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Purpose: To validate the feasibility of S-Detect, an ultrasound computer-aided diagnosis
(CAD) system using deep learning, in enhancing the diagnostic performance of breast
ultrasound (US) for patients with opportunistic screening-detected breast lesions.

Methods: Nine medical centers throughout China participated in this prospective study.
Asymptomatic patients with US-detected breast masses were enrolled and received
conventional US, S-Detect, and strain elastography subsequently. The final pathological
results are referred to as the gold standard for classifying breast mass. The diagnostic
performances of the three methods and the combination of S-Detect and elastography
were evaluated and compared, including sensitivity, specificity, and area under the
receiver operating characteristics (AUC) curve. We also compared the diagnostic
performances of S-Detect among different study sites.

Results: A total of 757 patients were enrolled, including 460 benign and 297 malignant
cases. S-Detect exhibited significantly higher AUC and specificity than conventional US
(AUC, S-Detect 0.83 [0.80–0.85] vs. US 0.74 [0.70–0.77], p < 0.0001; specificity, S-
Detect 74.35% [70.10%–78.28%] vs. US 54.13% [51.42%–60.29%], p < 0.0001), with
no decrease in sensitivity. In comparison to that of S-Detect alone, the AUC value
significantly was enhanced after combining elastography and S-Detect (0.87 [0.84–
0.90]), without compromising specificity (73.93% [68.60%–78.78%]). Significant
differences in the S-Detect’s performance were also observed across different study
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sites (AUC of S-Detect in Groups 1–4: 0.89 [0.84–0.93], 0.84 [0.77–0.89], 0.85 [0.76–
0.92], 0.75 [0.69–0.80]; p [1 vs. 4] < 0.0001, p [2 vs. 4] = 0.0165, p [3 vs. 4] = 0.0157).

Conclusions: Compared with the conventional US, S-Detect presented higher overall
accuracy and specificity. After S-Detect and strain elastography were combined, the
performance could be further enhanced. The performances of S-Detect also varied
among different centers.
Keywords: breast cancer, ultrasound, deep learning, computer-aided diagnosis, elastography
INTRODUCTION

A dramatic increase in breast cancer incidence was reported in
China in recent years and early detection is essential to reduce
the mortality of breast cancer (1). Different from western
countries, in which mammography is the most used method
for breast screening, in China, mammography is not so popular
due to its relatively low accuracy for women with dense breasts,
which accounts for more Chinese women than Caucasian
women (2), as well as the inaccessibility of the equipment in
some regions of the country. Ultrasound (US) has become the
most common method for screening breast cancer in China, due
to its high detection rate of breast cancers in dense breast tissue
and convenience (3, 4). A multicenter study of the country
revealed a better diagnostic performance and higher cost
efficiency of US than that of mammography in breast
screening, and US screening has been recommended for high-
risk women by a nationwide guideline (5–7). To note, US
screening is often opportunistic in China due to different
economic statuses and the insurance policies of different areas.

Despite the good performance, there still exist several
drawbacks of breast US. In consideration of its widespread use
in China, it is imperative to enhance the diagnostic performance
of US. Moreover, US tends to present a high sensitivity in
detecting malignant lesions but a relatively low positive
predictive value (PPV), causing unnecessary biopsies or
repeated examinations in short intervals (8). Usually, the
category 4 and 5 lesions of the Breast Imaging Reporting and
Data System (BI-RADS) lexicon identified by screening US are
strongly recommended for further evaluation. But in clinical
practice, patients with screening-detected BI-RADS 3 lesions also
tend to choose a second-time US examination or biopsies,
resulting in a high recall rate and false-positive results (9).
Moreover, the operator dependence of breast US also has an
adverse impact on the screening results (10, 11). Hence, new
imaging techniques that can overcome these defects of US can be
of great clinical value.

