
87

In
gr
at
ae

Ch
in
a
N
ei
m
en
gg

u
Za
la
nt
un

Xi
us
hu

i
Ru
ss
ul
a
in
te
gr
a

G
EN

T
FH

12
-1
72

KT
93
38
45

KT
93
39
84

N
A

N
A

KT
95
73
56

KT
93
39
16

Po
ly
ch
ro
m
id
ia

Eu
ro
pe

(C
on

tin
ue
d
)

64 G.-J. LI ET AL.



Ta
bl
e
1.

(C
on

tin
ue
d)
.

Ta
xo
n
na
m
e

H
er
ba
riu

m
LS
U

IT
S

te
f-
1α

m
tS
SU

rp
b1

rp
b
2

Su
bg

en
us

Lo
ca
tio

n

Ru
ss
ul
a
in
te
gr
a

PC
51
8/
BB

07
.1
98

KU
23
75
13

N
A

KU
23
79
43

KU
23
73
59

KU
23
76
63

KU
23
77
99

Po
ly
ch
ro
m
id
ia

Eu
ro
pe

Ru
ss
ul
a
in
te
gr
ifo
rm

is
H
M
AS

26
23
93

KX
44
13
12

KX
44
10
65

M
F8
93
39
7

N
A

KX
44
18
06

KX
44
20
53

Po
ly
ch
ro
m
id
ia

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
in
te
gr
ifo
rm

is
H
M
AS

26
24
03

KX
44
13
13

KX
44
10
66

M
F8
93
39
8

N
A

KX
44
18
07

KX
44
20
54

Po
ly
ch
ro
m
id
ia

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
ka
ta
rin

ae
H
M
AS

26
90
80

KX
44
13
80

KX
44
11
33

M
F8
93
46
5

N
A

N
A

KX
44
21
21

Po
ly
ch
ro
m
id
ia

Ch
in
a
Yu

nn
an

N
an
hu

a
Zi
xi
sh
an

Ru
ss
ul
a
ka
ta
rin

ae
H
M
AS

26
97
55

KX
44
14
10

KX
44
11
63

M
F8
93
49
5

N
A

KX
44
19
04

KX
44
21
51

Po
ly
ch
ro
m
id
ia

Ch
in
a
Yu

nn
an

N
an
hu

a
Zi
xi
sh
an

Ru
ss
ul
a
lu
te
ot
ac
ta

G
EN

T
FH

12
-1
87

KT
93
38
52

KT
93
39
91

N
A

N
A

KT
95
73
63

KT
93
39
23

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
lu
te
ot
ac
ta

PC
45
2/
BB

07
.1
88

KU
23
75
12

N
A

KU
23
79
42

KU
23
73
58

KU
23
76
62

KU
23
77
98

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
m
ed
ul
la
ta

H
M
AS

25
17
47

KX
44
12
68

KX
44
10
21

M
F8
93
35
3

N
A

KX
44
17
62

KX
44
20
09

H
et
er
op
hy
lli
di
a

Ch
in
a
Xi
za
ng

M
ai
nl
in
g
N
an
yi

Ru
ss
ul
a
m
ed
ul
la
ta

H
M
AS

25
17
61

M
G
49
32
12

M
G
49
32
00

M
G
49
51
18

M
G
51
83
74

N
A

N
A

H
et
er
op
hy
lli
di
a

Ch
in
a
Xi
za
ng

M
ai
nl
in
g
N
an
yi

Ru
ss
ul
a
m
ed
ul
la
ta

H
M
AS

26
23
48

M
G
49
32
13

M
G
49
32
01

N
A

M
G
51
83
75

M
G
49
51
00

M
G
49
51
08

H
et
er
op
hy
lli
di
a

Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
m
ur
ril
lii

H
M
AS

27
10
49

KX
44
14
38

KX
44
11
91

M
F8
93
52
3

KX
44
16
85

KX
44
19
32

KX
44
21
79

In
cr
us
ta
tu
la

Ch
in
a
Yu

nn
an

D
êq
ên

Ba
im
an
gx
ue
sh