Computer-aided diagnosis (CAD) systems, which are
designed to help doctors in diagnosing diseases to provide
ADS, Breast Imaging Reporting, and
; CAD, computer-aided diagnosis; DL,
itive likelihood ratio; NLR, negative
ive value; ROC, receiver operating
iver operating characteristics curve;
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automatic segmentation or diagnosis of medical images (12),
has been intensively investigated in the field of breast imaging in
recent years, especially the systems constructed on deep learning
(DL) method (13–16). S-Detect™ is one of the DL-based CAD
programs for classifying breast lesions through US images. It is
an onboard software integrated on a commercial US machine.
The software is composed of a DL algorithm, which has been
trained by a large number of ultrasonic images of breast lesions.
When provided with a static US figure showing a suspicious
breast lesion, the software can give a dichotomic diagnosis of the
lesion, as possibly benign or possibly malignant. Several studies
from Europe and Asia have validated its excellent performance in
enhancing the diagnostic accuracy of US by increasing the
specificity, consequently assisting in reducing unnecessary
biopsies of breast lesions (17–20). According to our
preliminary single-center research, S-Detect™ can provide a
reliable classification for the asymptomatic screening-detected
breast lesions (21). In order to further investigate its benefit for
those asymptomatic patients with US screening-detected breast
lesions, we launched this nationwide multicenter study about the
clinical use of S-Detect™ in China. In this study, patients with
opportunistic screening-detected breast lesions who were going
to receive a second-time breast US examination were enrolled
and evaluated by the new CAD technique. As far as we know, this
is the first multicenter study about S-Detect™, and none of the
previous studies have investigated the feasibility of the software
for US screening-detected breast lesions.

Apart from utilizing the CAD system alone, we also
investigated the role of combining the CAD technique and
elastography in promoting the diagnostic efficacy of US in re-
evaluating opportunistic US screening-detected breast lesions.
Elastography is applied as a complementary for US to
characterize breast lesions by providing information about
tissue stiffness (22–24). For strain elastography, compressive
force is implemented on breast tissues, and the tissue stiffness
is often expressed as pseudo-color mapping or fat-to-lesion
strain ratio (SR), both of which have been verified as an
effective method to present the elasticity of tumor tissues and
help increase accuracy and specificity of diagnosing breast
cancers (25, 26). Recently, a newly developed built-in software
of strain elastography, E-breast™, has been put into clinical use
and distinguished with its ability in providing a relative objective
value of SR. Considering that both S-Detect™ and E-breast™

can provide relatively objective imaging parameters for breast
US, it will be of interest to explore the potential value of
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combining the use of the two novel imaging methods. Therefore,
in this multicenter study, we also evaluated the diagnostic
performance of the combination of S-Detect™ and E-breast™

in diagnosing breast lesions and investigate the clinical value of
the combination. Therefore, in this multicenter study, we aim
to investigate the feasibility of S-Detect™, a DL CAD tool for
breast US, and its combination with elastography in diagnosing
breast cancer for patients with opportunistic screening-detected
breast lesions. We also compared the diagnostic performances of
S-Detect™ among different centers.
MATERIALS AND METHODS

This study was designed as a prospective multicenter one, and it
was approved by the institutional review board of all of the
participating centers. Written informed consent was signed by
each recruited patient. A total of 9 medical centers from six
provinces and municipalities were involved in this study. All the
centers are general hospitals and own large-scale breast imaging
departments, where US is performed for patients with breast
lesions as a clinical routine. Before the inception of the study, we
enacted a protocol regulating standards for image and clinical
data acquisition, operation method for the software, and
classification criteria for enrolled patients and lesions. The
investigators of these medical centers received training on the
protocol and participated in the study after fully understanding
the protocol and breast US knowledge. The study has also been
registered at ClinicalTrials.gov (NCT03851497).

Patient Recruitment
From January 2019 to December 2019, a total of 757 patients
from the medical centers were consecutively recruited in this
study. Asymptomatic female patients with breast masses from
the participated hospitals were enrolled in this study. Before
participation, those patients were found to have BI-RADS 3–5
breast masses by bilateral breast US screening within 3 months
and referred to the medical centers for further diagnostic
imaging tests.

The definitions for asymptomatic individuals are listed
as follows.