an

Ru
ss
ul
a
m
ur
ril
lii

H
M
AS

27
11
44

KX
44
14
60

KX
44
12
13

M
F8
93
54
5

KX
44
17
07

KX
44
19
54

KX
44
22
01

In
cr
us
ta
tu
la

Ch
in
a
Yu

nn
an

D
êq
ên

Ba
im
an
gx
ue
sh
an

Ru
ss
ul
a
ni
gr
ic
an
s

PC
42
9/
BB

07
.3
42

KU
23
74
95

N
A

KU
23
79
24

KU
23
73
39

KU
23
76
43

KU
23
77
81

Co
m
pa
ct
ae

Eu
ro
pe

Ru
ss
ul
a
ni
gr
ic
an
s

U
PS

U
E2
0.
09
.2
00
4–
07

D
Q
42
20
10

D
Q
42
20
10

N
A

N
A

N
A

D
Q
42
19
52

Co
m
pa
ct
ae

Eu
ro
pe

Ru
ss
ul
a
oc
hr
ol
eu
ca

G
EN

T
FH

12
-2
11

KT
93
38
57

KT
93
39
96

N
A

N
A

KT
95
73
68

KT
93
39
28

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
oc
hr
ol
eu
ca

PC
52
7/
BB

07
.3
03

KU
23
75
19

N
A

KU
23
79
49

KU
23
73
65

KU
23
76
69

KU
23
78
05

Ru
ss
ul
a

Eu
ro
pe

Ru
ss
ul
a
pa
sc
ua

H
M
AS

25
25
94

KX
44
12
76

KX
44
10
29

M
F8
93
36
1

KX
44
15
23

KX
44
17
70

N
A

Po
ly
ch
ro
m
id
ia

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
pa
sc
ua

H
M
AS

25
32
22

M
G
49
32
23

N
A

M
G
49
51
27

M
G
51
83
84

M
G
49
51
03

M
G
49
51
13

Po
ly
ch
ro
m
id
ia

Ch
in
a
Xi
za
ng

M
ai
nl
in
g
N
an
yi

Ru
ss
ul
a
pa
sc
ua

H
M
AS

26
23
82

N
A

M
G
49
32
08

M
G
49
51
28

M
G
51
83
85

M
G
49
51
05

M
G
49
51
14

Po
ly
ch
ro
m
id
ia

Ch
in
a
Jil
in

Ch
an
gb

ai
sh
an

Er
da
ob

ai
he

Ru
ss
ul
a
ps
eu
do
cy
an
ox
an
th
a

H
M
AS

25
28
49

N
A

KX
44
10
48

M
F8
93
38
0

KX
44
15
42

KX
44
17
89

KX
44
20
36

Cy
an
ox
an
th
in
ae

Ch
in
a
Yu

nn
an

Jin
gd

on
g
Ai
la
os
ha
n

Ru
ss
ul
a
ps
eu
do
cy
an
ox
an
th
a

H
M
AS

27
16
91

N
A

KX
44
12
36

M
F8
93
56
8

KX
44
17
30

KX
44
19
77

KX
44
22
24

Cy
an
ox
an
th
in
ae

Ch
in
a
Yu

nn
an

Pu
er

La
iy
an
gh

e
Ru
ss
ul
a
ps
eu
do
gr
at
a

H
M
AS

25
04
32

KX
44
12
59

KX
44
10
12

M
F8
93
34
4

KX
44
15
06

KX
44
17
53

KX
44
20
00

In
gr
at
ae

Ch
in
a
Xi
za
ng

N
yi
ng

ch
iN

an
yi

Ru
ss
ul
a
ps
eu
do
gr
at
a

H
M
AS

25
18
68

KX
44
12
73

KX
44
10
26

M
F8
93
35
8

KX
44
15
20

KX
44
17
67

KX
44
20
14

In
gr
at
ae

Ch
in
a
Xi
za
ng

N
yi
ng

ch
iN

an
yi

Ru
ss
ul
a
ps
eu
do
gr
at
a

H
M
AS

25
31
94

KX
44
12
96

KX
44
10
49

M
F8
93
38
1

KX
44
15
43

KX
44
17
90

KX
44
20
37

In
gr
at
ae

Ch
in
a
Xi
za
ng

N
yi
ng

ch
iN

an
yi

Ru
ss
ul
a
ps
eu
do
pe
ct
in
at
oi
de
s

H
M
AS

25
15
23

KX
44
12
63

KX
44
10
16

M
F8
93
34
8

KX
44
15
10

KX
44
17
57

KX
44
20
04

In
gr
at
ae

Ch
in
a
Xi
za
ng

Ya
do

ng
Xi
as
im
a

Ru
ss
ul
a
ps
eu
do
pe
ct
in
at
oi
de
s

H
M
AS

25
15
52

M
G
49
32
24

M
G
49
32
09

M
G
49
51
29

M
G
51
83
86

M
G
49
51
04

M
G
49
51
15

In
gr
at
ae

Ch
in
a
Xi
za
ng

Ya
do

ng
Xi
as
im
a

Ru
ss
ul
a
ps
eu
do
pe
ct
in
at
oi
de
s

H
M
AS

26
48
95

M
G
49
32
25

M
G
49
32
10

M
G
49
51
30

M
G
51
83
87

M
G
49
51
02

M
G
49
51
16

In
gr
at
ae

Ch
in
a
Xi
za
ng

Ya
do

ng
Xi
as
im
a

Ru
ss
ul
a
ps
eu
do
pe
ct
in
at
oi
de
s

H
M
AS

26
50
20

KX
44
13
36

KX
44
10
89

M
F8
93
42
1

KX
44
15
83

KX
44
18
30

KX
44
20
77

In
gr
at
ae

Ch
in
a
Xi
za
ng

G
on

gb
og

ya
m
da

Cu
og

ao
hu

Ru
ss
ul
a
ps
eu
do
pe
rs
ic
in
a

H
M
AS

26
44
84

KX
44
13
24

KX
44
10
77

M
F8
93
40
9

KX
44
15
71

KX
44
18
18

KX
44
20
65

Ru
ss
ul
a

Ch
in
a
Jil
in

Lo
ng

jin
g
Ti
an
fu
oz
hi
sh
an

Ru
ss
ul
a
ps
eu
do
pe
rs
ic
in
a

H
M
AS

26
77
79

KX
44
13
52

KX
44
11
05

M
F8
93
43
7

KX
44
15
99

KX
44
18
46

KX
44
20
93

Ru
ss
ul
a

Ch
in
a
N
ei
m
en
gg

u
Ya
ke
sh
iN

an
m
u

Ru
ss
ul
a
qu
el
et
i

H
M
AS

27
10
76

M
G
49
32
26

M
G
49
32
11

M
G
49
51
31

N
A

N
A

M
G
49
51
17

Ru
ss
ul
a

Ch
in
a
Yu

nn
an

D
êq
ên

Ba
im
an
gx
ue
sh
an

Ru
ss
ul
a
qu
el
et
i

H
M
AS

27
11
49

KX
44
14
62

KX
44
12
15

M
F8
93
54
7

KX
44
17
09

N
A

KX
44
22
03

Ru
ss
ul
a

Ch
in
a
Yu

nn
an

D
êq
ên

Ba
im
an
gx
ue
sh
an

Ru
ss
ul
a
ro
se
a

H
M
AS

25
33
40

KX
44
12
99

KX
44
10
52

M
F8
93
38
4

KX
44
15
46

N
A

N
A

In
cr
us
ta
tu
la

Ch
in
a
Yu

nn
an

Yu
lo
ng

Bo
ta
ny

G
ar
de
n

Ru
ss
ul
a
ro
se
a

H
M
AS

27
68
01

LT
60
29
46

LT
60
29
69

N
A

N
A

KX
44
25
34

KX
44
25
57

In
cr
us
ta
tu
la

Ch
in
a
Fu
jia
n
Sa
nm

in
g
Ya
ng

sh
an

Ru
ss
ul
a
sin

ic
a

H
M
AS

27
10
22

KX
44
14
33

KX
44
11
86

M
F8
93
51
8

KX
44
16
80

KX
44
19
27

KX
44
21
74

Ru
ss
ul
a

Ch
in
a
Yu

nn
an

Yu
lo
ng

Bo
ta
ny

G
ar
de
n

Ru
ss
ul
a
sin

ic
a

H
M
AS

27
10
24

KX
44
14
34

KX
44
11
87

M
F8
93
51
9

KX
44
16
81

KX
44
19
28

KX
44
21
75

Ru
ss
ul
a

Ch
in
a
Yu

nn
an

Yu
lo
ng

Bo
ta
ny

G
ar
de
n

Ru
ss
ul
a
tu
rc
i

H
M
AS

27
17
03

KX
44
14
84

KX
44
12
37

M
F8
93
56
9

KX
44
17
31

KX
44
19
78

KX
44
22
25

In
cr
us
ta
tu
la

Ch