1. no self-palpable breast masses
2. no severe breast pain that could not be explained by

physiological reason
3. no nipple discharge
4. no changes in breast appearance, including nipple inversion,

skin redness, and skin retraction

Exclusion criteria included breast malignancy history,
pregnancy, lactation, and refusal to participate in the study.
When more than one lesion was found eligible in a patient, we
selected the suspicious lesions or the largest ones. The patients
received biopsies after US examinations within 2 weeks and had
final pathological results referred to as the gold standard for
classifying breast mass.
Frontiers in Oncology | www.frontiersin.org 3
Imaging Analysis
Conventional Breast Ultrasound Examinations and
Image Acquisition
The radiologists in this study who performed US examinations
had at least 5-year experience in breast US. In all medical
centers, the radiologists performed US examinations with a
high-frequency linear transducer (L3-12), under the breast
preset on the US machine (RS80A, Samsung Medison Co.,
Ltd., Korea) according to standard scanning protocol. For the
grayscale US, the focal zone was adjusted with the lesion depth,
and the gain was set at 25%–50%. For color Doppler, the
imaging settings included a scale of 3 cm/s, a wall filter of
50–100 Hz, and a rectangular sampling box with no angulation.
After detection of the target lesion, conventional grayscale US
and color Doppler US were consecutively performed on two
orthogonal planes. The radiologists assessed the lesions after
the dynamic scanning. The image on the largest diameter of the
lesion was recorded for further reading and CAD analysis by
the radiologists.

Strain Elastography
The built-in software of strain elastography, E-breast™

(Samsung Healthcare, Seoul, South Korea), was utilized in this
study. After the acquisition of elastographic imaging of a breast
lesion, the SR between the mass and surrounding fat can be
calculated using E-breast™. Elastography was performed by the
same radiologist after completing a conventional breast US
examination. Elastography imaging was acquired with freehand
compression. Imaging methods have been previously described
in detail (22, 26). Briefly, the radiologist put the probe
perpendicular to the chest wall and parallel to the pectoralis
muscle and applied the probe with only light pressure. The
proper pressure was gauged under the guidance of a compression
guide bar to acquire appropriate images for analysis. The
compression guide bar was on the right side of the working
interface of E-breast™ to guide the operators in applying
compressive force. The compression guide bar displayed the
degree of pressure in colors between 0 and 7 stages. 0 stage (all
black) represented no movement of the probe; 1–2 stage (gray)
represented not enough compression speed; and 3–7 stage
(green) represented moderate compression speed, indicating a
good-quality strain image. When the guide bar reached the 3–7
stage, the strain image was regarded as qualified for further
analysis and selected for calculation subsequently.

For calculating SR, one elliptical frame for sampling region of
interest (ROI) was placed on the target lesion on the
elastographic image, and the straining value on the fat area
was provided automatically by the software (22).

SR =
Average fat strain ðautomatically derivedÞ

Average lesion strain ðlesion ROIÞ
Elastography was performed three times for each patient. The

maximal SR was used for final analyses. The same depth, focus,
and gain parameters were employed for elastography as were
used for conventional imaging.
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S-Detect™ Classifications for Breast Lesions
S-Detect™ (Samsung Healthcare, Seoul, South Korea) was
embedded in the RS80A US system, and the radiologists
opened the working interface of S-Detect™ after finishing
giving a diagnosis of the lesions. The slice with the maximal
size of the lesion was recorded by the radiologists performing US
examinations for S-Detect™ analysis. The grouping for breast
lesions of S-Detect™ was performed automatically after clicking
the center of the lesion on a grayscale slice, presenting
dichotomic results as possibly benign and possibly malignant
by the software, along with automatically recognized
ultrasonographic features, including shape, orientation,
margins, pattern, and posterior acoustic features.

Image Interpretation
Before performing elastography and the CAD system, the
radiologists gave a diagnosis of the lesion based on the BI-
RADS lexicon on site (27). The lesions were classified into BI-
RADS 3, 4, and 5 according to their ultrasonographic features,
and the results of elastography and S-Detect had no impact on
the diagnosis of radiologists. The BI-RADS classification of each
lesion was decided by the US-operating radiologists after
identifying the aforementioned US features. A cutoff value was
set at category 4 to transform BI-RADS classification into a
dichotomic form. Category 3 lesions were allocated to possibly
benign, and categories 4 and 5 were put as possibly malignant.

Statistical Analysis
Previous studies showed that S-Detect could increase AUC from
0.76 to 0.83 (17–20). By applying that the disease prevalence of
10%, 90% power, 5% two-sided significance, and 10% missing
data, a sample size of 768, including 192 malignancies and 576
benign, was figured out for this multicenter study.