in
a
Yu

nn
an

Pu
er

La
iy
an
gh

e
Ru
ss
ul
a
tu
rc
i

H
M
AS

27
17
65

KX
44
14
89

KX
44
12
42

M
F8
93
57
4

KX
44
17
36

KX
44
19
83

KX
44
22
30

In
cr
us
ta
tu
la

Ch
in
a
Yu

nn
an

Pu
er

La
iy
an
gh

e
Ru
ss
ul
a
tu
rc
i

H
M
AS

27
17
94

KX
44
14
93

KX
44
12
46

M
F8
93
57
8

KX
44
17
40

KX
44
19
87

KX
44
22
34

In
cr
us
ta
tu
la

Ch
in
a
Yu

nn
an

Yi
lia
ng

Xi
ao
lo
ng

m
en

Ru
ss
ul
a
zv
ar
ae

G
EN

T
FH

12
-1
75

KT
93
38
47

KT
93
39
86

N
A

N
A

KT
95
73
58

KT
93
39
18

In
cr
us
ta
tu
la

Eu
ro
pe

Ru
ss
ul
a
zv
ar
ae

PC
53
8/
BB

08
.6
39

KU
23
75
30

N
A

KU
23
79
60

KU
23
73
76

KU
23
76
80

KU
23
78
16

In
cr
us
ta
tu
la

Eu
ro
pe

MYCOLOGY 65



Sequence lengths were as follows: 880 bp for nLSU,
472 bp for ITS, 581 bp for tef-1α, 538 bp for mtSSU,
918 bp for rpb1, and 712 bp for rpb2.

The intra- and inter-specific variations are the
important standards in determining the feasibility
of candidate genes for DNA barcode selection. The
resolution of current species, PCR, and sequencing
success rates are also essential factors. A clear dis-
tinction between intra- and inter-specific diver-
gences is a must for the identification of an ideal
specific DNA barcode. Comparisons among
sequences of the six candidate genes for each
Russula species used in this study were analysed
with TaxonGap 2.4.1 and the result is presented in
Figure 1. ITS had the highest minimum of inter-spe-
cific variations of 3.2%, followed by rpb2 (2.2%), tef-
1α (1.4%), rpb1 (1.2%), mtSSU (1.2%), and nLSU (0.7%).
It appeared that rpb2 had a marginally higher resolu-
tion than nLSU, mtSSU, tef-1α, and rpb1. For rpb2, all
species showed intra-specific variations lower than
2.2%, apart from R. acrifolia, R. delica, and R. queleti.
The minimum inter-specific variation of the six can-
didate genes also indicated that the ability of nLSU to
specifically identify Russula species was the least
among all the genes tested this low ability is due
to nLSU having the lowest minimum of inter-specific
variation. As shown in Figs. 1 and 2, an overlap was
observed between the inter- and intra-specific varia-
tions in the tef-1α (26.3%), rpb2 (7.9%), mtSSU (2.6%),
and nLSU (2.6%) genes, suggesting these genes were
inadequate as individual DNA barcodes for Russula.

Although no overlap was observed in rpb1, the low
minimum inter-specific variation (1.2%) hindered its
ability to identify Russula species (Figure 1). Of all six
candidate genes under analysis, ITS is most suitable
for distinguishing between species. However, it
remained restricted by the narrow gap between its
intra- and inter-specific variations (Figs. 1 and 2).

The applications of nLSU and tef-1α genes in DNA
barcode were not available, because nLSU has the low
inter-specific variations minimum of (0.7%) and tef-1α
has an obvious overlap between its inter- and intra-
specific variations (26.3%). Combinations of the other
genes, ITS, mtSSU, rpb1, and rpb2, were subsequently
analysed. Application of the two-gene combinations
provided improved variation compared to that of single
genes, with all intra-specific variations being lower than
theminimum inter-specific variations (Figs. 3 and 4). The
combination of ITS-mtSSU and ITS-rpb2 showed a mini-
mum inter-specific variation of over 4%, which were
more appropriate for species identification (Figure 3).
The gap between intra- and inter-specific variations of
these two combinations was also clear (Figure 4). An
alternate combination of mtSSU-rpb2 was found to be
best for its minimum inter-specific variation of 3.8%
when commonly used ITS sequences were unavailable
(Figure 3).

The inter- and intra-specific pairwise distances of
the candidate genes were evaluated from their ML
trees (Figs 5–10). These results generally agree with
those of TaxonGap. Although every species of this
study can be well-separated from each other as

Figure 1. Comparisons of intra- and inter-specific variations among nLSU, ITS, tef-1α, mtSSU, rpb1 and rpb2 genes of Russula
generated by TaxonGap. The inter- and intra-specific variations were presented as the black and grey bars respectively. The
minimums of inter-specific variations for each gene were shown as the vertical lines. Taxon names followed the black bars
represented the closest species of this analysis.
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independent clades with high bootstrap values, over-
laps between inter- and intra-specific variations can
be observed in phylogenetic topologies of nLSU
(Figure 5) tef-1α (Figure 7), mtSSU (Figure 8), and
rpb2 (Figure 10), in contrast, absent in those of ITS
(Figure 6) and rpb1 (Figure 9).

Sequence clustering was calculated based on pair-
wise distances, with the given threshold, using
TaxonDNA/Species Identifier 1.8. The intra- and inter-
specific divergence of the candidate genes were also
evaluated, with the maximum intra-specific distance set
as the clustering threshold. Corresponding levels of coin-
cidence between clusters and species for the candidate
biomarkers are presented in Table 2. For tef-1α, a total of
33 clusters were recognised, suggesting this gene was
able to separately identify 33 of the 35 species (94.3%);

by contrast nLSU was only capable of distinguishing
between eight species. The other genes could also suc-
cessfully distinguish between the Russula species used in
this analysis.

PCR and sequencing success rates are another stan-
dard requirement of eligible DNA barcode genes. ITS,
nLSU, and tef-1α could be easily amplified and
sequenced with success rates of over 90%. On the
other hand, the mtSSU gene had a relatively low PCR
and sequencing success rate (78.3%) (Table 3). The pri-
mers commonly used in phylogenetic analysis of
Basidiomycota were suitable for most species of the
Russula genus.