A series of statistical parameters pertaining to the diagnostic
performance of a test were calculated, including sensitivity,
specificity, positive likelihood ratio (PLR), negative likelihood
ratio (NLR), PPV, negative predictive value (NPV), receiver
operating characteristic (ROC) curve, and area under the ROC
curve (AUC) (28). The optimal cutoffs of SR were also
calculated using ROC analysis, defined as the closest point on
the ROC curve to the point (0, 1). We used 2 × 2 contingency
tables, a chi-square test for comparing sensitivity and
positivity, a generalized estimating equation for comparing
PPV, and the method proposed by DeLong et al. for
comparing AUC values (29). A p-value of <0.05 was
considered statistically significant. A forward stepwise logistic
regression method was applied to combine S-Detect™ and
strain elastography. We regarded the result of S-Detect as
categorical data and SR as continuous variables to construct
the model. An equation was acquired subsequently after
regression. We presented the equation representing the
combination of the two methods determined by the multiple
regression method in the form of a nomogram. The model
underlying the nomogram was to classify breast lesions based
on the results of S-Detect and strain elastography.

Then we divided the nine medical centers into four groups
(Groups 1–4), on the basis of local economic and medical service
Frontiers in Oncology | www.frontiersin.org 4
resources of the geographical regions with different breast cancer
incidence. Group 1 and Group 2 were the centers located in
Beijing and the east area of China, respectively, both of which
were highly developed regions of China. Group 3 and Group 4
were the centers in less-developed regions, including the west
and central regions of China, respectively. Compared with
Groups 3 and 4, Groups 1 and 2 are located in regions with
better economic status and a higher level of medical care. In
China, the incidence rate of breast cancer is higher in
socioeconomically developed coastal cities, with the highest
age-standardized rate (ASR) of 46.6 cases/100,000 women. In
contrast, in less developed areas of the central and western
regions, the ASR for breast cancer can be less than 7.94 cases
per 100,000 women (30). In general, the incidence rates of breast
cancer in the regions of Groups 1 and 2 were higher than those of
Groups 3 and 4. The diagnostic performances of conventional
US and S-Detect of the four groups were calculated and
compared, respectively. The AUC values of the four groups,
representing the overall accuracy, were compared. The AUC
values of S-Detect in different regions or medical centers were
also compared using the method described by Hanley and
McNeil (31) for comparing the AUC of two independent ROC
curves. We compared the sensitivity and specificity among
different groups using the Mann–Whitney test of the Normal
approximation in independent samples (32).

Statistical analysis was performed using Medcalc (MedCalc
software, version 15, Ghent, Belgium), R (http://www.R-project.
org), and EmpowerStats software (X&Y Solutions).
RESULTS

Basic Characteristics of Enrolled Patients
A total of 831 patients participated in the study from the nine
medical centers, of which 768 were eligible. Among them, 757
patients (mean age 47.5 years; median age 47.5 [15–82] years)
with satisfactory imaging and pathological results were finally
enrolled for statistical analysis, including 297 malignant cases
and 460 benign cases, of the medical centers (Figure 1). The
clinical characteristics and pathological results of the patients are
shown in Table 1.

Diagnostic Performances of S-Detect™
The diagnostic performances of S-Detect™ and conventional US
are listed in Table 2. The ROC curves of the tests are illustrated
in Figure 2. S-Detect™ was distinguished by its higher specificity
and PPV than those of conventional US (specificity, 74.35%
[70.10%–78.28%] vs. 54.13% [51.42%–60.29%], p [S-detect vs.
conventional US] < 0.0001; PPV 69.59% [64.74%–74.13%] vs.
55.89% [51.42%–60.29%], p [S-detect vs. conventional US] <
0.0001). In the meantime, S-Detect™ possessed good sensitivity,
which presented no statistical difference with that of the
radiologist (91.91% [87.05%–93.92%] vs. 94.28% [90.99%–
96.63%], p [S-Detect vs. conventional US] = 0.09). S-Detect™

also presented a high AUC value (0.83 [0.80–0.85] vs. 0.74 [0.70–
0.77], p [S-Detect vs. conventional US] < 0.0001), suggesting its
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great diagnostic performance in dichotomic classification of
breast lesion.