Congruencies of individual partitions were calculated
using the partition homogeneity test. The p-values of
the gene combinations were ITS-mtSSU (0.20), ITS-rpb1

Figure 2. Comparisons of frequency distribution of intra- and inter-specific variation pairwise distances among nLSU, ITS, tef-1α,
mtSSU, rpb1 and rpb2 genes of Russula generated by MEGA and Excel. The interand intra-specific distances are presented as yellow
and blue bars respectively.
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Figure 3. Comparisons of intra- and inter-specific variations among ITS-mtSSU, ITS-rpb1, ITS-rpb2, mtSSUrpb1, mtSSU-rpb2 and
rpb1-rpb2 gene combinations of Russula generated by TaxonGap. The inter- and intra-specific variations were presented as the
black and grey bars respectively. The minimums of interspecific variations for each gene were shown as the vertical lines. Taxon
names followed the black bars represented the closest species of this analysis.

Figure 4. Comparisons of frequency distribution ofintra- and inter-specific variation pairwise distances among ITS-mtSSU, ITS-rpb1,
ITS-rpb2, mtSSU-rpb1, mtSSU-rpb2 and rpb1-rpb2 gene combinations of Russula generated by MEGA and Excel. The inter- and intra-
specific distances are presented as yellow and blue bars respectively.
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(0.08), ITS-rpb2 (0.02), mtSSU-rpb1 (0.05), mtSSU-rpb2
(0.01), and rpb1-rpb2 (0.90). All of these results are
equal or greater than 0.01. So it is suggested that the
individual partitions of these gene combinations were
congruent.

Discussion

The two vital conditions for DNA barcode evalua-
tion are sufficient intra- and inter-specific variation,
as well as high PCR and sequencing success rates
(Zhao et al. 2011a, 2011b; Zeng 2012; Zhu et al.
2014). Taking both these standards into considera-
tion, the use of ITS was considered to be an ade-
quate primary Russula DNA barcode in situations of
single gene analysis. We found that ITS had rela-
tively high PCR and sequencing rates (Table 3), and
that all the species used in this analysis could be
recognised, when this gene was targeted (Table 2).
Targeting ITS as the universal fungal DNA barcode
has also been previously suggested (Seifert 2009;
Schoch et al. 2012). Although no overlap was
observed between the intra- and inter-specific dis-
tances in ITS (Figs. 1 and 6), the gap between
the two variations was narrow (Figure 2). Gene

combinations were, thus, considered necessary to
get sufficient resolution at the species level.

Our analyses showed that the ITS-rpb2 combination
could act as a suitable DNA barcode for the genus
Russula, demonstrating the best performance as a
DNA barcode for various Russula species. First, there
were suitable intra- and inter-specific variations (Figs. 3
and 4) with the DNA barcode gap being the largest
among all candidate genes and gene combinations
analysed. In addition, this gene combination recog-
nised all 34 Russula species. This conclusion was also
supported by the analysis using TaxonGap (Slabbinck
et al. 2008) and SpeciesIdentifier in TaxonDNA (Meier
et al. 2006), as shown in Table 2. Second, the PCR
amplification and sequencing success rates were rela-
tively higher in ITS and rpb2 (88.1% in Table 3). This
combination was, thus, recommended as the primary
DNA barcode for the genus Russula in situations where
multigene analysis may be performed. Our analyses
also suggested that the combination of mtSSU-rpb2
was the best DNA barcode substitute for identifying
Russula when PCR or sequencing targeting ITS was
unsuccessful because of the gap between intra- and
inter-species variation (Figs. 3 and 4).