Combined Diagnosis of S-Detect™ and
Strain Elastography
Among the 757 enrolled patients, 521 patients also received
strain elastography and had SR values. The results of the 521
patients were further used for combining diagnosis of S-Detect™

and elastography. The results of S-Detect™ and strain
elastography were combined through the multiple regression
method. The equation for combining diagnosis was logit(Y) =
−3.80213 + 0.72155 * SR + 2.78571 * S-Detect (0/1) (Y: predictive
percentage), and it was illustrated as a nomogram (Figure 3).
The best threshold of predictive percentage for the nomogram
was 0.4304. As presented in Table 1, under the best threshold for
the combined diagnosis, the diagnostic performance was
significantly enhanced after combination with an AUC value of
0.860, higher than that of S-Detect (p < 0.0001). The combined
diagnosis also presented higher specificity and PPV (specificity,
Frontiers in Oncology | www.frontiersin.org 5
73.93% [68.60%–78.78%] vs. 69.31% [63.78%–74.45%], p
[combination vs. E-breast] < 0.0001; PPV 70.96% vs. 67.71%, p
[combination vs. S-Detect] = 0.005). The ROC curves for
combining results, S-Detect, and the conventional US are
presented in Figure 4. A typical case that was misdiagnosed by
the conventional US and corrected by combining diagnosis is
demonstrated in Figure 5.

The Differences in Diagnostic
Performances Among Groups 1–4
As shown in Table 3, for Group 1, S-Detect presented higher
specificity than the conventional US, but the sensitivity showed
no difference (p[Sp] = 0.016; p[Se] = 0.25). The AUC value of S-
Detect was significantly higher than the conventional US (0.89
[0.84–0.93] vs. 0.81 [0.75–0.86], p = 0.0013). For Group 2, S-
Detect also had lower sensitivity and higher specificity than the
conventional US (p[Sp] = 0.0001; p[Se] < 0.0001), and the AUC
value showed no difference (0.79 [0.72–0.85] vs. 0.84 [0.77–0.89],
p = 0.1791). For Group 3, S-Detect presented higher specificity
FIGURE 1 | The schematic of the study flow.
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than the conventional US, but the sensitivity showed no
difference (p[Sp] = 0.016; p[Se] = 0.25). The AUC value of S-
Detect was significantly higher than that of the conventional US
(0.85 [0.76–0.92] vs. 0.68 [0.58–0.78], p = 0.0014). For Group 4,
S-Detect had lower sensitivity and higher specificity than the
conventional US (p[Sp] = 0.0001; p[Se] = 0.035), and it also
presented a higher AUC value (0.75 [0.69–0.80] vs. 0.66 [0.60–
0.72], p = 0.0038). In all groups, S-Detect presented higher
Frontiers in Oncology | www.frontiersin.org 6
specificity than the conventional US, and it also had higher
AUC values.

The diagnostic performances of S-Detect and conventional
US among the groups were also compared. For the performances
of S-Detect in different groups, Group 1, 2, and 3 presented a
significantly higher AUC value than Group 4, and others have no
differences (0.89 [0.84–0.93], 0.84 [0.77–0.89], 0.85 [0.76–0.92],
and 0.75 [0.69–0.80], respectively; p [1 vs. 4] < 0.0001, p [2 vs. 4] =
0.0165, p [3 vs. 4] = 0.0156). Specifically, both S-Detect of Groups
1 and 2 had higher specificity than that of Group 4 (83.87%
[77.12%–89.28%], 80.81% [71.66%–88.03%], and 59.59%
[51.16%–48.53%], respectively; p [1 vs. 4] < 0.0001, p [2 vs. 4] =
0.0004). For the performances of conventional US in different
groups, Groups 1 and 2 had a significantly higher AUC value
than Groups 3 and 4 (p [1 vs. 3] = 0.0107, p [1 vs. 4] < 0.0001, p
[2 vs. 3] = 0.0036, p [2 vs. 4] < 0.0001). The comparisons in
sensitivity, specificity, and AUC values among the four groups
are shown in Table 3.
TABLE 1 | Clinical information and pathological results of the patients.

Clinical information

Age (year)
Median (25% - 75% quartiles) 47.5 (38.00 - 56.00)

Tumor Size (cm)
Median (25% - 75% quartiles) 1.50 (1.00 - 2.20)

Histories of benign disease
No 654
Papillary tumors 2
Fibroma 68
Atypical hyperplasia 33

Family histories
No 748
Yes 9

Menopause
No 561
Yes 196

Pathologic findings
Benign 460
Fibroma 205
Adenosis 173
Papillary tumors 43
Sclerosing adenopathy 9
Inflammatory lesions 19
Phyllodes tumor 11

Malignant 297
Invasive ductal carcinoma 213
Invasive lobular carcinoma 7
In situ ductal carcinoma 41
Mucinous carcinoma 8
Solid papillary carcinoma 6
Micro-papillary carcinoma 2
Encapsulated papillary carcinoma 1
Adenoid-cystic carcinoma 3
Neuroendocrine carcinoma 3
tubular carcinoma 3
Malignant phyllodes tumor 6
Lymphoma 3
Leukemia 1
TABLE 2 | The diagnostic performances of S-Detect™, conventional US, and combining diagnosis.

x Sensitivity (%) Specificity (%) PPV (%) NPV (%) PLR NLR AUC

Conventional US1 94.28
(90.99–96.63)

54.13
(51.42–60.29)

55.89
(51.42–60.29)

93.61
(89.96–96.23)

2.00
(1.81–2.22)

0.11
(0.07–0.17)

0.74
(0.70–0.77)

S-Detect1 91.91
(87.05–93.92)

74.35
(70.10–78.28)

69.59
(64.74–74.13)

92.68
(89.53–95.12)

3.54
(3.02–4.16)

0.12
(0.08–0.18)

0.83
(0.80–0.85)

Elastograohy + S-Detect2 88.94
(83.99–92.78)

73.93
(68.60–78.78)

70.96
(65.17–76.28)

90.32
(85.94–93.70)

3.41
(2.81–4.15)

0.15
(0.10–0.22)

0.87
(0.84–0.90)
February 2022
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PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; AUC, area under the receiver operating characteristics; US,
ultrasound.
1Results for 757 patients.
2Results for 521 patients.
FIGURE 2 | Receiver operating characteristic (ROC) curves of S-Detect and
the conventional ultrasound (US) for 757 patients.
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DISCUSSION

US has enjoyed great popularity in China as one of the most
essential imaging methods for detecting breast cancer. It usually
presents very high sensitivity but relatively low specificity (8).
The low specificity and PPV of breast US causing high recall rate
and unnecessary biopsies in breast screening have been major
problems in the clinical utilization of US (33, 34). Efforts have
been made to conquer this problem by applying other US
modalities in addition to the grayscale US. In this multicenter
study, we investigated the value of CAD and elastography in
strengthening the diagnostic performance of US for the
asymptomatic breast lesions detected by opportunistic
screening US. The recruited patients in this study underwent
breast US screening and were recalled for the diagnostic US.
With the addition of S-Detect and the combination of S-Detect™

and elastography, the performance of US can be significantly
enhanced, especially the specificity and PPV. These US
techniques are promising in further clinical promotion for
breast imaging, as an important adjunct to the routine US in
detecting and diagnosing breast cancer.

In recent years, several self-developed or commercialized
CAD systems for breast US based on DL methods have been
developed and shown good performance in the detection,
segmentation, and diagnosis of breast lesions (35, 36). S-
FIGURE 3 | Nomogram of combined diagnosis. E, elastography; strain ratio (SR) value; S, S-Detect result; P, predictive percentage.
FIGURE 4 | Receiver operating characteristic (ROC) curves of three methods
and combined diagnosis for 521 patients.
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Detect™ is one of the DL-based CAD systems, constructed on
convolutional neural networks (CNN) and trained by a large
number of images of breast masses. Free from impact from
handcrafted features, the CAD system can make segmentation
and dichotomic classification of breast lesions automatically.
According to previous studies from 2016 to 2019 about S-
Detect™, the commercial CAD system presented outstanding
accuracy and specificity in classifying breast lesions, thus holding
potentials in enhancing the diagnostic performance of human
readers (17–20). In this study, the higher AUC value and
specificity of S-Detect™ compared with the conventional US
were also verified (AUC, 0.799; specificity, 0.695), similar to
previous reports, which also revealed an increment in specificity
(0.78–0.90) and AUC value (0.80–0.92). The sensitivity was still
maintained at a relatively high level, without statistical decrease.
With the use of S-Detect™, unnecessary biopsies can be
effectively reduced for those asymptomatic screening
breast lesions.