The nuclear large subunit ribosomal RNA gene
(nLSU) has often been analysed to elucidate the phy-
logenetic relationships of fungal groups at the gen-
eric or higher taxonomic ranks (Johnson and Vilgalys
1998). It has also been suggested to be the most
appropriate DNA barcode for yeast-like fungi
(Kurtzman and Robnett 1998; Fell et al. 2000; Ninet
et al. 2003). Of the 36 species involved in this study,
only six were recognised as a single cluster when
analysed through TaxonDNA (Table 2). Although tar-
geting nLSU had the highest PCR and sequencing
success rates (Table 3), our analyses indicated that
nLSU was not a suitable DNA marker because of its
inability to specifically recognise Russula species
(Figs. 1, 2 and 5). nLSU, thus, failed to act as the
target DNA barcode for this genus.

Another gene often used in fungal phylogenetic
analyses is tef-1α (Jaklitsch et al. 2006; Stenglein et al.
2010; Zhao et al. 2016, Zhao et al. 2017; He et al. 2017),
which had the second highest PCR and sequencing
success rates (Table 3). This gene has previously been
regarded as the target DNA barcode in certain groups
(Geiser et al. 2004; Druzhinina et al. 2005; Li et al. 2013);
however, our analyses showed that tef-1α the occur-
rence of overlap between intra- and inter-species

Table 2. Clustering at a given threshold of the candidate genes
of Russula DNA barcode derived using TaxonDNA/species
identified.

Candidate genes

Largest intra-
specific
distance

Number
of

cluster
Corresponding
to species taxa

ITS 1.06% 35 35(100%)
nLSU 2.95% 8 36 (22.2%)
tef-1α 2.58% 33 35(94.3%)
mtSSU 1.30% 32 32(100%)
rpb1 1.09% 36 36(100%)
rpb2 2.02% 37 37 (100%)
ITS-mtSSU 0.59% 32 29 (100%)
ITS-rpb1 0.79% 33 33 (100%)
ITS-rpb2 0.76% 36 34 (100%)
mtSSU-rpb1 0.89% 31 31 (100%)
mtSSU-rpb2 1.44% 31 31 (100%)
rpb1-rpb2 1.23% 35 35 (100%)

Table 3. PCR and sequencing successful rate of the candidate
genes.
Candidate genes PCR Sequencing PCR and sequencing

ITS 98.3% 89.6% 88.1%
nLSU 100% 94.9% 94.9%
tef-1α 100% 93.2% 93.2%
mtSSU 94.9% 84.0% 79.7%
rpb1 93.2% 87.1% 81.2%
rpb2 93.2% 94.5% 88.1%
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variation among the candidate genes (Figs. 1, 2 and 7)
was the highest for this gene. For this reason, tef-1α
was excluded as the target DNA barcode for Russula.

The genes of the first and second largest RNA
polymerase II subunits (rpb1 and rpb2) and the
mitochondrial small subunit (mtSSU), which have
been commonly analysed in fungal phylogeny
(Matheny et al. 2007; Nordin et al. 2010; Stenglein
et al. 2010; Sekimoto et al. 2011; Chen et al. 2012),
were also employed as candidate biomarkers for
this study. Overlap between intra- and inter-species
variation was detected in both mtSSU and rpb2
(Figs. 1, 2, 8 and 10). For rpb1, although no overlap
was observed (Figs. 1, 2 and 9), the low minimum
inter-specific variation (1.2%) made the gap
between the two variations too narrow (Figs. 1
and 2). The gene rpb1 also had relatively low PCR
and sequencing success rates (81.2%, Table 3),
which further hampered its practicality as an eligi-
ble DNA barcode.

Our results indicate that ITS-rpb2 combination meets
the requirements for a good DNA barcode for Russula.
The barcode gap of this combination is visible in Fig. 4. It
is much wider than that of ITS in Fig. 2, which is invisible
in the same abscissa axis. For single genes, ITS and nLSU
possessed high PCR and sequencing rates, but the gap
between inter- and intra-specific variations of ITS was
narrow, nLSU is inefficient in specific recognition.
Overlapping occurred between the two variations in
tef-1α, rpb2, mtSSU, and nLSU, which may lead to mis-
identification. PCR and sequencing success rates are
relatively low inmtSSU and rpb1.
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