In a common clinical situation, radiologists make a diagnosis
of breast lesions by integrating clinical information and
comprehensive imaging information. For those patients with
typical clinical manifestations, such as severe pain, nipple
discharge, and fast-growing nodules, the lesions might be
upgraded by radiologists. In terms of the asymptomatic US
screening-detected breast lesions, based on the results of our
study, we can safely conclude that S-Detect™ is a reliable method
in downgrading possibly benign lesions and avoiding
unnecessary biopsies, which can be further applied in
US screening.

The role of elastography has been established in recent years
as an essential assisting method for breast US. A combination of
Frontiers in Oncology | www.frontiersin.org 8
elastography and the conventional US could benefit the diagnosis
of breast lesions by improving specificity without lowering
sensitivity (37, 38). In this study, we combined the CAD
technique and elastography to further enhance the diagnostic
performance of US for asymptomatic breast nodules. The
combined diagnosis presented higher accuracy and specificity,
compared with a single use of S-Detect™ and the conventional
US, without lowering sensitivity. Moreover, both S-Detect™ and
strain elastography (E-breast) can make objective assessments of
breast lesions, independent of the conventional US diagnosis
process. The two methods can play a complementary role for
each other in collecting diagnostic information of breast nodules.
In view of the results of this study, the combination of
elastography and S-Detect™ has a significant clinical value in
improving the specificity and overall performance of US in
classifying the asymptomatic breast lesions, which in turn can
reduce unnecessary biopsies for those US-screening-detected
lesions. The easy access of the two built-in US techniques may
also further facilitate their integration into US operating routine,
without increasing workload.

We also compared the diagnostic performances in different
groups of medical centers in this study. Based on the results, we
can conclude that in most cases, S-Detect presents higher
specificity and overall performances than the conventional US,
which further validates its feasibility in diagnosing breast lesions.
Additionally, due to its considerable accuracy in different regions
of China, S-Detect’s stability can be recognized in this
multicenter study, and it is promising for further clinical
promotion. However, significant differences in the AUC values
of S-Detect of different regions were detected between groups.
These centers also had different performances of conventional
FIGURE 5 | A typical case of a 45-year-old patient with a breast lesion detected and classified as BI-RADS 4a by screening ultrasound (US) (A; grayscale of the
US). S-Detect classified it as possibly benign (B), and its strain ratio (SR) was 1.19 (C). According to the nomogram, the point for SR result was near 10, and the
point for S-Detect was 0 (blue vertical lines), thus acquiring a total score of 10 for the lesion and a predictive percentage of less than 0.1 (D). The pathological result
for the lesion was adenosis.
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US. For the centers with better performances of human readers,
S-Detect also exhibited higher diagnostic accuracy. This issue
was not previously reported in other single-center studies of S-
Detect. It might be suggested that the training of US operators in
the application of CAD is still essential. In the medical centers
with better-trained US operators, more standard acquisition of
US imaging for the CAD analysis can be realized, thus realizing
the better performance of S-Detect.

There existed several limitations in this study. Firstly, the
cases included are suspicious lesions found by US. The
proportion of invasive ductal carcinoma is relatively high, and
further studies are required to evaluate the value of the methods
in diagnosing in situ ductal carcinoma. Also, we did not take the
results of mammography into consideration in this study. The
clinical information of the patients could also be included in
further studies to construct a more comprehensive
diagnostic model.
CONCLUSION

S-Detect™, a CAD system for breast US, presented a good
diagnostic performance in classifying asymptomatic breast
lesions detected by opportunistic screening, with a higher
overall AUC value and specificity than the conventional US.
After the results and strain elastography were combined, both of
which could provide objective imaging information for breast
nodules, the overall performance and specificity could be further
improved. Characterized by the aid for screening US in
enhancing diagnostic efficacy and reducing unnecessary
biopsies, S-Detect™ and its combination with elastography can
be further utilized clinically.
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